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ABSTRACT Model predictive control (MPC) has become one of the well-established modern control meth-
ods for three-phase inverters with an output LC filter, where a high-quality voltage with low total harmonic
distortion (THD) is needed. Although it is an intuitive controller, easy to understand and implement, it has
the significant disadvantage of requiring a large number of online calculations for solving the optimization
problem. On the other hand, the application of model-free approaches such as those based on artificial neural
networks approaches is currently growing rapidly in the area of power electronics and drives. This paper
presents a new control scheme for a two-level converter based on combining MPC and feed-forward ANN,
with the aim of getting lower THD and improving the steady and dynamic performance of the system for
different types of loads. First, MPC is used, as an expert, in the training phase to generate data required for
training the proposed neural network. Then, once the neural network is fine-tuned, it can be successfully
used online for voltage tracking purpose, without the need of using MPC. The proposed ANN-based control
strategy is validated through simulation, using MATLAB/Simulink tools, taking into account different loads
conditions. Moreover, the performance of the ANN-based controller is evaluated, on several samples of linear
and non-linear loads under various operating conditions, and compared to that of MPC, demonstrating the

excellent steady-state and dynamic performance of the proposed ANN-based control strategy.

INDEX TERMS Three-phase inverter, model predictive control, artificial neural network, UPS systems.

I. INTRODUCTION

The three-phase inverter is an extensively popular device,
which is commonly used for transferring energy from a DC
voltage source to an AC load. The control of three-phase
inverters has received much attention in the last decades
both in the scientific literature and in the industry-oriented
research [1], [2]. In particular, for applications such as
uninterruptible power supplies (UPSs), energy-storage sys-
tems, variable frequency drives, and distributed generation,
the inverters are commonly used with an output LC fil-
ter to provide a high-quality sinusoidal output voltage with
low total harmonic distortion (THD) for various types of
loads, especially for unbalanced or nonlinear loads [3]-[6].

The associate editor coordinating the review of this article and approving
it for publication was Fan Zhang.
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However, the performance of the inverter is mainly dependent
on the applied control technique. These controllers must cope
with the load variations, the non-linearity of the system, and
ensuring stability under any operating condition with a fast
transient response [7].

In the literature, various types of classical and modern
control schemes have been studied and proposed in order
to improve the performance of the converters, such as non-
linear methods (e.g., hysteresis voltage control (HVC)) [8],
linear methods (e.g., proportional-integral (PI) controller
with pulse-width modulation (PWM) and space vector
modulation (SVM)) [9]-[12], multi-loop feedback con-
trol [13], [14], deadbeat control [15]-[17], repetitive-based
controllers [18], [19], linear quadratic controller (LQR) [20],
and sliding-mode control [21], [22].
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Most of these control schemes, in a way or another,
are characterized by a number of limitations. For instance,
the major drawback of non-linear methods (e.g., HVC),
which require high switching frequency for effective oper-
ation, is having a variable switching frequency. This creates
resonance problems which reduce the converter’s efficiency
[23], [24]. On the other hand, although the linear methods,
which require carrier-based modulators, have the advantage
of constant switching frequency, their dynamic response is
weak comparing with HVC, because of the slow response of
the modulator. However, both linear and nonlinear methods
are extensively used for generating the switching signals
of the inverter because of the simplicity of the controller
implementation. Another example is deadbeat control which
provides fast transient response, but is highly sensitive to
model uncertainties, measurement noise, and parameter per-
turbations, in particular for high sampling rates. Other mod-
ern control approaches based on Hs, control theory [25] and
w synthesis [26] have been proposed, to handle the possible
uncertainties in the system.

Model predictive control (MPC) has become one of the
well-established modern control methods in power elec-
tronics, particularly for three-phase inverters with LC filter
according to [1], [23], [27]-[29]. The key characteristic of
MPC is to explicitly use the model of the system to predict
the future behavior of the variables to be controlled, consid-
ering a certain time horizon. Afterwards, MPC selects the
optimal control action (i.e., optimal switching signals) based
on the minimization of a pre-defined cost function, which
represents the desired behavior of the system [30]-[32]. With
the aim of getting lower THD and improving steady and
dynamic performance, many methods have been proposed
in the literature [29], [33]. For instance, the deployment of
longer prediction horizons is presented in [34]. However,
this results in a significant increase in computational cost.
To mitigate and tackle this problem, an improvement of the
finite-set FS-MPC strategy, using only a single step pre-
diction horizon, is introduced in [35]. This improvement is
mainly based on defining a new cost function, which not only
tracks the voltage reference but it also simultaneously tracks
its derivative. While, in [36], a current-sensorless FS-MPC
scheme for LC-filtered voltage source inverters is proposed,
in order to reduce the number of sensors in typical FS-MPC,
offering a comparable performance with the typical FS-MPC
scheme.

