
 

  

 

Aalborg Universitet

Stochastic Risk-Constrained Scheduling of Renewable-Powered Autonomous
Microgrids with Demand Response Actions: Reliability and Economic Implications

Vahedipour-Dahraie, Mostafa; Rashidizadeh-Kermani, Homa ; Anvari-Moghaddam, Amjad;
Guerrero, Josep M.
Published in:
I E E E Transactions on Industry Applications

DOI (link to publication from Publisher):
10.1109/TIA.2019.2959549

Publication date:
2020

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Vahedipour-Dahraie, M., Rashidizadeh-Kermani, H., Anvari-Moghaddam, A., & Guerrero, J. M. (2020).
Stochastic Risk-Constrained Scheduling of Renewable-Powered Autonomous Microgrids with Demand
Response Actions: Reliability and Economic Implications. I E E E Transactions on Industry Applications, 56(2),
1882-1895. Article 8932607. https://doi.org/10.1109/TIA.2019.2959549

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/TIA.2019.2959549
https://vbn.aau.dk/en/publications/16def06a-6f10-457f-b5f8-e838e78f8214
https://doi.org/10.1109/TIA.2019.2959549


0093-9994 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2019.2959549, IEEE
Transactions on Industry Applications

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

1 

 

Abstract-- The unpredictable and volatile nature of renewable 

energy sources (RESs) will increase the burden of a system 

operator for maintaining the system reliability in different 

conditions. In this paper, a stochastic risk-constrained 

framework is proposed for short-term optimal scheduling of 

autonomous microgrids to evaluate the influence of demand 

response (DR) programs on reliability and economic issues, 

simultaneously. The objective is to maximize the expected profit 

of the microgrid operator through optimal scheduling of 

resources in a more reliable manner considering both supply and 

demand side uncertainties. In the proposed approach, the 

microgrid operator’s risk aversion is modeled by using the 

conditional value-at-risk (CVaR) method to control and avoid 

non-desirable profit distributions due to various system 

uncertainties. Moreover, AC optimal power flow (AC-OPF) 

technique is employed to calculate the amount of energy and 

reserve of dispatchable distributed generation (DG) units and 

responsive loads for the operational hour of the next day. 

Eventually, the applicability of the proposed method is studied on 

different test systems and impacts of various parameters such as 

level of DR participants and values of lost load (VOLL) as well as 

risk aversion parameter on the system’s economy and reliability 

indices are investigated deeply. 

Index Terms— Demand response, renewable energy sources 

(RESs), reliability, stochastic scheduling, values of lost load 

(VOLL). 

NOMENCLATURE 

Abbreviations 

AC-OPF AC optimal power flow  

CVaR Conditional value-at-risk  

DG Distributed generation 

DR Demand response 

EENS Expected energy not supplied  

ENS Energy not supplied  

EP Expected profit  

LRC Load rebound characteristic  

MCS Monte-Carlo simulation  

PDF Probability density function 

RES Renewable energy source 

RTP Real-time pricing  

VOLL Values of lost load  

 

Indices and Sets 

i, DGN  Index and number of distributed generation 

(DG) units.  

w, WN  Index and number of wind turbines.  

v, VN  Index and number of photovoltaic (PV) 

units. 

j, JN  Index and number for group of customers. 

s, SN  Index and number of scenarios. 

t, h, TN  Indices and number of timeslots in the 

scheduling horizon. 
t  Duration of interval t 

b, n, r Indices for system buses. 

Symbols 

(.),(.)  
Maximum (minimum) values of (.). 

 

Parameters and Constants 

tjD ,  (
int
,tjD )

 
Demand of customer j at time t after 

(before) implementing DR program. 
int
,Pr tj ( int

,Pr hj )
 

Initial values of electricity price offered to 

customer j at time t (h). 
  Confidence level used to compute the 

CVaR. 

β Weighting parameter modeling the tradeoff 

between expected profit and CVaR. 

1M , 2M  Large positive scalars. 

S, ( S  )
 

Branch-bus incidence matrix ( S  is 

transpose of matrix S). 

ia , ib , ic  Coefficients of operation cost of DG unit i. 

URi,  DRi 
Ramping-down and ramping-up rates of 

DG unit i. 

UTi, DTi Minimum up and down time of DG unit i. 

tw,Pr , tv,Pr
 

Price of energy offered by wind and solar 

power producers in time period t. 

stj ,,Pr  Price of selling electricity to customer j in 

time t and scenario s. 
upR

ti,Pr (
dnR

ti,Pr ) Bid of up (down)-spinning reserve 

submitted by DG i in time t. 
upR
tj,Pr (

dnR
tj,Pr ) 

Bid of up (down)-spinning reserve 

submitted by load j in time t. 
nonR

ti,Pr  Bid of non-spinning reserve submitted by 

unit i in time t. 
j
ttE ,  

Self-elasticity of period t.  
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j
htE ,  

Cross elasticity of period t to period h. 

s  Occurrence probability of scenario s. 

rnG , ( rnB , )
 

The line conductance and susceptance 

(from bus n to r). 

stjLOL ,,  
Load shedding imposed on customer j at 

time t and scenario s. 
shed

stjQ ,,  
Involuntarily reactive power shed by 

customer j at time t and scenario s. 

sti ,, , stw ,, ,

stj ,,
 

Power factor of DG i, wind turbine w, and 

load j at time t and scenario s. 

M
 

Mapping of the set of generating units 

(loads) into the set of nodes. 


 

Set of lines. 
 

Variables 

stjD ,,  ( stjQ ,, ) 
Active (reactive) power consumed by 

customer j in period t and scenario s. 

D
 

Total demand vector. 
P
rnLF , (

Q
rnLF , ) Active (reactive) power flow from node n 

to r. 

