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Abstract—In this paper, we advocate applying the concept
of wake–up radio to distributed estimation in wireless sensor
networks. With distributed estimation, where sensing data of
multiple nodes are used for estimating a target observation, the
energy consumption can be reduced by making only a subset of
nodes in the network transmit their data, such that the collected
data can guarantee the required estimation accuracy. In this
case, a sink needs to selectively wake up sensor nodes whose
data can contribute to the improvement of estimation accuracy.
In this paper, we propose a wake–up signaling called estimative
sampling (ES) that can realize the selective wake–up of desired
nodes. The ES method includes a mechanism that dynamically
searches the desired nodes over a distribution of sensing data.
With numerical results obtained by computer simulations, we
show that the distributed estimation with ES method achieves
lower energy consumption than that with conventional identity–
based wake–up while satisfying the required accuracy.

I. INTRODUCTION

Wireless sensor networks (WSNs) play a key role in realiz-
ing many IoT–related solutions and applications [1]. One of the
key requirements on IoT/sensor networks is energy efficiency
since it directly affects the lifetime of IoT devices operating
with limited amount of energy resource.

In order to achieve energy–efficient operations of sensor
nodes, this paper focuses on wake–up radio, which reduces
energy consumed by each node during a standby period [2].
We consider a scenario where sensor nodes are deployed
around a sensing target, and a data collection node (called sink)
requests these nodes to transmit their sensing data whenever
needed. The sensor nodes are required to be in standby mode
so that they can respond to the request from the sink. In
order to reduce the energy consumed during this standby
mode, an ultra low–power secondary radio called wake–up
receiver, which is dedicated to wake–up signaling, is attached
to each sensor node in addition to a main radio used for
data transmissions. During standby mode, only the wake–up
receiver is kept active while the main radio is completely
switched off. When the sink requests data from sensor nodes,
it first transmits a wake–up signal to trigger target nodes. The
nodes with their wake–up receivers detecting the wake–up
signal switch their main radios on, transmit their data, and
transit back to standby mode. This operation can significantly
reduce wasteful energy consumption, and has been shown to
outperform conventional duty–cycling that is widely employed
in standard protocols, such as IEEE 802.15.4e [3][4].

In this paper, we advocate applying the above concept of
wake–up radio to distributed estimation in wireless sensor

networks. With distributed estimation, multiple sensor nodes
are deployed around a sensing target, and sensing data col-
lected from these nodes are used for the estimation of a target
observation [5][6]. The energy consumption of distributed
estimation can be reduced by making only a subset of nodes in
the network transmit their data, such that the collected data can
guarantee the required estimation accuracy [7][8]. In this case,
we need to appropriately choose the set of nodes which can
contribute to the improvement of estimation accuracy. In this
paper, we further attempt to reduce the energy consumption of
sensor nodes by applying the wake–up receiver to each sensor
node. Then, in addition to the selection of appropriate nodes,
we need a mechanism for the sink to convey information on
sensor nodes to be woken up to each wake–up receiver.

In this paper, we propose a wake–up signaling for dis-
tributed estimation called estimative sampling (ES), which
enables a sink to activate only a subset of nodes whose data
can contribute to the improvement of estimation accuracy. The
proposed ES method is designed based on a wake–up control
called content–based wake–up [9], which enables the sink to
wake up target nodes according to the sensed data of each
node. To the best of our knowledge, this is the first work
to integrate the concept of wake–up radio with distributed
estimation. The proposed ES method includes a mechanism
that dynamically searches the desired nodes over a distribution
of sensing data. With computer simulations, we show the
efficiency of the proposed ES method in terms of energy–
efficiency and data collection delay, which confirms that the
proposed ES method well–controls the cross–layer interactions
between information processing and PHY/MAC operations.

II. SYSTEM MODEL AND WAKE-UP SIGNALING

A. System Model

We consider a scenario of distributed estimation where N
sensor nodes are deployed around a sensing target to estimate
a true observation of θ [5][6]. Due to the noise generated at
each sensor node, the observed value θi of sensor node i is
expressed as

θi = θ + ni, (1)

where ni is assumed to be Gaussian with zero mean, i.e.,
E[ni] = 0 and variance of σ2. After the sink collects data from
n sensor nodes, the maximum-likelihood (ML) estimation can
be calculated as the mean value of the collected data [5][6],



i.e.,

θ̂ =
1

n

n∑
i=1

θi. (2)