The main features of MPC can be summarized as: (i) an
intuitive controller easy to understand and implement, with
a fast dynamic response; (ii) no need either for PWM
blocks or modulation stage; (iii) the simple inclusion of sys-
tem constraints and nonlinearities, and multivariable cases;
(iv) the flexibility to include other system requirements. On
the other hand, a major drawback of MPC is that it requires
the optimization problem to be solved online, which involves
a huge amount of real-time calculations. However, differ-
ent solutions have been introduced in order to address this
problem, as proposed in [27], [37], [38].
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On the other hand, the application of data-driven
methodologies (or model-free approaches, particularly arti-
ficial neural networks ANNSs-based approaches) is cur-
rently growing rapidly in the area of power electronics and
drives [39]. Broadly speaking, the use of neural networks for
the control of dynamical systems was proposed in the early
nineties [40]-[42]. Multi-layer perceptrons were employed in
various roles, including system identification and implemen-
tation of the control law. In particular, ANN-based controllers
and estimators have been widely used in identification and
control of power converters and motor drives [43]. As an
example, they can be used to estimate the rotor speed, rotor-
flux, and torque of induction motors [44]-[46], in addition
to the identification and estimation of the stator current of
induction motor drives [47]. Several ANN-based methods
have also been used in the control of power converters, as pre-
sented in [48]-[51]. Indeed, the ANN-based controllers have
some advantages compared to other control methods such as:
(i) their design does not require the mathematical model of
the system to be controlled, considering the whole system as
a black-box; (ii) they can generally improve the performance
of the system when they are properly tuned; (iii) they are
usually easier to be tuned as compared to conventional con-
trollers; (iv) they can be designed based on the data acquired
from a real system or a plant in the absence of necessary
expert knowledge. But, they require a large amount of training
data. However, as the present work suggests, this is not a
major drawback because data can be obtained using reliable
simulation tools.

By taking advantage of the flexibility of MPC at train-
ing time, this paper proposes a feed-forward ANN-based
controller for a three-phase inverter with output LC filter
for UPS applications. The goal is getting lower THD and
good performance for different types of loads. The proposed
controller undergoes two main steps: (i) we use MPC as an
expert or a teacher for generating the data required for training
off-line the proposed neural network using standard super-
vised learning, under full-state observation of the system;
(i) once the off-line training is performed, the trained ANN
can successfully control the output voltage of the inverter,
without the need of using MPC at test time, as illustrated
in Fig. 1. We study a performance comparison between the
proposed ANN-based approach and the conventional MPC,
under various operating conditions. The main contributions
of the work described in this paper can be summarized as
follows:

1) To the best of our knowledge, this is the first attempt

to directly control a three-phase inverter with an output
LC filter using a feed-forward ANN based on MPC,
instead of the more common model-based approaches
as well as ANN classical control-based (such as
Fuzzy Logic Controller FLC-, PID-, or PWM-based)
approaches, or a combination of both [49], [52]-[56].
2) The proposed ANN-based approach generates directly
the switching signals of the inverter, without the need
for the mathematical model of the inverter and without

VOLUME 7, 2019
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FIGURE 1. An overview of the proposed control strategy: the training phase combines between using MPC for predicting the output voltage of the
inverter and collecting data, under full-state observation, for training the neural network. In the test phase, the trained neural network is employed
online to control the output voltage of the inverter instead of MPC, considering linear and non-linear loads.

a pre-defined cost function to be minimized at each
sampling time 7. This kind of approach is known as
an end-to-end approach.

3) The proposed strategy exhibits very low computational
cost compared to [34], [35], with much faster dynamic
performance and significantly improved steady-state
performance compared to conventional methods.

4) An open repository of the dataset and codes is provided
to the community for further research activities.!

The rest of the paper is organized as follows. Section II
deals with the mathematical model of the three-phase
voltage-source inverter with LC filter, whereas in Section III
the proposed predictive controller strategy is explained.
The ANN-based control scheme proposed in this paper is
described in Section IV. In Section V, simulation implemen-
tation and results are discussed for both proposed control
schemes, then the conclusion is provided in Section VI.

Il. SYSTEM DESCRIPTION AND MODELING

This section presents the mathematical interpretation of the
converter system considered in this paper. The model of LC
filter is also described in details, and is then used by the
predictive controller to predict the output voltage for all given
input voltage vectors.

A. SYSTEM DESCRIPTION VIA CLARKE TRANSFORMATION
The power circuit of the three-phase voltage-source inverter
considered in this paper is depicted in Fig. 2. In the present
case, the load is assumed to be unknown, while the models
of the converter and filter are given [57]. Moreover, the two
switches of each leg of the converter operate in a complemen-
tary mode, in order to avoid the occurrence of short-circuit
conditions. Thus, the switching states of the converter can be

IWeb: https://github.com/IThabMohamed/ANN-MPC
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FIGURE 2. Three-phase voltage-source inverter feeding an output LC
filter, which is directly connected to either linear or non-linear loads.

represented by the three binary switching signals, S, Sp, and
Se, as follows:

¢ _ I if S| ON and S; OFF
“7 lo, ifS, OFF and S4 ON
o _ I if S, ON and S5 OFF
=0, ifS, OFF and S5 ON
o if S3 ON and Sg OFF
7 lo, ifS; OFF and Sg ON

These switching states can be expressed in vectorial form
(i.e., in aB reference frame) by following transformation:

2
S = E(Sa +aSp + a* S.) = Sq +/Sg,

S _% 1 -1/2 —-1/2 ga (1)
Se)] ~ 3032 —vE2] ]
¢
—_—— ~——
S =:T. (Clarke transformation) ~Supc

where a = ¢/?7/3)_ The switching devices are assumed to be
ideal switches, therefore the process of switching-ON/-OFF
is not taken into consideration [28].