LF
 

Power flow limit vector. 

stiP ,, ( stiQ ,, ) 
Scheduled active (reactive) power for DG 

unit i at time t and scenario s. 

stwP ,, ( stwQ ,, )
 

Output active (reactive) power of wind 

turbine w at time t and scenario s. 

stvP ,, ( stvQ ,, )
 

Output active (reactive) power of PV v at 

time t and scenario s. 
up

tjR ,  ( dn
tjR , ) Up- (down-) spinning reserves scheduled 

by load j at time t. 
up
tiR , ( dn

tiR , ) Up- (down-) spinning reserves scheduled 

by DG unit i at time t. 
non
tiR ,  Non-spinning reserve scheduled by DG unit 

i at time t. 
dn

stir ,, ( dn
stjr ,, )

 
Down-spinning reserve deployed by unit i 

(load j) at time t and scenario s. 
up

stir ,, (
up

stjr ,, )
 

Up-spinning reserve deployed by unit i 

(load j) at time t and scenario s. 
non

stir ,,  
Non-spinning reserve deployed by DG i at 

time t and scenario s. 

stnV ,, ( stn ,, )
 

Voltage magnitude (voltage angle) at node 

n at time t and scenario s. 


 

Value-at-risk. 

s  Auxiliary variable for computing CVaR. 

stiu ,,  Binary variable denoting commitment 

status of DG unit i at time t and scenario s. 

stiy ,, , stiz ,,  Binary variables denoting start-up/shut-

down of DG unit i at time t and scenario s. 

 

I. INTRODUCTION 

Microgrids as key players in smart grids, comprised of 

distributed energy resources (including dispatchable 

distributed generation (DG) units and renewable energy 

sources (RESs)), energy storage systems and controllable 

loads, can operate in both grid-connected and islanded 

modes  [1]. The uncertainty related to RESs and loads can pose 

a serious challenge to microgrid reliability  [2], and negatively 

affect the ability of a microgrid to provide power to the 

customers at required power quality  [3]. In such condition, 

demand response (DR) programs can play a significant role to 

manage the demand load and enhance the reliability of 

microgrid  [4]. Developing smart equipment in modern power 

systems brings the capability to facilitate the active 

participation of responsive loads in DR programs  [5]. In a 

system that integrates renewable generation at high rates, DR 

can also be a useful option to cope with the uncertainty of 

RESs production  [6]- [7].  

     Evaluation of system reliability when DR programs are 

implemented has been reported in some research works over 

the past years  [8]- [18]. In  [8] a security-constrained model has 

been proposed to coordinate supply and demand sides toward 

making a flexible, secure and economic grid. In the proposed 

method, generation units are committed to enhance the 

flexibility by providing up- and down-spinning reserves while 

an optimal real-time pricing (RTP) scheme provides demand-

side flexibility. In  [9], impact of DR programs on short-term 

reliability assessment of wind integrated power systems has 

been addressed by using Monte-Carlo simulation (MCS). 

Although authors in  [8]- [9] have discussed the reliability 

benefits made by implementing DR programs, they have not 

discussed the reliability implications of DR to increase the 

utilization of the existing network and the DR benefits 

associated with this objective. Authors in  [10] have proposed 

an optimization-based method to incorporate the customer 

satisfaction in the energy management programs. The impact 

of different DR programs has been studied on reliability of 

distribution systems considering different participation levels 

of customers in energy management programs. In  [11], an 

optimization framework has been presented when  emergency 

DR and emergency loading of overhead lines are integrated 

within the network operator’s flexibility strategy. The 

proposed optimization enables the operator to make a tradeoff 

between ageing and reliability costs and DR costs. In  [12], a 

reliability-constrained decision-making model for energy 

service provider has been presented incorporating DR 

programs. In the same work, the compensation cost of energy 

not supplied (ENS) has been considered by formulating 

reliability constraints. Also, the potential of DR actions for 

reducing total cost and improving technical aspects has been 

investigated in a distribution network. In  [13], a reliability 

evaluation method of smart distribution systems has been 

proposed, in which the load rebound characteristics (LRC) is 

considered and the expected ENS (EENS) is modified 

accordingly. The status of controlled load during an outage 

and after repairing the outage has been described in that work, 

and the effects of LRC on reliability indices of distribution 

systems have been quantitatively revealed. 

     In a few of the reviewed literatures, the researchers present 

stochastic scheduling models to effectively manage the 

demand-side participation in order to enhance the system 

reliability under uncertainties. In optimization problems under 

uncertainty where a stochastic programming model is 

developed, the risk management plays an important role in 

providing valuable information to decision makers. In  [14] an 

optimal management system for battery energy storage has 
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been proposed in a way to enhance the resilience of a 

microgrid while maintaining its operational cost at a minimum 

level. The optimization goal is achieved by solving a linear 

programming problem while the conditional value-at-risk 

(CVaR) is incorporated in the objective function. Moreover, 

in  [15] power scheduling and bidding problem for a microgrid 

aggregator has been formulated as a scenario-based stochastic 

program, in which risk control has been embedded in the 

problem by employing CVaR approach. Although, the impacts 

of risk measurement on different decision-making problems 

have been addressed by several researchers, only few research 

works have investigated the impact of risk aversion of the 

operator on the microgrid reliability. In  [16] a risk-constrained 

stochastic framework has been presented for jointly energy 

and reserve scheduling considering CVaR concept. 

Nevertheless, in none of the mentioned works, the effects of 

reliability indices on the microgrid scheduling have been 

investigated. Instead, a risk-constrained stochastic model has 

been proposed in  [17] for joint energy and reserve scheduling 

to maximize the expected profit of an islanded microgrid 

operator where the risk averse behavior of the operator is 

modeled by implementing CVaR method. Likewise, authors 

in  [18] have proposed a two-stage stochastic model for 

optimal security constrained energy and reserve scheduling in 

an autonomous microgrid with price-responsive loads. In the 

same work, an economic-based DR model based on 

consumers’ preferences has been developed and the effect of 

RTP-based DR programs on frequency security of an islanded 

microgrid has been investigated.  

    This paper extends our previous work presented in  [18] by 

developing a stochastic scheduling framework and 

investigating the impact of value of lost load (VOLL) on an 

autonomous microgrid reliability and economy, 

simultaneously. The scope of models in technical literature 

and the scope and contribution of this paper is summarized in 

Table I. Compared to the existing studies in this area, there are 

main differences between this work and the others. First, the 

economy and reliability performance of the autonomous 

microgrids is assessed in different levels of DR participants by 

using a proper stochastic model, in which AC-optimal power 

flow (AC-OPF) is used in each working condition to ensure 

the validity of solution in terms of voltage and frequency 

security. It should be noted that, most of the recent works use 

DC-power flow (DC-OPF) methodologies in connection with 

their optimization problems which in turn neglect reactive 

power flows and their impact on the system reliability indices. 