The estimated value becomes more accurate with increased
number of collected data. However, the more sensor nodes
wake up and transmit data, the higher the total energy
consumed by sensor nodes is. In this work, with the aim
of reducing energy consumption, we consider a distributed
estimation guaranteeing a certain required accuracy [7][8].
Thus, we attempt to collect data only from a subset of sensor
nodes to achieve the required accuracy. We assume that the
information on noise distribution, i.e., Gaussian, is known for
the sink. On the other hand, the sink does not know its mean
corresponding to the true value as well as the variance of σ2.
We also assume that sensed data are limited to [Vmin,Vmax]
due to dynamic range of each sensor. Vmin and Vmax are
respectively assumed to be sufficiently smaller and larger than
θ so that the probability to have noise causing θi to be smaller
than Vmin and higher than Vmax is negligibly small.

We consider a scenario where a sink collects information
observed by sensor nodes located within its communication
range. We assume that each sensor node is equipped with a
wake-up receiver, which detects wake-up signal (i.e., wake-up
request) transmitted by the sink through non-coherent envelope
detection and on-off keying (OOK) demodulation. This type
of wake-up receiver has been shown to operate with ultra-low
power consumption in the order of µW [2][3][4]. In standby
mode, each sensor node switches off its main radio interface
(I/F) to be used for data transmissions, and keeps only wake-
up receiver active. After receiving a wake-up request from
the sink through wake-up signaling, sensor nodes activate
their main radio I/Fs, and immediately attempt to transmit
sensing data with a signal packet based on CSMA/CA protocol
defined in IEEE 802.15.4 [10]. When detecting a successful
transmission of packet by receiving an ACK from the sink,
each sensor node returns to standby mode. The sensor nodes,
which succeeded in data transmissions, are controlled not to
wake up for a certain period of time even if it receives a wake-
up request from the sink. With these operations, the main radio
I/F of each sensor node consumes energy only when needed,
which can significantly improve energy-efficiency of WSNs
[4][9].

B. Wake-up Signaling

In this paper, we employ wake-up signaling that exploits the
length of frame (i.e., the length of energy burst) transmitted
by the main radio I/F at a sink [4]. The wake-up receiver
at each sensor node detects the length of frame with non–
coherent envelope detection and OOK demodulation, which is
used to decide whether it should wake up or not. This wake-up
signaling enables us to reuse the main radio I/F at the sink as a
transmitter of wake-up signal, which avoids the installation of
an extra hardware to transmit the wake-up signal into the sink.
We consider two types of wake-up signaling: UCWu (Unicast
wake-up) [2][9] and CoWu (Content-based wake-up) [9].
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Fig. 1. Mechanism to decide wake-up frame length in CoWu.

1) UCWu: With UCWu, a unique wake-up ID is assigned
to each sensor node, which is called unicast wake-up ID
(UCWuID). A mapping between different wake-up IDs and
different frame length is prepared in advance. When a wake-
up receiver attached to a sensor node detects the frame length
corresponding to its own wake-up ID, the sensor node wakes
up. The advantage of UCWu is that no congestion occurs for
data transmissions after the wake-up process because only a
single sensor node wakes up. However, a problem is that the
sink collects data based on IDs independent of the observed
value of each sensor node. Therefore, it can not selectively
collect data according to the observed value.

2) CoWu: CoWu is a wake-up signaling that controls target
wake-up nodes based on the observed data of each sensor
node [9]. With CoWu, a mapping between a range of value
of sensing data and frame length is prepared in advance.
Each sensor node sets the wake–up frame length (length
to trigger wake–up process) into its wake-up receiver based
on the observed value of sensing data. The sink transmits
a wake-up signal with a frame length corresponding to a
specific value of sensing data. For example, let us consider
an example shown in Fig. 1, which shows a mapping between
the range of observable data [Vmin, Vmax] and that of frame
length employed for wake-up control [Tmin, Tmax]. We define
data quantization interval as Vq , and changing interval of
frame length as Tq . Then, when the observed data Vo belongs
to j-th interval, its wake–up frame length Twu is set to
Twu = Tmin + j×Tq . For example, when a sink attempts
to collect data above a certain threshold, a wake-up signal
with the frame length corresponding to the target threshold
is transmitted by the sink. By configuring nodes so that they
wake up and transmit data if each wake–up receiver detects
frame length larger than the specified threshold, we can realize
wake–up of nodes owning data above a certain threshold. We
call this type of CoWu as countdown CoWu (CD-CoWu).
On the other hand, by making nodes detecting smaller frame
length than the threshold wake up, we can realize countup
CoWu (CU–CoWu) where nodes owning data below a certain
threshold are activated. Although CoWu realizes content-based
wake-up as described above, multiple nodes can wake up and
transmit data simultaneously for a single wake-up request,
which causes congestions among nodes.