124739
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FIGURE 3. Eight possible combinations of the switching signals, and their
corresponding voltage vectors generated by the inverter in the complex
af frame.

The possible output-voltage space vectors generated by the
inverter can be obtained by

2
vi = S0y +avy + a’vey) 2)

where v,v, vpy, and vey represent the phase-to-neutral, N,
voltages of the inverter. On the other hand, we can define the
voltage vector v; in terms of the switching state vector S and
the dc-link voltage V. by

vi = VacS. 3)

Fig. 3 illustrates the eight switching states and, conse-
quently, the eight voltage vectors generated by the inverter
using (1) and (3), considering all the possible combinations of
the switching signals S, Sp, and S,. It is noteworthy that only
seven different voltage vectors are considered as possible
outputs, since vo = v7.

Similarly, as in (1), the filter current if, the output voltage
V¢, and the output current i, can be expressed in vectorial form
as

ir = 30 +aip + a’ip) = ifa +Jjifp, @
2 .

Ve = E(Vca +ave, + a2vcc) = Vea +J Veps ©)

1p = g(loa + aiyy + azloc) = loa J’_]l"ﬁ' (6)

B. LC FILTER MODELING

The model of LC filter can be described by two equations: the
former describes the inductance dynamics, whereas the latter
describes the capacitor dynamics [1]. These two equations
can be written as a continuous-time state-space system as

dx .
— = Ax + Bv; + Byi,,

dt
1
dafig]_|°
dth_l

__ ; 1 0
L |:f:|+|:z:|v,~+|: 1}0,
Ve ——
0 0
- |c
X

_— X
A B
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where L and C are the filter inductance and the filter capaci-
tance, respectively. The output voltage v, and the filter current
ir can be measured, whilst the voltage vector v; can be calcu-
lated using (3). The output current i, is considered as a dis-
turbance due to its dependence on an unknown load, whereas
the value of V. is assumed to be fixed and known. The output
voltage v, is considered as the output of the system, which can
be written as a state equation as v, = [O 1] X.

Then, using (7), the discrete-time state-space model of the
filter can be obtained for a sampling time 7 as

x(k + 1) = Agx(k) + Byvi(k) + Bagio(k),

TV
[if(k+ 1)] _ AT [if(k)} +/eAder vi(k)
0

velk +1) ve(k)
—_— — T ——
x(k+1) Aq x(k) By
T
+ / ATBadt iy k). )
0
———/
By

This model is used by the predictive controller (i.e., MPC)
to predict the output voltage v, for all given input volt-
age vectors v;. Then, for predicting the output voltage v,
using (8), we need the output current i, which can be esti-
mated using (9), assuming that i,(k — 1) = 1i,(k) for
sufficiently small sampling times 7 as proposed in [1], [34].

C
ik — 1) = ig(k)=is(k — 1)—7(vc(k>—vc<k -n)  ©

Ill. MODEL PREDICTIVE CONTROL FOR NEURAL
NETWORK

In this section we employ the model predictive control (MPC)
proposed in [31], [57], which provides the state-of-art of
output-voltage control of three-phase inverter for UPS appli-
cations, for two purposes: (i) to generate the data required
for the off-line training of the proposed neural network, and
(i) to compare its performance with the proposed
ANN-based controller under linear and non-linear load
conditions.

A. PROPOSED PREDICTIVE CONTROLLER STRATEGY

In the proposed control strategy, we assume that the inverter
generates only a finite number of possible switching states
and their corresponding output-voltage vectors, making it
possible to solve the optimization problem of the predic-
tive controller online [1]. MPC exploits the discrete-time
model of the inverter to predict the future behavior of the
variables to be controlled, for each switching state. There-
after, the optimum switching state is selected, based on the
minimization of a pre-defined cost function, and directly
fed to the power switches of the converter in each sam-
pling interval T, without the need for a modulation stage.
We choose the cost function to be minimize so as to achieve
the lowest error between the predicted output voltage and

VOLUME 7, 2019
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FIGURE 4. Schematic diagram of the MPC scheme for a three-phase
inverter with an output LC filter. The controller takes the measured
variables if, vc, and v¢ as inputs, while the switching signals Sq, Sp, and
Sc constitute the outputs.

the reference voltage. We express the cost function J, which
defines the desired behavior of the system, in orthogonal
coordinates by

J = (i = vealk + 1))2 + (v — veple + 1))2 (10)

where v}, and v:ﬂ are the real and imaginary parts of the
output-voltage reference vector v}, while v, and v.g are
the real and imaginary parts of the predicted output-voltage
vector v.(k + 1).