Second, in the proposed approach, the microgrid operator’s 

risk aversion is modeled by using the CVaR method to control 

and avoid non-desirable profit distributions due to various 

system uncertainties. This enables the microgrid operator to 

select a desirable risk level prior to solving the stochastic 

optimization model and making final decisions from both of 

economy and reliability viewpoints. In addition, in this study 

the sensitivity of the expected profit and the CVaR respect to 

reliability indices and level of DR participants are 

investigated. 

      As a whole, the novelty aspects of this study, compared to 

the existing literature in this subject area, are summarized as 

follows: 

1) A risk-constrained stochastic framework is presented for 

joint energy and reserve scheduling of autonomous 

microgrids by considering reliability issues as well as all 

the pertinent uncertainties associated with loads, RESs 

available power and electricity prices. 

2) The risk associated with profit variability is explicitly 

taken into account in the problem formulation through 

the incorporation of CVaR metric. This enables the 

microgrid operator to select a desirable risk level prior to 

solving the stochastic optimization model and making 

final decisions. 

3) Impacts of various parameters such as level of DR 

participants, VOLL index and risk aversion parameter on 

the reserve capacity allocation, economy and reliability 

indices are explored via sensitivity analyses. Moreover, 

economic benefits and reliability indices in two cases of 

risk-neutral and risk-averse are compared.       

     The remaining part of the paper is organized as follows. 

Section II presents the optimization problem and modeling 

approach in an uncertain environment. Section III describes 

stochastic optimization approach. Section IV presents case 

studies together with simulation results. Finally, conclusions 

are drawn in sections V.       

II. PROBLEM DESCRIPTION AND MODELING APPROACH  

A. Problem Description 

    The paper addresses the short-term scheduling of an 

autonomous microgrid for maximizing the expected profit of 

TABLE I 
SUMMARY OF LITERATURE REVIEW AND SCOPE AND CONTRIBUTION OF THIS STUDY 

Reference  Stochastic 
Risk 

Measure 
Reliability 

issue 
Frequency 

security  
Voltage 

security 
Reserve 

scheduling 
RESs 

uncertainty 
DR 

uncertainty 
Power 

flow 

[6], [7]            DCOPF 

[8], [9]             DCOPF 

[10], [11], 

[12], [13]  
             DCOPF 

[14], [15]              DCOPF 

[16]               DCOPF 

[17]                DCOPF 

[18]                 ACOPF 

Proposed 

Model 
                ACOPF 
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the operator by considering reliability aspects. It is supposed 

that the operator interacts with take-or-pay contract  [19] to 

purchase energy from dispatchable DGs and wind generation 

units while it sells electricity to customers under day-

ahead/real-time prices, which is based on a service agreement. 

In addition, the operator has accessibility to the historical data 

including demand load, wind power forecasts, and electricity 

prices for the scheduling horizon. Customers have two load 

categories; i.e., responsive loads and fixed loads. They are also 

assumed to be equipped with smart metering and advanced 

energy management systems which enable them to respond to 

dynamic tariffs. Based on operating conditions of the system, 

responsive loads can adjust their demand by shedding or/and 

shifting option to reduce the electricity bills. In contrast, there 

is no control over fixed loads and they should be supplied at 

all circumstances. Additionally, the customers can participate 

in providing up- (down-) spinning reserve capacities and 

deploy them when frequency regulation is needed (e.g., during 

low (high) wind periods). Therefore, both DG units and 

responsive loads can activate a portion of their scheduled 

reserve capacity to compensate deviations between the 

scheduled powers in day-ahead and actual ones in real-time.    

Additionally, in this paper, CVaR criterion is implemented to 

manage the risks that operator may experience during 

undesired scenarios in the microgrid operation process. The 

proposed problem is formulated as a mixed-integer linear 

programming (MILP) model that can be solved by off-the-

shelf packages, such as CPLEX and GUROBI. 

B. Modeling the Demand Response Programs 

     In this study, RTP-based DR program is used to encourage 

the consumers to change their electricity consumption pattern 

(considering load shifting and curtailment options) in response 

to fluctuations of price over the time  [20],  [21]. The influence 

of RTP-based DR program on customers’ power consumption 

can be described by the concept of elasticity of demand. 

Elasticity, that is defined as the sensitivity of the demand with 

respect to the price, is used to estimate the load reduction and 

load recovery by DR participants. Therefore, the price 

elasticity of customer j in time slot t versus time slot h can be 

defined as  [22],  [23]: 

hj

tj

tj

hjj
ht

D

D
E

,

,

int
,

int
,

,
Pr

.
Pr




  (1) 

when h = t, (1) represents self-elasticity of a customer and its 

attitude toward load curtailment. Otherwise, (1) represents 

cross-elasticity and considers the shift of demand to another 

time period due to a change in price at the current period. By 

participating in DR programs, in order to achieve the 

maximum benefit, customer j changes its demand in period t 

from int
,tjD  to tjD ,  as: 

tjtjtj DDD ,
int
,, 

 
(2) 

     The amount of customer’s profit, )( ,tjDS , is obtained from 

the benefits, )( ,tjDB , minus the energy costs as (3),  [18]. 

tjtjtjtj DDBDS ,,,, Pr)()( 
 

(3) 

In order to maximize the profit of customer j, (4) must be met. 

tj

tj

tj

tj

tj

D

DB

D

DS
,

,

,

,

,
Pr

)(
0

)(










 (4) 

     Here, a quadratic utility function is used to incentivize the 

participation of responsive loads in DR programs. Based on 

the model, the utility of customer’s j is obtained as: 










T j
ht

N

h

E

tj

tj

j
ht

tjhj
tjtj

D

D

E

D
BDB

1

)(

int
,

,

1
,

,
int
,int

,, ]1)(
)(1

Pr
[)(

1
,  

(5) 

     Differentiating (5) with respect to tjD , gives: 































T j
ht

T j
ht

N

h

E

tj

tj

tj

j
htj

tt

tjhj

N

h

E

tj

tj

j
ht

hj

tj

tj

D

D

D
E

E

D

D

D

ED

DB

1

1)(

int
,

,

int
,

1
,1

,

,
int
,

1

)(

int
,

,

1
,

int
,

,

,

])(
1

)[(
)(1

Pr

]1)[(
)(1

Pr)(

1
,

1
,

 (6) 