III. PROPOSED ESTIMATIVE SAMPLING

In this paper, we propose a sampling method called estima-
tive sampling (ES), which achieves energy-efficient estimation
by exploiting the advantage of CoWu.

A. Basic Operations of ES method

In ES method, a sink alternatively collects data from sensor
nodes observing lower values and higher values by using
CoWu, focusing on the fact that Gaussian distribution is line-
symmetric with respect to the mean. In this section, we define
V i
low as the i-th lowest observed data and V i

high as the i-
th highest observed data. We define nc as the number of
sensor nodes whose data have been collected by the sink. nc

is composed of the number of sensor nodes with their data
lower than the mean (denoted as nlow) and those with their
data higher than the mean (denoted as nhigh), i.e., nc = nlow

+ nhigh.
We describe the basic operations of ES method with Fig. 2,

where data distribution between minimum (Vmin) and maxi-
mum (Vmax) is depicted. In order to collect data from a sensor
node that observes V 1

low, wake-up trials are conducted from
the lowest interval with CU-CoWu. The specified threshold is
shifted with the step of Vstep (Vstep = n ∗ Vq , 1 ≤ n ≤ nmax,
where nmax is the maximum number of quantization intervals)
until any sensor node replies to a wake-up request. In this way,
data can be first collected from sensor nodes that exist within
the lowest data interval. Next, in order to collect data from
a sensor node that observes V 1

high, CD–CoWu is conducted
with the step of Vstep from Vmax, which enables the sink to
collect data from sensor nodes that exist within the highest
data interval. If nlow = nhigh, θ is estimated by using all
collected data. On the other hand, if nlow ̸= nhigh, nmin

= min(nlow,nhigh) is first obtained, and θ is estimated with
V i
low (i∈{1,2,…,nmin}) and V i

high(i∈{1,2,…,nmin}). This is
because the estimated value deviates from the true value if
nlow and nhigh are not balanced. In the example of Fig. 2,
V 1
low and V 1

high are collected from the lowest and highest data
interval. Then, since nlow = nhigh, θ is calculated by using all
collected data of sensor nodes. The sink can continue to shift
data interval by Vstep from the lowest data interval, transmits
the corresponding wake-up signal, and attempts to collect data
from a sensor node that observes V 2

low.
The above-mentioned operation is repeated until the number

of collected nodes reaches a pre-determined parameter of nr,
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Fig. 2. Basic operations of ES method.

which is the required number of sensor nodes to achieve the
desired estimation accuracy. Note that, when the sink finds the
unbalanced number of nlow and nhigh, it attempts to collect
data from the side with smaller number of nodes.

B. Impact of Vstep on ES method

In terms of the energy efficiency, it is desirable that only a
single sensor node exists in the specified range of ES method.
This is because of possible congestion among activated nodes:
if multiple sensor nodes simultaneously wake up and contend
with CSMA/CA, there can be sensor nodes waiting for a
long period of time with the operation of carrier-sensing and
backoff process. Thus, by reducing the size of Vstep, we
can increase the probability that only a single sensor node
exists in the specified range. However, a problem is that the
mean and variance of Gaussian distribution are unknown for
the sink, which makes it difficult to decide an appropriate
value of Vstep based on the probability distribution. In this
case, we need to set Vstep to the smallest possible value.
However, reducing the size of Vstep increases the number of
wake-up trials to be conducted until the sink finds the lowest
and highest data interval, as a result, data collection delay
increases. Therefore, we need a mechanism for the sink to set
a sufficiently large interval so that data collection time can be
shortened while offering low probability for multiple sensor
nodes to simultaneously wake up. In this paper, we propose a
method to dynamically set an appropriate interval that meets
the above condition by using UCWu in addition to CoWu.

C. Proposed ES method

In the proposed ES method, multiple modes of wake-up
signaling are employed, which are switched by using a control
signal transmitted by the sink. One mode is UCWu, and the
other mode is CoWu classified into CD-CoWu mode and CU-
CoWu mode. We prepare 3 control frame length to specify a
mode to be adopted by wake-up receivers. When each wake-
up receiver detects one of those length, it switches to the
corresponding mode.