The block diagram of MPC, considering only one-step
prediction horizon, for a three-phase inverter with output LC
filter is shown in Fig. 4. The control cycle of the predictive
controller at sampling instant k is described as a pseudo code
in Algorithm 1 with more detail. Line 1 of the code declares
the control function, where the switching signals S,, Sp, and
S¢ are the outputs, while the inputs are the measured variables
of the filter current if(k), the output voltage v.(k), and the
reference voltage v (k) at sampling time k, all expressed in
af coordinates. The two variables, ir(k — 1) and v.(k — 1),
are recalled from the previous sampling instant (lines 7 to 9),
which are firstly initialized for k = 1 (lines 3 to 6). These two
variables are used to estimate the output current i,(k) given
by (9) (line 10), in order to obtain the possible predictions of
ve(k + 1) using (8).

The optimization is performed between lines 12 and 20.
The code sequentially selects one of the seven possible volt-
age vectors v; generated by the inverter based on (3) (line 13)
and applies it, in order to obtain the output voltage prediction
ve(k+1) atinstant k41, as in line 14. The cost function given
by (10) is used to evaluate the error between the reference
and the predicted output voltage at instant k + 1 for each
voltage vector (line 15). The code selects the optimal value
of the cost function J,,, and the optimum voltage vector X,
is then chosen (lines 16 to 19). Note that J,,; is initialized
with a very high value (line 11). Finally, the switching states,
Sa, Sp, and S., corresponding to the optimum voltage vec-
tor are generated and applied at the next sampling instant
(line 22), as illustrated in Fig. 3.

B. DISCUSSION

We can observe that all the control approaches proposed
in the literature, in a way or another, are model-based
approaches, which require in general either diverse com-
putational or approximative procedures for applying their
solution. In this context, MPC, the widely used approach

VOLUME 7, 2019

Algorithm 1 Pseudo Code of the MPC Scheme [31]
1: function [S,, Sy, Sc] = MPC(ir(k), vc(k), v7(k))

2: | Measure the first sampled values asif(1),v (1), vi(1);
3: if K = 1 then

4: Setif(k — 1) = ir(0) = 0+ jO;

5: Set ve(k — 1) = v.(0) = 0 + j0;

6: end if

7: if £ > 1 then

8: ‘ Recall measured variables if(k — 1), ve(k — 1);
9: end if

10: | Estimate i,(k) = ik — 1) — £ (vc(k) —volk — 1));
11: Set Jop; = 00;

12: for/ =1to7do

13: Compute v;() = S()V4e;

14: Predict v.(k + 1) at instant k + 1 using (8);

15: Evaluate J = (V’C“(k) —ve(k + 1))2;

16: it J(I) < Jop then

17: Set Jopr = J(1);

18: Set Xopr = I

19: end if
20: end for
21: Set Sopr = S(xopt)s
22: | return [Sq, Sp, Scl = [Sopt (1), Sopt(2), Sopt (3)];

23: end function

for three-phase inverters, relies on solving an optimization
problem online, leading to a large number of online computa-
tions. In other words, the control signal of MPC is determined
by minimizing a cost function online at each time instant.
Recently artificial neural networks have been used in con-
junction with MPC, in order to provide a powerful and fast
optimization as proposed in [58]-[61].

The alternative approach considered in the present work is
to apply neural network-based function approximators, which
can be trained off-line to represent the optimal control law.
Such an approach is expected to avoid the drawbacks asso-
ciated with MPC-based control approaches, does not require
the mathematical model of the system to be controlled, does
not evaluate a cost function online at each sampling time,
and, therefore, does not rely on an optimization problem to
be solved online. For this reason, this paper focuses on the
control of a three-phase inverter with output LC filter using a
feed-forward ANN-based MPC, which has not been reported
in the literature, where MPC is only used as a teacher for
training the neural network.

IV. IMPLEMENTATION OF ANN-BASED CONTROLLER

In this section, some important concepts related to ANN
including the structure of the proposed ANN-based controller
as well as details on the training data will be covered.

124741
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A. PROPOSED NEURAL NETWORK ARCHITECTURE

Machine learning, and in particular artificial neural networks,
is one key technology in modern control systems. An artificial
neural network (ANN) is an extremely flexible computational
model that can be optimized to learn input-to-output map-
pings based on historical data. An ANN is composed of a
number of simple computing elements linked by weighted
connections. Feed-forward networks do not contain loops,
so they are organized in layers and can be used to implement
input-to-output mappings that are memoryless, i.e., without
dynamics. In its basic form, this model can be expressed as
an iterative composition of input-output functions of the form

f & =h(w<)+£w,-x,-), an
i=1

where Ah(x) is an activation function (usually it is a
non-linear function such as logistic sigmoid or hyperbolic
tangent, to ensure the universal approximation property [62]),
X = {x1,x2,---,xpy} is the input vector of the ANN with M
elements, w; are the weights for each input x;, and wy is a bias
or correction factor. In a feed-forward network, it is possible
to distinguish one input layer, one output layer, and hidden
layers that connect the input to the output. The objective of
the ANN training phase is to optimize some cost function by
finding optimal values for the w; and wy.