     Substituting (6) into (4) yields: 

1
, )(

int
,

,

1

1
,

1
int
,

,

1

1
,

)(])(1[1

Pr

Pr
])(1[



















j
ht

T

TT

E

tj

tj
N

h

j
ht

N

h hj

hj
N

h

j
ht

D

D
E

E

 (7) 

     By some simplifications the following equation is 

achieved: 










 TTj
ht

E
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hj
N
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j
httj

tj
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D

1
int
,

,

1
1

,
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,

,
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Pr

)(1

1
)(

1)
,

(

 (8) 

     Equation (8) should be re-written as follows:  
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,

,
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)(1

1
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1)
,
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 (9) 
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,
int
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1
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T j
ht

N

h
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j
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hj
tjtj

E
DD

1
1

,
int
,

,int
,, ])

)(1

1

Pr

Pr
[( ,  (11) 

     Equation (11) denotes the optimal amount of demand from 

customers’ point of view by participating in price-based DR 

programs. 

C. Reliability Evaluation Procedure 

     The conventional reliability indices such as EENS are 

usually used to assess long-term security of energy 

supply  [24]. This index has been redefined here to evaluate the 

reliability of energy provision in a given period. Therefore, the 

EENS (T) is defined as the expected ENS during the 

operational horizon T and can be calculated as follows  [24]: 

, ,

1 1 1

S JT N NN

s j t s

t s j

EENS LOL t
  

   (12) 

where, s  is the probability of occurrence of scenario s, Δt is 

the duration of time period t which can be five minutes or 

more and stjLOL ,,  is the loss of load (LOL) of consumer  j in 

period t during operating scenario s. 
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D. Objective Function 

     The objective function (OF) of the problem is to maximize 

the expected profit (EP) of the operator considering risk 

constraints, DR and reliability issues. Detailed mathematical 

optimization for the operator over all the possible realization 

scenarios of load, electricity price and RESs power is 

formulated as follows:  

: ( ) Cos CosE ROF Max EP Income t t CVaR      (13) 

where, Income is total income of microgrid operator, and

ECost and RCost are total operation cost (or cost of energy 

provision) and the cost of scheduled reserve capacity, 

respectively. The cost of energy includes the operation cost of 

dispatchable DG units (CostDGs), cost of RESs (CostRESs), cost 

of customers’ participation in DR (CostDR), and cost of ENS 

(CostENS). Also, the cost of reserve capacity includes cost of 

reserves allocated by DG units and DR. Different terms in (14) 

are formulated in the following. 

    Income includes the revenue from selling energy to 

customers which is formulated as follows:  

, , , ,

1 1 1

Pr
S JT N NN

s j t s j t s

t s j

Income D t
  

   (14) 

where, stjstj D ,,,,Pr shows the operator’s revenue by selling 

electricity to the customer j at time t for scenario s. Moreover, 

ECost can be formulated as: 

ENSDRRESsDGsE CostCostCostCostCost   (15) 

    Term of CostDGs consists of generation cost, start-up cost 

and shut-down cost that is represented as follows: 

t
SDSU

PcPba
Cost

stisti

stiistiii
N

i

N

t

N

s

sDGs

DGT S



















 

  ,,,,

2
,,,,

11 1

  (16) 

    The term CostRESs stands for the cost of power provision 

from RES units. In this paper, wind and photovoltaic (PV) 

units are considered as privately owned renewable resources, 

thus, the operator has to pay for their commitments. Therefore, 

CostRESs represents as follows: 

, , ,

1

1 1

, , ,

1

Pr

Cos

Pr

W

ST

V

N

w t w t sNN
w

RESs s N
t s

v t v t s

v

P

t t

P




 



 
 

  
 
 
 






 (17) 

    In the price-based DR program, the operator pays the 

customers based on hourly electricity price ( stj ,,Pr ). This cost 

can be formulated as follows: 

tDCost stjstj

N

j

N

t

N

s

sDR

JT S

 
 

,,,,

11 1

Pr  (18) 

where, stjD ,, denotes the amount of demand of customer  j at 

time t and scenario s. Therefore, stjstjD ,,,, Pr  represents the 

payments to customer j for his DR participants.  

     Finally, CostENS denotes the LOL cost that should be 

considered as reliability improvement measure. 

, ,
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    (19) 

     Moreover, the cost of reserve capacity for microgrid, which 

is allocated to dispatchable DG units and DR, can be 

formulated as follows  [25]: 
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     In (20), the first and the second lines represent the cost of 

scheduled up/down- and non- spinning reserves of DG units, 

respectively. The third line denotes the cost of scheduled 

up/down spinning reserves of responsive loads. Furthermore, 

last term of the objective function is CVaR that is multiplied 

by a risk factor. In the proposed model, CVaR method is used 

to model the trade-off between maximizing expected profit of 

the operator and the risk of obtaining low profits in undesired 

scenarios. CVaR for a confidence level α is given as 

follow  [17]: 

])1([max

1

1

,
s

N

s

s

S

s

CVaR 





   (21) 

Subject to: 

0;0  sss B    (22) 

where, parameter α represents the confidence level of risk and 

is usually assigned a value within the range of 0.90–0.99. 

Also, sB  is the profit in scenario s and  represents the 

greatest value of the profit such that the probability of 

experiencing a profit less than or equal to   is less than or 

equal to 1-α. At the optimum, the auxiliary variable s  

represents the excess of   over the profit of scenario s, 

provided that this excess is positive  [17]. 