In the proposed ES method, data is first collected from one
sensor node with a randomly–selected ID by adopting UCWu
mode in order to get an idea on data range to be searched
in the following CoWu mode. Specifically, from the value VU

collected in UCWu mode, we prepare a truncated Gaussian
distribution Gi

high with a range of [VU ,V i
HTh] and a truncated

Gaussian distribution Gi
low with a range of [V i

LTh,VU ]. Here,
V i
HTh and V i

LTh are the i-th highest and lowest threshold
employed for CD–CoWu and CU–CoWu, respectively, where
V 0
HTh = Vmax and V 0

LTh = Vmin. Note that the mean and
standard deviation of a truncated Gaussian distribution over a
range of [x,y] are calculated as x+y

2 and |y−x|
5 , respectively.

Next, a threshold to search a node with the lowest or highest
data with CoWu is determined such that the expected number
of nodes observing data within the range of [V i−1

LTh,V i
LTh] or

[V i
HTh,V i−1

HTh] is 1. For instance, V i
LTh is selected so that

the probability that a node observes data in the range of
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Fig. 3. Operations of ES method to collect V 1
low or V 1

high.

[V i−1
LTh,V i

LTh] expressed as

P =

∫ V i
LTh

V i−1
LTh

PGi
low

(x)dx (3)

becomes 1
N , where PGi

low
(x) is probability density function

(PDF) of Gi
low. The sink alternatively applies CU-CoWu and

CD–CoWu with shifted thresholds to collect data from nodes
belonging to the lowest and highest ranges. An example of
Gi

low and Gi
high with shifted thresholds is shown in Fig. 3,

where V 1
high and V 2

high are collected with 2nd trial of CD–
CoWu.

After collecting either V 1
low or V 1

high, VU in the above pro-
cess can be replaced with the collected lowest or highest value.
The sink tries to collect V 1

low or V 1
high, which has not been

collected with CU–CoWu or CD-CoWu. These operations are
repeated until the sink collects a set of data including V 1

low

and V 1
high.

After both V 1
low and V 1

high are collected with the above
operations, a truncated Gaussian distribution Ĝ with the range
of [V 1

low,V 1
high] is created. Then, the sink continues to collect

data so that nlow and nhigh become the same number. For
instance, if nlow ≤ nhigh, it is desired to collect V nlow+1

low .
Here, the collected values are used to estimate the mean and
variance of Ĝ 1. That is, with the increased number of collected
data, the estimation of Ĝ becomes more accurate. With Ĝ,
a new threshold is decided so that the expected number of
replying nodes within the next search range is 1, and the wake-
up signal corresponding to this threshold is transmitted. With
these operations, the estimated value of θ and distribution of
Ĝ are updated over time with the increase of collected data.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Simulation Model and Parameters

The parameters employed in computer simulations are
shown in Table I. In this study, the total number of sensor
nodes, N , is assumed to be 50. The frame length employed
for signaling the change of wake–up mode to UCWu mode
is 10.96 [ms], and those for CU-CoWu and CD-CoWu are
11.12 [ms] and 11.28 [ms], respectively. The distribution is
assumed to be a truncated Gaussian with the mean of 25

1Due to lack of space, we omit a mechanism to estimate the variance of
Ĝ here, but we confirmed that its estimation can be accurately made with the
proposed method.

TABLE I
SIMULATION PARAMETERS.

Bit Rate 100 kbps
Access control CSMA/CA
[Vmin,Vmax] [0,50]

Data quantization interval Vstep 0.1
Length Step of Wake-up Frame [4] 0.16msec

Minimum wake-up frame length Tmin [4] 10.8msec
Wake-up Frame for UCWu signaling 10.96msec
Wake-up Frame for CoWu signaling 11.12msec（CU-CoWu）

11.28msec（CD-CoWu）
Wake-up Frame of UCWu 11.28ms+0.16*i [msec]

(i: ID number)
Wake-up Frame of CoWu 11.28ms+0.16*j [msec]

(j: quantization interval)
Max. Num. of Back-offs 4

macMinBE 3
macMaxBE 5

Max. Num. of Retransmissions 3
Power Consumption in TX state 55 mW
Power Consumption in RX state 50 mW

and the standard deviation of 2, that is, the true value to be
estimated, θ, is 25. It is assumed that the observed data of each
node does not change during a data collection period. As a
performance metric, we use the estimation error and the energy
consumption required to achieve a certain required accuracy.
The estimation error is the squared error of the parameter to
be estimated. The simulation is conducted 1000 times, and
the averaged results over simulation trials are shown below.
In this work, we compare performance of ES method with
that of UCWu, where data is collected solely with ID–based
wake-up. With UCWu, data is collected in the increasing order
of IDs. In this evaluation, we neglect the energy consumption
of wake–up receiver since its value is same for the proposed
ES method and UCWu. Only energy consumed by the main
radio during active period of each node is considered for the
comparison.