Although recent developments have focused on larger
and larger scale problems (deep learning), improved tech-
niques have also been proposed to improve the reliability of
networks of smaller size. Toward the same goal, hardware
suppliers have started to support reduced-precision floating-
point [63] and integer [64] arithmetics, and offer small-
scale, dedicated architectures [65]. The result is a sound and
scalable technology.

In this work, a feed-forward neural network (fully con-
nected multi-layer perceptron) of the ““shallow” type, i.e., one
hidden layer, was used to implement the control model. A grid
search tuning procedure allowed the selection of a configu-
ration with 15 units in the hidden layer, while the number
of input and output units is constrained by the number of
input and output variables, respectively. Training was done
via the Scaled Conjugate Gradient (SCG) method [66], which
exploits the good convergence properties of conjugate gradi-
ent optimization [67] and has the computational advantage of
not requiring a line search, nor any user-selected parameters.

B. ANN TRAINING PROCEDURE

The ANN takes as inputs the measured variables of the filter
current i, the output voltage v, the output current i,, and the
reference voltage v} all expressed in o8 coordinates. The real
and imaginary parts of these variables are separately fed to the
neural network, bringing the total number of input features to
eight, i.e., M = 8. The output of the ANN is the optimum
voltage vector X, to be applied at each sampling instant.
The size of the output layer is an array with a length of 7,
which represents the indexes of the seven possible voltage

124742

TABLE 1. Training results of the proposed ANN based on 60 and
70 training cases, which have been collected by MPC.

Tr. Cases [[No. of Instances [ Accuracy [ Validation Error (epoch)]

60 217,510 69.1% 0.11108 (747)
70 247,820 69.3% 0.11213 (526)

vectors v; that inverter generates. The output is one-hot
encoded, meaning that at each sampling instant only the index
of the optimum voltage vector will be active (i.e., having a
value of one), while others will be equal to zero.

The training data, which have been collected by MPC,
comprises 70 experimental conditions, which are divided
into 60 cases for specific resistive loads (i.e., for only R =
1,3,5,7,10, 15,20, 25, 30, and 35 2), whereas only 10
experiments represent the case where the inverter directly
feeds a non-linear load (i.e., diode-bridge rectifier) with
different values of Ry; and Cpyr. For each experimental
condition, the simulation is run using MPC,2 under various
operating conditions such as simulation time (i.e, number of
output voltage cycles), sampling time Ty, filter capacitor C,
filter inductance L, DC-link voltage V., and reference volt-
age vi. Then, the input features of the neural network and
their targets are stored for training.

As a consequence, the total dataset consists of 217, 510 and
247, 820 instances for the cases where 60 and 70 experimen-
tal conditions are used, respectively. These dataset has been
divided into two parts: 70% randomly selected for training
purposes, and 30% for testing and validation. The overall
accuracy of ANN for the 60 training cases is 69.1%, while
it has a 0.2% increase for the 70 training cases, considering
15 hidden layers and the training function “transcg”. We
observe that the validation and training error, as well as the
error on the test set, are very similar when training stops,
according to the “early stopping” criterion used. This is an
indication that the neural network may attain a good degree of
generalization. For instance, for the 60 training cases, the best
validation performance is taken from epoch 747 with the
lowest validation error of 0.11108. The training results are
summarized in Table 1. Training was also attempted using the
Bayesian regularization back-propagation method, achieving
an accuracy of 93%. However, its performance at the test
phase (on-line) was not satisfactory.

For further detailed information about the training cases
used for training the ANN-based controller, please refer to:
https://github.com/ThabMohamed/ANN-MPC.

C. ANN-BASED CONTROLLER

As previously mentioned, the ANN-based controller is

trained off-line from samples collected via MPC, as shown

in Fig. 1. After fine-tuning the ANN, the trained ANN can be

used instead of MPC to control the system presented in Fig. 2.
Fig. 5 depicts the proposed block diagram of the

ANN-based controller for a three-phase inverter with output

ZWeb: https://github.com/ThabMohamed/MPC-3-Phase-Inverters
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FIGURE 5. Block diagram of the proposed ANN-based controller for a three-phase inverter with an output LC filter. Each sampling
instant, the trained ANN takes, as input, the measured variables if, vc, io, and vg, whereas it explicitly generates the optimum
voltage vector x,p¢. Afterwards, the corresponding switching states Sa, Sp, and Sc are directly given to the power switches of the

converter.