E. Constraints of the Problem 

The proposed objective function is satisfied with the 

following constraints: 

     Demand-supply power balance in each time and working 

condition must be met as follows: 
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where,
P

strnLF ,,, and 
Q

strnLF ,,, represent the active and reactive 

power flows from bus n to bus r calculated as follow: 
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     When the microgrid faces a capacity shortage in a working 

scenario, the mandatory load shedding can be employed to 

maintain system security. Due to high cost of lost load, the 

amount of stjLOL ,, should not exceed a limit as follow  [17]: 

tjstj LOLLOL ,,,0   (27) 

      By assuming power factor tj,  for consumer j, its 

involuntarily reactive power curtailment at time t and scenario 

s ( shed
stjQ ,, ) is calculated as follow: 

))(cos(tan ,
1

,,,, tjstj
shed

stj LOLQ   (28) 

      Other operating constraints that model the real-time 

operation of microgrid include voltage magnitude limit (29), 

voltage angle limit (30), line flow limits (31), production 

limits of units (32) and reactive power limits of DGs and RESs 

(33)-(35), which are presented as follows: 

nstnn VVV  ,,  (29) 
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  vwikPPP kstkk ,,,,   (32) 

1

, , , , , ,cos(tan ( ))i t s i t s i t sQ P   (33) 

1

, , , , , ,cos(tan ( ))w t s w t s w t sQ P   (34) 

0,, stvQ  (35) 

     Constraints (36) and (37) represent the increment or 

decrement limit of produced power by DG units in a specified 

period in each scenario, respectively.  

stiistiististi yPyURPP ,,,,,1,,, )1(    (36) 

stiistiististi zPzDRPP ,,,,,,,1, )1(   (37) 

where, URi and DRi are the ramping-down and ramping-up 

rates limit of DG unit i, respectively. The minimal down and 

up time limitations of DGs are determined by (38) and (39), 

respectively. 
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where, UTi and DTi are the minimum up and down time of DG 

unit i, respectively. In addition, the relationship between start-

up and shut-down binary variables in a unit commitment 

problem should be considered as (40) and (41), 

respectively  [15]. 

stistististi uuzy ,1,,,,,,,   (40) 

1,,,,  stisti zy  (41) 

    The limit of allocated up, down and non-spinning reserves 

by DG units to fully regulate the system frequency should be 

defined as: 

titii
up
ti PuPR ,,,0   (42) 

tiiti
dn
ti uPPR ,,,0   (43) 

)1(0 ,, tii
non
ti uPR   (44) 

     Moreover, constraints (45) and (46) represent up and 

down-spinning reserves allocated by responsive loads in each 

time and scenario. 
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     Moreover, the constraints (47) and (48) couple the 

scheduled power with possible realizations of stochastic 

processes.  
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    The relationship between scheduled and deployed reserves 

are represented by (49)-(53),  [17]. 
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     In order to guarantee a reliable generation scheduling the 

upper limit of the LOL should not exceed customers’ demand 

at that hour. Therefore, the EENS at time t is limited as:  

tt EENSEENS 0  (54) 

F. Linearization Procedure 

    In order to improve the robustness and the computational 

efficiency of the proposed solution, nonlinear equations such 

as AC power flow constraints (i.e. equations (26) and (27)) 

should be linearized to be appropriate for linear programming 

model. Considering the typical range of voltage amplitude 

(i.e., 0.95 ≤ stnV ,,  ≤ 1.05), these equations are approximated 

with (55) and (56) with a negligible error  [2]. 
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     Over a typical range of voltage angle, i.e.,
10,,,,  strstn  , strn ,,, represents the piecewise linear 

approximation of )cos( ,,,, strstn   that is  [26], 

mstrnstrstnmstrnstrn ed ,,,,,,,,,,,,,,, )(    (57) 

where, mstrnd ,,,, and mstrne ,,,, are chosen so that strn ,,, and

)cos( ,,,, strstn   intersect at break points. The approximation 
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errors associated with this model can be found in  [27]. The 

active and reactive power flow should be satisfied by (58) and 

(59), respectively. 
P

strn
P

strn

P
strn LFLFLF ,,,,,,,,,   

(58) 

Q
strn

Q
strn

Q
strn LFLFLF ,,,,,,,,,   

(59) 

    However, to eliminate the non-linear terms  2,,,
P

strnLF  and 

 2,,,
Q

strnLF in equation (31), they are replaced with two new 

variables defined as  2,,,,,,
P

strn
P

strn LF


 and

 2,,,,,,
Q

strn
Q

strn LF


 . Accordingly, the following constraints 

are incorporated to relate the new variables to the problem 

decision variables  [2],  [28]: 
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1,,,,,,1 MLFM P
strn

P
strn    (64) 

2,,,,,,2 MLFM Q
strn

Q
strn    (65) 

where, 1M and 2M are sufficiently large constants. If

0,,, Q
strnLF , according to (60), the limitation of P

strn ,,, can be 

determined and if 0,,, P
strnLF , the limitation of P

strn ,,,  would 

be obtained using (61). Similar constraints could be applied to 

limit the Q
strn ,,,  according to changes in 

, , ,

Q

n r t sLF which are 

reflected in (62)-(63). In addition, to obtain a feasible region 

in the linearization process, the values of P
strn

P
strn LF ,,,,,,  and 

Q
strn

Q
strn LF ,,,,,,  should be limited by (64) and (65), 

respectively  [2]. 

III. STOCHASTIC OPTIMIZATION APPROACH 

     Fig. 1 illustrates the proposed framework for the stochastic 

scheduling of the examined microgrid.  As can be observed, 

the input data includes two categories information: 

probabilistic and deterministic. In day-ahead scheduling 

process, the microgrid operator faces various uncertainties 

associated with wind and PV output power, load demand and 

electricity price. To deal with these uncertainties, the 

mentioned stochastic variables are characterized by a set of 

scenarios. To generate scenarios of each stochastic variable, 

firstly, forecasting errors are calculated for each hour of the 

next day. Forecasting errors of the stochastic variables are 

modeled with probability density functions (PDF) for each 

interval with a zero-mean normal distribution and different 

standard deviations  [15],  [29]. In this study, each PDF is 

divided into seven discrete intervals with different probability 

levels  [17],  [30]. MCS is used to generate a large number of 

scenarios indicating the uncertain parameters based on their 

hourly PDFs  [31]. To solve a stochastic optimization problem, 

a scenario tree is subsequently built based on the generated 

scenarios of all stochastic variables  [18]. Each scenario 

captures the information of the hourly wind and PV output 

power, and the hourly load, in the operating day. To reduce 

the computational burden of the stochastic procedure, K-

means algorithm  [32] is applied to mitigate the number of 

scenarios into a limited set providing well enough the 

uncertainties.  