B. Simulation Results

Fig. 4 shows the estimation error of true value for UCWu
and ES method against the number of sensor nodes whose
data are collected. From this figure, we can see that the
estimation error decreases as the number of nodes with their
data collected increases for both methods. We can clearly see

0 5 10 15 20 25 30 35 40 45 50

Number of Nodes with Data Collected

0

0.5

1

1.5

2

UCWu

ES method

Fig. 4. Estimation error of true value against the number of nodes with their
data collected for UCWu and ES method.



that the estimation with ES method has smaller error than
UCWu for the same number of nodes with collected data.
This is because the proposed ES method estimates the true
value with an equal number of data of sensor nodes observing
higher and lower side of distribution, which can reduce the
error thanks to the line-symmetry of the truncated Gaussian
distribution with respect to the mean. On the other hand, in
UCWu, data is collected regardless of the observed value of
the sensor nodes, and the estimated value tends to be biased to
higher or lower value from the true value. This is the reason
why UCWu exhibits larger error.

Next, we compare the energy consumption required to
achieve a given estimation accuracy for UCWu and ES
method. Here, the energy consumption is defined as the
amount of energy consumed by sensor nodes for the duration
of data collections, i.e., from the start of data collections to a
timing where the sink collects data from the number of nodes
required to achieve a given estimation error, which is here
set to be 0.2 as an example. From Fig. 4, we can obtain the
number of sensor nodes with their data collected to achieve
an estimation error of 0.2: 16 sensor nodes in UCWu and 4
sensor nodes in ES method. In each method, when collecting
data from the required number of nodes described above, 5.3
[mJ] is required for UCWu, and 2.8 [mJ] for ES method. In
other wards, ES method can reduce the energy consumption
to achieve the same estimation error by about 50 [%] in
comparison to UCWu. This result confirms that ES method is
superior to UCWu in terms of the energy consumption when
achieving the required estimation accuracy.

C. Comparison between the fixed and dynamic step size of ES
method

As described in Sec. III, the proposed ES method can
dynamically set the step size to search sensing data over the
distribution with unknown mean and variance. In order to
understand the benefit of this dynamic step size, here, we
compare performance of ES method with dynamic and fixed
step size. We show the energy consumption and delay required
to collect sufficient number of data to achieve an estimation
error of 0.2 with ES method employing dynamic step size
and those with fixed Vstep of 0.5 and 0.8 in Table II. From
this table, we can see that the proposed ES method with
dynamic step size can well-control the trade-off between delay
and energy consumption. For example, in order to achieve
the same delay as dynamic step size, the fixed Vstep of
0.8 needs to be employed, however, in this case, the energy
consumption of fixed Vstep is higher than that of the dynamic
step size. On the other hand, in order to achieve the same
level of energy consumption as dynamic step size, the fixed
Vstep of 0.5 should be used, however, this results in larger
delay than the dynamic step size. From this result, we can
confirm that the proposed method can appropriately specify
the data range to be searched dynamically, which enables
us to simultaneously achieve small delay and low energy
consumption for distributed estimation.

TABLE II
ENERGY CONSUMPTION AND DELAY OF ES METHOD WITH DYNAMIC AND

FIXED STEP SIZE.

Method Delay [s] Energy consumption [mJ]
Dynamic 2.6 2.8

Vstep = 0.5 (fixed) 4.1 2.7
Vstep = 0.8 (fixed) 2.6 4.0

V. CONCLUSIONS

In this paper, we focused on distributed estimation of an
observation at a sensing target based on noisy sensing data
collected from sensor nodes operating with wake-up receivers.
Assuming a truncated Gaussian distribution of the sensed data,
we proposed estimative sampling (ES) method, which can
selectively wake up sensor nodes whose data can contribute
to the improvement of estimation accuracy by exploiting the
advantage of content-based wake-up (CoWu). We compared
performance of ES method with that of UCWu that is an
identity-based wake-up without considering the importance of
each sensing data. Our numerical results obtained by computer
simulations show that the proposed ES method is superior to
UCWu in terms of energy consumption required to achieve the
same estimation accuracy. We also confirmed that the dynamic
step size employed in ES method can well-control the trade-off
between delay and energy consumption.
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