LC filter, in order to generate a high-quality sinusoidal output
voltage with low THD, considering different types of loads.

The control strategy of the proposed ANN-based controller
at sampling time k can be described as follows:

1) measure the value of the filter current i (k), the output
voltage v.(k), and the output current i,(k) at sampling
time k. Note that, the output current i,(k) is considered
to be a measurable value, without estimation based
on (9) or using the observer as in [1];

2) then, these measured values in addition to the reference
voltage v} (k) are used by the trained ANN in order to
explicitly generate the optimum voltage vector x,,, to
be applied at instant k + 1;

3) finally, the switching states, S,, Sp, and S., correspond-
ing to the optimum voltage vector x,,, are applied and
directly given to the power switches of the converter
each sampling interval 7.

V. SIMULATION IMPLEMENTATION AND RESULTS

This section provides a comprehensive study and evaluation
of the two proposed control strategies, taking into account
different loads under various operating conditions.

A. SIMULATION SETUP

To verify the proposed ANN-based control strategy and
compare its performance with the conventional MPC, we
used MATLAB (R2018a)/Simulink software components to
implement the Simulink model and the simulations of the
system shown in Fig. 2. We acquired the training samples, oft-
line training, and online voltage tracking purpose using the
proposed ANN approach via a PC equipped with an Intel®
Core i5-4210U 1.70 GHz CPU, 6 GB of RAM, and an Nvidia
Geforce® GPU, and running Ubuntu 16.04 64 bit.
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TABLE 2. Parameters of the converter system.

Parameter Value

DC-link voltage V. 500 [V]
Filter capacitor C 40 [uF]
Filter inductance L 2 [mH]
Sampling time T’ 30 [us]

B. SIMULATION RESULTS

The simulation of the three-phase inverter system shown
in Fig. 2 was carried out, considering linear (i.e., resistive)
and non-linear loads, in order to evaluate the behavior of
the proposed ANN-based control strategy and compare its
performance with that of MPC proposed in Section III. In par-
ticular, we studied and evaluated the steady and dynamic
performance of both control strategies, taking into account
different loads conditions. The parameters of the system are
listed in Table 2.

The behavior of the ANN-based controller in steady-state
operation for a resistive load of 5k shown in Fig. 6, while
the behavior of the predictive controller for the same resistive
load is shown in Fig. 7. The amplitude and the fundamental
frequency of reference voltage v are set to 200 V and 50 Hz,
respectively. It can be seen in the figures that the output
voltages v, for the proposed control strategies are sinusoidal
with low distortion, particularly for the ANN-based approach
which has a THD of only 1.6% compared to 3.95% for MPC.
Moreover, we observe that, due to the resistive load, the out-
put current i, is proportional to the output voltage, whilst the
filter current i, measured at the output of the converter shows
high-frequency harmonics, especially in the case of MPC,
which are attenuated by the LC filter.

The transient response of both control strategies for
no-load (i.e., open-circuit) is shown in Fig. 8 and Fig. 9. Here,
the filter capacitor C and filter inductance L are set to 50 uF
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FIGURE 6. Simulation results of ANN-based controller: output voltages,

output currents, and filter current in steady-state for a resistive load of
5kQ.
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FIGURE 7. Simulation results of MPC: output voltages, output currents,
and filter current in steady-state for a resistive load of 5kQ.

and 3.5 mH, respectively, whilst the sampling time T is kept
constant at a value of 30 us. It can be seen that the ANN-
based controller permits a fast and safe transient response,
demonstrating the excellent dynamic performance of the
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FIGURE 8. Simulation results: the dynamic response of the ANN-based
controller for a no-load, where the filter capacitor C = 50 uiF, the filter
inductance L = 3.5mH, and Ts = 30 ps.
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FIGURE 9. Simulation results: the dynamic response of MPC for a
no-load, where the filter capacitor C = 50 uF, the filter inductance
L =3.5mH, and Ts = 30 us.

proposed ANN-based control strategy. For MPC, the time
elapsed in order to reach steady-state operation and to faith-
fully track its reference waveform is about 20 ms (1 cycle),
which is affected by the change in the load, as illustrated
in Table 3. On the other side, for the ANN-based controller,
it is observed that it takes less than 5 ms for any load, in order
to reach steady-state. Furthermore, the output voltage quality
of ANN-based approach is improved significantly, with a
THD of 0.72% compared to 1.92% for MPC.

As previously mentioned, the proposed ANN is trained

off-line using a dataset which represents only different val-
ues of resistive load under different operating conditions.
However, to verify the feasibility and effectiveness of the
proposed ANN-based controller under realistic conditions,
the behavior of the system is tested online considering
non-linear loads, such as a diode-bridge rectifier as shown
in Fig. 10 and an inductive load. Fig. 11 and Fig. 12 show
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TABLE 3. A comparison between the two proposed control strategies for linear and non-linear loads under different operating conditions such as
sampling time Ty, filter capacitor C, filter inductance L, DC-link voltage V., and reference voltage v¢.