     After scenario generation and reduction, the stochastic 

scheduling problem is solved for all working scenarios. Using 

Benders' algorithm, each of these distinct procedures is 

decomposed into a master problem and a sub-problem.  

 

 

Fig. 1. Flowchart of the proposed computing procedure. 

 

    The solution from the master problem can be used as a 

running status for unit commitment problem. The vector of 

active power and outputs of committed DG units ( tiu ,  and tip ,
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TABLE II 

 INFORMATION OF GENERATING UNITS 

Cost of non-

SR ($) 

Cost of down-

SR ($) 

Cost of up-

SR* ($) 

Shut-down 

cost ($) 

Start-up 

cost ($) 

Marginal cost 

($/kWh) 

Min-Max generation 

capacity (kW) 
Unit 

0.030 0.030 0.031 0.080 0.090 0.055 25-150 DG1 

0.030 0.030 0.031 0.080 0.090 0.068 25-150 DG2 

0.035 0.035 0.038 0.090 0.160 0.120 20-100 DG3 

0.035 0.035 0.038 0.090 0.160 0.142 20-100 DG4 

0.035 0.037 0.039 0.080 0.120 0.084 35-150 DG5 

- - - - - 0.055 0-80 WT 

- - - - - 0.040 0-75 PV 

*SR: spinning reserve 

 

)
 obtained from the master problem are checked in the sub-

problem stage from feasibility viewpoint. In the sub-problem 

stage, network security and system reliability constrains are 

considered and feasibility and optimality cuts are created in 

this optimization level. Network security constraints are 

checked by running AC-OPF and reliability is considered by 

LOL index. If network violation arises in any of the sub-

problem, the benders cuts will be formed and added to the 

master problem for solving the next iteration of the 

optimization problem. The coupling between the master and 

the sub-problem is done through the variable *
,tip , which is the 

solution of problem represented by equations (1)-(56). The 

iterative process continues until the violations are eliminated 

and a solution is found.  

     The sub-problem can be formulated as: 

slacktWMin

N

s cos
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* * *
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G W V JN N N N

i w v j d
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S LF slack p p p D 


            (68) 

0 SLF 

 

(69) 

 

1F LFLF P   
(70) 

0 t dsslack D   (71) 

    In the above equations, slack represents relaxation 

variable, stcos is infeasibility cost vector and usually set to 

one, and *
,tip is unit commitment generation level vector. It 

should be noted that in the proposed solving methodology a 

set of inexpensive cuts to be added in the initial master 

problem, in order to provide early signals of the network to the 

unit commitment calculation.  
    The levels, master and sub-problems, are coupled by 

Benders cuts which are updated at each iteration for all 

operation problems. After solving the problem represented by 

equations (66)-(71), Benders feasibility cuts is generated 

based on sub-problem results for each hour of a network 

scenario as follows: 

0))(( *
,,21

*  titidd ppW   (72) 

    Feasibility cuts are added to the master problem to enforce 

the feasibility of the slave problems. After solving the problem 

represented by (66)-(71), if all slack variables are zero, a 

feasible power flow is found. If certain slack variables are 

nonzero, their values are considered as a metric of the 

infeasibility and used to formulate feedback constraints to 

eliminate this infeasibility. Therefore, if AC-OPF analysis 

does not result in a feasible solution, an infeasibility cut is 

appended to the master problem and network constraints are 

fed back to the master problem for a revised solution to 

determine the schedule of DG units as well as load 

curtailments. This process will be repeated until a feasible 

solution is achieved for all scenarios. However, if the solution 

method could not converge to a feasible point in the sub-

problem, an optimal cut is generated to be included in the 

master problem. At optimum point, the LOL and ELNS are 

calculated as the reliability indices, which are appropriate for 

assessing the variation of the reliability level in different hours 

of the next day. Moreover, the other decision variables of the 

optimization problem are power generations in scenario           

( stiP ,, ), deployed reserves of DG units (
up

stir ,, ,
dn

stir ,, ), and 

demand-side (
up

stjr ,, , dn
stjr ,, ), load demand after implementing 

DR programs ( stjD ,, ), curtailed stjLOL ,, , and jEENS for 

scenario and 24-hours. Therefore, the outcomes of the 

optimization problem provide the microgrid operator with the 

optimal scheduling of DG units, supply and demand-side 

reserves and a comprehensive insight into the reliability and 

economic aspects of the microgrid. 

IV. SIMULATION AND NUMERICAL RESULTS 

A. Case Study and Main Assumptions  

    The proposed model is applied to a low-voltage 

autonomous microgrid detailed in  [18]. The microgrid is 

composed of 16 nodes, five dispatchable DG units and three 

similar wind turbines (WTs) as well as two similar PV units. 

The technical and economic information of different DGs and 

RESs units is specified in Table II,  [17],  [18]. The microgrid 

supplies eight groups of aggregated loads that are equipped 

with smart power controllers to enable automated connectivity 

to end-use customers’ control systems. The hourly load 

demand and the electricity prices along with the entire day 
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output power of wind and PV plants in different scenarios are 

presented in Fig. 2,  [17]. In this figure, the red lines denote the 

mean of each parameter that are equal with their forecasted 

values and are extracted from  [15],  [18]. Moreover, it is 

assumed that prediction errors of the load, electricity price, 

wind and PV output powers follow the normal distributions 

with standard deviations equal to 20%, 15%, 10% and 10%, 

respectively,  [18],  [33]. The MCS method is used to generate 

2000 initial scenarios with even probabilities and K-means 

algorithm is also implemented to the model to select 25 

scenarios that represent well enough the uncertainties. All the 

results for the illustrative risk-constrained stochastic 

optimization model for the mentioned case study are obtained 

using CPLEX under GAMS software  [34] on a PC with 4 GB 

of RAM and Intel Core i7@ 2.60 GHz processor. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Scenarios (grey lines) and the mean (red lines) related to each 
parameter  [17], (a) Scenarios of demand load, (b) Scenarios associated with 

electricity price, (c) Scenarios of wind power, (d) Scenarios of PV power. 

 

    A 24-h horizon is chosen for the scheduling problem and 

the optimization problem is solved considering different 

values of the DR participants, risk aversion and reliability 

indices. Also, the optimality gap of different cases of the 

optimization algorithm is set to 0.0, and computation times for 

the proposed method under different operating conditions are 

less than 118 seconds (~2 min) in all cases with 39356 

iterations in total. 

 

B. Numerical Results 

In this study, the results are analyzed in different levels of 

DR participation in both risk-neutral case (i.e., β=0) and risk-

averse case (i.e., β=20). The effect of VOLL in different 

condition is investigated on the economic parameters. In all 

instances, the confidence level to compute CVaR is assumed 

to be 95%. Fig. 3 (a) and (b) depicts the operator’s profit 

versus different DR participation rates and VOLLs for both 

risk-neutral and risk-averse cases, respectively. As shown, by 

increasing DR actions the expected profit increases in two 

cases. 
 

 
(a) 

 (b) 

Fig. 3. Expected profit of operator versus VOLL and DR participants  
risk-neutral case (β=0), (b) risk-averse case (β=20). 
 

When the customers’ participation in DR programs increases, 

they reduce their power demands during peak hours by 

shedding some of their responsive loads and/or shifting a part 

of their consumption to low load periods. It causes the total 

generation costs decrease by dispatching less expensive DG 

units and as the result, the expected profit increases. 

Moreover, by increasing VOLL, in the lower levels of DR 

rates (i.e. less than 30%), although the amount of ENS reduces 

(due to allocating more reserve by DGs and DR), the product 

of VOLL and expected ENS (i.e. CostENS) increases, and so, 

the expected profit decreases. In other word, in lower levels of 

DR participants and higher VOLLs, additional spinning 

reserve is much more cost-effective than the LOL imposed on 
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consumers. Therefore, in higher values of VOLLs, the costly 

generating units will be dispatched most of the times to reduce 

the ENS and consequently, the expected profit reduces 

especially when the rate of DR actions is low. However, by 

increasing the number of DR participants, the system 

uncertainties augment which in turn require more reserve 

allocation in higher VOLLs that leads to more ENS reduction. 

Therefore, as DR penetration rate increases, the decreasing 

ENS cost (i.e. CostENS) compensates the increasing cost of 

reserve allocation (i.e. CostR), and as the result, the expected 

profit remains approximately constant. Furthermore, 

comparison of results in Fig. 4 shows that the profit in the 

risk-averse case is lower than that of in the risk-neutral case. 

This happens due to the fact that by increasing the weighting 

factor β, the operator is more risk-averse and buys more 

reserve capacity to accommodate the uncertainties and to 

mitigate the load shedding events.      

     The values of CVaR term versus DR penetration rate and 

VOLL for risk-neutral and risk-averse cases are shown in Fig. 

4 (a) and (b), respectively. The CVaR is negative in two cases 

indicating that the profit in some scenarios is negative, i.e., 

there is a significant probability of experiencing losses.  

 

 
(a) 

 (b) 
Fig. 4. CVaR versus VOLL and DR participants (a) risk-neutral case (β=0), 

(b) risk-averse case (β=20). 

 

     As observed, by increasing the number of DR participants, 

the CVaR increases initially but then decreases. This trend 

shows that the scenarios that provide the lowest profit in the 

profit maximization problem depend on the number of DR 

participants, meaning that in the lower levels of DR actions, 

the reserve allocated by responsive loads is used to hedge 

against wind and price volatility. However, when the number 

of DR participant increases up to a certain level, the volatility 

of responsive loads also increases due to their high 

dependency on volatility of the electricity prices and CVaR 

decreases accordingly. Moreover, as observed from Fig. 4, 

when VOLL increases, the CVaR decreases, especially in the 

lower levels of the DR actions. In fact, with higher VOLLs, 

the amount of total reserve capacity augments to mitigate the 

ENS in unwanted scenarios. However, by increasing the 

reserve allocation in higher DR rates, the amount of load 

shedding in undesired scenarios is reduced and as the result, 

the rising rate of CVaR diminishes. In addition, with higher 

values of risk factor, the effect of undesired scenarios 

increases and therefore the CVaR in the risk-averse case is 

higher than that of in the risk-neutral case.  

     Fig. 5 depicts the costs of generating units and payments of 

customers in different levels of DR participation for both risk-

neutral and risk-averse cases. The cost of DG units is defined 

as the sum of their start-up, shut-down and operation costs. As 

shown, with increasing participation of customers in DR 

programs, the cost of energy supplied by dispatchable DGs is 

substantially reduced in both cases because of less operation 

of expensive DG units. However, risk-averse behavior of the 

operator has a minor effect on the operational costs of 

dispatchable DG units. Also, as can be seen from Fig. 5 (b), by 

increasing DR participation value, the reductions in 

customers’ payments in both cases remain the same trends. 

Fig. 6 (a)-(c) illustrates the costs of scheduled reserves of 

DGs, DR and cost of total reserves in different rates of DR 

action, VOLL and parameter β, respectively. As shown in Fig. 

6 (a), by increasing DR actions, because of higher 

participation of responsive loads in reserve services, the 

reserve capacity allocation by DG units decreases. In fact, 

with more participation of customers in DR programs a more 

reserves capacity is required in order to accommodate their 

unpredictable variability and, thus, to maintain microgrid 

security and reliability.  

 

 
(a) 

 
(b) 

Fig. 5. (a) Operational costs of generating units, (b) payments of customers 
versus DR participants in two different values of  parameter β. 

      

Moreover, Fig. 6 (b) that illustrates cost of reserves under 

different VOLL in 30% DR participants shows that the costs 

of reserves increase by increasing VOLL values. Since, in 

higher values of VOLL, additional reserve is much more cost-

effective than the load shedding imposed on consumers. In 
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fact, with increment of scheduled reserve in higher VOLL, the 

operator intends to eliminate costly load shedding events. 

Also, a similar trend is observed in Fig. 6 (c) that shows costs 

of reserves versus parameter β. As can be seen, by increasing 

values of β, the scheduled reserve increases to decrease the 

load shedding in undesired scenarios. When the operator 

becomes more risk-averse, it should allocate more reserves to 

avoid non-desirable profit distributions due to various worst 

scenarios.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Costs of scheduled reserves in different values of (a) DR participants, 

(b) VOLL, (c) risk aversion parameter β. 

 

Fig. 7 shows the ELNS and its associated cost versus DR 

penetration rate in different values of VOLL. It can be seen 

that by increasing DR participants to 30%, the amount of 

EENS also reduces in all cases due to the reduction of LOL. 