Case # 1: Resistive Load as Linear Load with R

Results

(THD) yn [70]

(THD)ype [%] ()

Case # 2: Diode-Bridge Rectifier as Non-Linear Load with R, and Cnp,

Sample No. ” RIO] [ Ts [ps] [ L [mH] [ C [uF] [ Vie [V] [ vi [V] (THD)SI_S60 [ (THD)Sl_S70
S1 10 25 2.5 50 550 250 0.49 0.52 1.16 (2ms)
S2 30 25 2.5 50 520 200 0.55 0.57 1.46 (5ms)
S3 50 25 2.5 50 500 250 0.65 0.68 1.59 (5ms)
S4 80 25 2.5 50 500 150 0.66 0.70 1.58 (10ms)
S5 300 25 2.0 50 450 200 0.63 0.65 2.32 (20 ms)
Se 500 25 2.0 40 550 250 0.95 1.06 2.84 (35ms)
S7 1kQ 25 3.5 40 520 200 0.72 0.70 1.51 (35ms)
Ss 2 MSQ 25 4.0 40 500 150 0.76 0.84 1.31 (30ms)
So 10 MQ 25 2.0 40 500 200 0.99 0.98 2.61 (10ms)
S1o Open Circuit 25 3.5 40 450 150 0.79 0.83 1.15 (30 ms)
R 5 ] 30 |25 [ 50 | 550 | 250 ||T 072 | T 074~ ~ |~ 175 7 7]
S12 40 30 2.5 50 520 200 0.86 0.83 2.04
Si3 100 30 2.5 50 500 250 0.88 1.12 2.36
S14 200 30 2.5 50 500 150 0.98 0.95 2.40
Sis 300 30 2.0 50 450 200 0.96 0.99 3.33
Sie 500 30 2.0 40 500 200 1.58 1.82 3.49
S17 2k 30 3.5 40 520 200 1.15 1.09 2.36
Sis 1MQ 30 4.0 40 500 150 1.20 1.27 1.88
S19 5MQ 30 2 40 500 200 1.61 1.62 3.91
Sa20 Open Circuit 30 2.0 40 450 250 2.25 2.25 5.34
TSy | T T 20 35 | 25 | 50 [ 550 | 250 | 1ar - |~ T21” 77 " 287 ]
Sog 100 35 2.0 50 520 200 1.66 1.66 3.85
Sa3 250 35 3.5 40 500 150 2.10 2.33 2.92
Sa4 400 40 2.5 50 500 200 2.27 2.48 4.11
Sos 500 40 4.0 45 450 200 1.50 1.89 2.91
| TS || 4000 T 40 |25 [ 740 ] 500 | 200 ||” " 540 | " ° 487 T T T« 442~ |
Sar 3kQ 35 2.0 40 550 200 4.23 4.30 4.19
Sos 3k 40 2.0 40 500 150 8.44 8.87 5.63
Sa9 1 MSQ 35 3.0 35 500 200 4.66 4.81 3.61
S30 Open Circuit 40 3.5 40 450 150 5.39 5.15 3.70
Results

(THD) ony [70]

Sample No. || Rnz [ [ Cwz [RFT] 7% [ps] [ L mH] [ CTRFT | Vae VI Ve [V]

(THD)g, _ s,

[ (THD)Sl —S70

S31
S32
S33

10 3000
30 3000
60 3000
1kQ 3000
1kQ 200
60 100
100 1000

T 7207 T 72000
30 2000
60 2000
2k 3000
2kQ 200
60 100
80 1000

T 7100 | 3000 |
900 3000
100 1000
100 5000
1kQ 3000
1kQ 3000

25
25
25
25
25
25
25
33
33
33
33
33
33
33
40
40
40
40
40
40

2.4

50

520
500

520
450
520
500
500

200
200
250
150
200
150
250
200
200
250
150
200
150
250
200
250
200
250
150
150

3.97
1.99
1.97
0.97
0.80

3.97
2.10
1.98

3.79
21.50
2.30

4.65
2.84
3.63
5.78
4.76

the behavior of the proposed control strategies for a diode-
bridge rectifier, with values C = 300uF and R = 60 Q,
while the behavior for an inductive load of 0.01 H is shown in
Fig. 13 and Fig. 14, considering the same operating condi-
tions presented in Table 2 and different amplitudes of the
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reference output voltage. As can be seen in the figures,
the output voltage generated by the ANN-based controller
outperforms that obtained using MPC for non-linear loads,
despite the highly distorted output currents due to feeding a
non-linear load. For instance, for MPC, the total distortion in
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FIGURE 10. Diode-bridge rectifier used as non-linear load, with values
C =300uFand R =60 Q.
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FIGURE 11. Simulation results of ANN-based controller: output voltages
and one-phase output current in steady-state for a diode-bridge rectifier
and a reference amplitude of 150 V.
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FIGURE 12. Simulation results of MPC: output voltages and one-phase
output current in steady-state for a diode-bridge rectifier and a reference
amplitude of 150 V.

the output voltage for the inductive load was 4.86%, while it
was 2.2% for the ANN-based controller. The result of MPC
can be improved by using either a smaller sampling time or a
higher value of the filter capacitance [28].

In order to achieve a fair comparison and prove the
superiority of the proposed ANN-based approach compared
to MPC in both transient and steady-state response, Table 3
shows a comprehensive comparison of both the control
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FIGURE 13. Simulation results of ANN-based controller: output voltages
in steady-state for an inductive load of 0.01 H and a reference amplitude

of 200 V.
200 I I l I ‘I
>
THD 4 86
—200 % 2
0.02 0.03 0.04 0.05 0.06 0.07  0.08

Time [s]

FIGURE 14. Simulation results of MPC: output voltages in steady-state for
an inductive load of 0.01 H and a reference amplitude of 200 V.

strategies for linear and non-linear loads, under various
operating conditions such as sampling time T, filter capaci-
tor C, filter inductance L, DC-link voltage V., and reference
voltage v}. Fifty unseen cases, at training time, have been
considered for testing the proposed approaches, including
thirty cases for different values of a resistive load, whereas
the rest was for a diode-bridge rectifier as a non-linear load.
Moreover, the THD of the output voltage obtained by the
proposed control strategies, for some cases given in Table 3,
is visualized in Fig. 15. As anticipated, the performance of the
ANN-based approach, either based on sixty or seventy train-
ing cases, outperforms that of MPC, which can be noticed
in lower THD and less settling time to reach steady-state
(i.e., t55, as shown in the first ten samples (i.e., S1 — Si0)).
It can be noticed that the performance of the ANN-based
controller using only sixty training cases is similar to that
based on seventy cases (see column 8 and 9 in Table 3).
However, for cases S26 — S30, the output voltages obtained
using MPC are better than that obtained using the ANN-based
controller. Moreover, it can be seen in sample Si9 that
the ANN-based approach failed to control the output volt-
age and track its reference waveform. As a consequence,
the UPS does not work properly due to a higher distor-
tion in the voltage. These results could be improved using
either (i) a higher sampling frequency, or (ii) a higher value
of the filter capacitance C, as illustrated in sample Ssq
which represents an improvement of the result of sample
Sa9. An alternative solution to be considered to improve the
performance of the controller is to increase the number of
training instances, taking into account various values of C
and T;. In addition, it is observed that having a one-delay
step in the input features of the neural network improves
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FIGURE 15. Comparison of the THD of the output voltage obtained by the two proposed control strategies, for some cases given in Table 3, under

different operating conditions.

its performance to outperform that of MPC. For example,
(THD)snn of cases Sag, S27, 828, 829, S49 is decreased to be
3.72%, 2.39%, 4.08%, 2.35%, 3.86%, respectively.

In fact, it is not surprising that the performance of the
proposed ANN-based controller outperforms that of MPC in
both transient and steady-state response, even with unseen
experimental conditions (i.e., loads) at training time as tab-
ulated in Table 3. This happened for two reasons. First,
the training data are sufficient to learn the mathematical
model of the system to be controlled and its dynamics, as well
as representing the optimal control law. Second, generating
a sinusoidal output voltage can be considered as a repeti-
tive task, where neural network can easily detect and learn
repetitive sequences of actions.

At the moment, one can say that the main limitation of
the proposed method is that only the simulation results are
not sufficient to prove its novelty in practical applications.
However, indeed we believe that our proposed approach will
also represent a novel contribution to the practical appli-
cations for the following reasons: (i) based on the previ-
ously proposed literature, both ANN-based and MPC-based
approaches have shown good results in both simulated and
experimental scenarios; (ii) moreover, the trained network
is only required to be fine-tuned, in order to improve its
performance in practical applications.

VI. CONCLUSION AND FUTURE WORK

A novel control strategy using a feed-forward ANN to
generate a high-quality sinusoidal output voltage of a three-
phase inverter with an output LC filter has been successfully
developed and tested, for different types of loads under var-
ious operating conditions. The output voltage of the inverter
is directly controlled, without the need for the mathematical
model of the inverter, considering the whole system as a
black-box. In this work, MPC has been used for two main
purposes: (i) generating the data required for the off-line
training of the proposed ANN, and (ii) comparing its per-
formance with the proposed ANN-based controller for linear
and non-linear load conditions. Simulation results, based on
fifty test different than those that were used at training time,
show that the proposed ANN-based controller performs better
than MPC, in terms of a lower THD and a fast and safe
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transient response, demonstrating the excellent steady and
dynamic performance of the proposed ANN-based control
strategy. As in any model-based control strategy, variations in
the system parameters inevitably influence the performance
of the ANN-based control scheme proposed in this paper. The
possible directions for future work would be (i) the imple-
mentation of the ANN-based controller in practical applica-
tions; then (ii) the employment in other power electronics
applications, possibly employing different neural networks.
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