Moreover, with more active contribution of end-use 

consumers in DR programs and allocating more reserve 

capacity through incorporating responsive loads, the amount 

of ENS decreases which ultimately ends in lower EENS cost. 

However, beyond a certain DR participation rate (here around 

30% as can be understood from the figure), the EENS and its 

related cost remain almost unchanged as enough reserve 

capacity is allocated in the system and the ENS is reduced 

dramatically. Moreover, it is observed from Fig. 7 (b) that in 

higher VOLLs (i.e. VOLL =10 $/kWh) although the EENS is 

very small, the product of VOLL and expected ENS is 

relatively considerable. Therefore, to prevent excess payment 

to customer as EENS cost, the operator tries to provide more 

reserve in higher values of VOLL (see Fig. 6 (b)). It should be 

noted that, in the reliability-constrained scheduling problem, 

the operator tries to reduce the cost of security, which includes 

the cost of reserve capacity as well as the cost of EENS. 

Therefore, it should make a tradeoff between these two cost 

components to achieve higher system reliability. 

    To get more insight into the reliability aspects, total amount 

of LOL in scheduling horizon together with the cost of EENS 

in different VOLLs are illustrated in Table III. As it can be 

observed, the amount of LOL is decreased by increasing 

VOLL with and without considering DR actions. Moreover, 

computation times taken by the proposed scheduling approach 

are less than 8 minutes that is acceptable for day-ahead 

scheduling purposes It is further understood from the results 

that as the VOLL increases up to 8 $/kWh, more reserve is 

allocated by resources (see Fig. 7 (b)), thus no LOL occurs 

during the entire scheduling horizon with DR support. 

Therefore, by increasing VOLL and allocating more reserve 

by the microgrid resources, it is possible to form a reliable 

system and meet the system security constraints. Additionally, 

by increasing VOLL, the cost of EENS reduces with a higher 

rate when customers participate in DR program. In order to 

more investigate of the proposed model, it is illustrated using 

an illustrative example based on an IEEE 118-bus test system, 

as a practical larger-scale test system. Data for this system can 

be found in  [35],  [36]. Results of solving scheduling problem 

for this case study are provided in Table IV, which compared 

the total operating cost, expected profit, LOL and EENS for 

three values of VOLL in cases of with and without DR 

actions. The results confirm that larger VOLL enforces 

smaller total expected profit but also smaller LOL index. In 

fact, by increasing VOLL, the DGs operating costs increase 

that is mainly due to the fact that the more expensive units 

should be committed to satisfy the demand such that the LOL 

value decreases. 

TABLE IV 

THE RESULT OF THE PROPOSED SCHEDULING PROBLEM IN IEEE 118-BUS SYSTEM 

VOLL 

($/kWh) 

DR 

participants 

(%) 

Total 

operating 

cost ($) 

Total 

expected 

profit ($) 

Total LOL in 

scheduling 

horizon (MW) 

Total cost of EENS 

in scheduling 

horizon ($) 

Computation 

time (sec) 

1 
No DR 1656812 135132 62.3 62300 437 

With 60% 1634217 206112 5.2 5200 460 

5 
No DR 1659300 127254 35.8 179000 462 

With 60% 1642968 204501 2.3 11500 471 

10 
No DR 1664752 122200 12.0 120000 467 

With 60% 1651753 203723 0.2 2000 476 
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(a) 

  
(b) 

Fig. 7. The values of EENS and its costs versus DR participants in different 

values of VOLL, (a) EENS, (b) cost of EENS. 
 

TABLE III 

THE AMOUNT OF LOL AND COST OF EENS VERSUS VOLL 
 

VOLL 

($/kWh) 

Total LOL in scheduling 

horizon (kW) 

Total cost of EENS in 

scheduling horizon ($) 

No DR With DR No DR With DR 

1 75.36 2.24 75.36 2.24 

2 57.05 0.60 114.10 1.20 

3 49.09 0.42 147.27 1.27 

4 43.45 0.35 173.32 1.39 

5 38.00 0.29 190.00 1.45 

6 32.34 0.23 194.04 1.40 

7 26.08 0.12 182.56 0.82 

8 22.41 0 179.28 0 

9 16.41 0 147.69 0 

10 9.41 0 94.10 0 

V. CONCLUSIONS    

     This paper studied the impacts of price-based DR programs 

and risk-aversion parameter on reliability and economy 

aspects of an autonomous microgrid. A risk-constrained 

stochastic model was developed to maximize the expected 

profit of the microgrid operator under uncertain behavior of 

wind and PV output power, day-ahead prices and demand. 

Furthermore, CVaR was used as a risk management function 

to enable operator to make a desirable trade-off between 

expected profit and risk levels. The performance of the 

proposed stochastic risk-constrained model was validated 

through simulating an autonomous microgrid with different 

dispatchable DGs, RESs and responsive loads. Moreover, 

various sensitivity analyses were performed to measure the 

impacts of DR participants and VOLL on the microgrid 

reliability and economy indices. 

     The summary of the numerical results obtained in the case 

study are as the below: 

 By increasing VOLL, in lower levels of DR participants 

(i.e. less than 30%), the cost of ENS increases, and as the 

result, the expected profit of operator decreases. However, 

by increasing DR actions, the amount of reserve capacity 

allocated by responsive loads increases that leads to the 

ENS reduction. 

 By increasing the number of DR participants, the CVaR 

increases initially but then decreases. In lower DR 

participation levels (i.e. less than 30%), the reserve 

allocated by responsive loads is used to hedge against wind 

and price volatility. However, when DR participation rate 

increases up to 30%, the volatility of responsive loads also 

increases due to their dependencies on volatility of the 

electricity prices which ultimately decreases the CVaR.  

 When DR participation rate increases, the amount of 

EENS decreases at first. However, with more active 

participation of customers in DR programs and allocating 

more reserve by them, the EENS remain approximately 

unchanged.  

     As the future work, the proposed economic-reliability 

scheduling framework will be extended to optimal scheduling 

of multi-microgrid clusters in a distribution network where 

optimal decision-making of distribution system operator and 

multi-microgrids with inherently conflicting objectives must 

be addressed.  
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