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Determination of structural and
damage detection system influencing
parameters on the value of
information

Lijia Long1,2 , Michael Döhler3 and Sebastian Thöns1,4

Abstract
A method to determine the influencing parameters of a structural and damage detection system is proposed based on
the value of information analysis. The value of information analysis utilizes the Bayesian pre-posterior decision theory to
quantify the value of damage detection system for the structural integrity management during service life. First, the influ-
encing parameters of the structural system, such as deterioration type and rate are introduced for the performance of
the prior probabilistic system model. Then the influencing parameters on the damage detection system performance,
including number of sensors, sensor locations, measurement noise, and the Type-I error are investigated. The pre-
posterior probabilistic model is computed utilizing the Bayes’ theorem to update the prior system model with the
damage indication information. Finally, the value of damage detection system is quantified as the difference between the
maximum utility obtained in pre-posterior and prior analysis based on the decision tree analysis, comprising structural
probabilistic models, consequences, as well as benefit and costs analysis associated with and without monitoring. With
the developed approach, a case study on a statically determinate Pratt truss bridge girder is carried out to validate the
method. The analysis shows that the deterioration rate is the most sensitive parameter on the effect of relative value of
information over the whole service life. Furthermore, it shows that more sensors do not necessarily lead to a higher
relative value of information; only specific sensor locations near the highest utilized components lead to a high relative
value of information; measurement noise and the Type-I error should be controlled and be as small as possible. An opti-
mal sensor employment with highest relative value of information is found. Moreover, it is found that the proposed
method can be a powerful tool to develop optimal service life maintenance strategies—before implementation—for sim-
ilar bridges and to optimize the damage detection system settings and sensor configuration for minimum expected costs
and risks.

Keywords
Damage detection systems, value of information, deteriorating structures, probability of damage indication, decision
theory

Introduction

It is well known that structural health monitoring
(SHM) can be beneficial for structural performance
assessment over time.1 Substantial research has been
devoted to the development of SHM strategies and
measurement techniques to reduce the various uncer-
tainties associated with structural characteristics and
performances. SHM results have been utilized for
structural reliability assessments in various fields of engi-
neering,2–5 which comprise the utilization of monitoring
data for reliability-based inspection planning, updating
models, and the assessment of the monitoring uncer-
tainty. However, only very recently, it is acknowledged

that the benefits of SHM in a life-cycle perspective prior
to its implementation can be properly quantified by
using the value of information (VoI) theory.6
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Decision-makers, such as infrastructure owners and
operators, are often bothered with questions7,8 like
whether it is beneficial to perform an SHM experiment
considering the economical aspect, and if so, when the
SHM experiment should be implemented? How to
design a monitoring and maintenance plan accordingly
with different deterioration types and rates in different
environment? How many sensors should be chosen?
Where to install the sensors? When the benefit is not
clearly specified, it is usually hard to convince the
decision-makers to invest in SHM of large systems,
since inappropriate SHM strategies may trigger unne-
cessary or inappropriate remedial activities, which may
lead to a loss of economical and human resources.
Most often, the value of SHM is only implicitly
assumed. Decision-makers would like to utilize experi-
ence as a basis for identifying efficient strategies for
performance monitoring without considering how the
information shall be utilized for improving the decision
basis for optimal life-cycle management of the
structures.

To overcome this issue, there is a need to establish a
better understanding of the quantification of the value of
SHM before its implementation. Early approaches for the
assessment of the value of SHM information have been
developed from 2011 onwards.4,9–11 Further focused
research efforts of many authors, also within the
European Union–funded COST Action TU1402
(www.cost-tu1402.eu), resulted in comprehensive studies
of many aspects for the quantification of the value of
SHM.6,12–24 These aspects include the quantification of
the value of deterioration monitoring18,25,26 and the quan-
tification of the value of multiple SHM information.26,27

This article addresses the quantification of the value
of damage detection system (DDS) information consti-
tuting an important part of the SHM research field.
The quantification of the value of DDS information is
parameterized to identify the optimal DDS configura-
tion, the optimal DDS employment on a structural sys-
tem, and the structural system characteristics for which
DDS information provides the highest value. In this
way, the authors aim at decision support for the
employment of DDS by jointly analyzing the DDS sys-
tem performance, the structural system performance
and the associated benefits, costs, and consequences.
The paper documents a 3-year research progress within
the European Union–funded Marie Sk1odowska–Curie
Innovative Training Network project INFRASTAR
(www.infrastar.eu) in conjunction with the findings of
the COST Action TU1402. The novelty of this article
encompasses:

1. A comprehensive and consistent formulation and
elaboration of the Bayesian pre-posterior decision
scenario model and its analysis.

2. A comprehensive and consistent analysis and para-
metric study of the value of DDS information in
dependency of the DDS characteristics and struc-
tural system deterioration characteristics through-
out the service life.

3. A detailed and comprehensive analysis of DDS
characteristics.

This article starts with introducing the VoI theory in
section ‘‘VoI theory.’’ Then the influencing parameters
of the structural system such as deterioration type,
deterioration rate, and deterioration initialing year for
the performance of a prior probabilistic system model
are discussed in section ‘‘Structural probabilistic system
performance.’’ The DDS performance influencing para-
meters including number of sensors, sensor locations,
measurement noise, and the Type-I error are presented
in section ‘‘DDS information.’’ The integrity manage-
ment actions are discussed in section ‘‘Integrity man-
agement actions.’’ The pre-posterior probabilistic
model which is computed utilizing Bayes’ theorem to
update the prior system model with the damage indica-
tion information is described in section ‘‘Pre-posterior
updating with DDS information.’’ The utility modeling
method is presented in section ‘‘Utility modelling and
analysis.’’ With the developed approach, a case study
on a statically determinate Pratt truss bridge girder is
investigated to validate the method in section ‘‘Generic
parametric analysis of the value of DDS information.’’
The results are discussed in section ‘‘Discussion.’’ This
article ends with conclusion in section ‘‘Conclusion.’’

Methodology

VoI theory

The VoI theory has been developed by Raiffa and
Schlaifer.28 The VoI analysis is rooted in the Bayesian
definition of probability and utility-based decision the-
ory to quantify the expected value of the utility increase
related to yet unknown information.

The decision problems in the context of SHM for the
life-cycle management of structures are illustrated in
Figure 1. The essential decisions relate to whether imple-
ment SHM or not, when, at which locations and for
which structural conditions to perform SHM. For dif-
ferent structures, different life-cycle phases may be con-
sidered in the decision analysis. For new structures,
engineers need to think whether to integrate SHM into
design or construction phases. While for existing struc-
tures, decisions about implementing SHM will be con-
sidered during the operation and maintenance phase
and toward the end-of-service life. To figure out the
decision of implementing SHM, further questions arise
like: When should the SHM system been installed?
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Where to install the sensors? How many sensors to
install? How to set measurement parameters? and
Whether to extend service life? These questions can be
answered with the utilization of the Bayesian decision
and VoI analyses and an optimization of the expected
benefits, the risk and the expected costs. By performing
SHM, information about the states of the structural sys-
tem are obtained, which will improve the state models.
Actions such as repair and maintenance for example,
based on the information acquired by SHM strategies
like damage detection, change the physical properties
and performance of the structural system. Both, the
parameters of the SHM and the repair and maintenance
strategies influence the expected benefits, costs, and the
risk and in this way lead to different VoI.

The classic format of a decision analysis relating to
experiments—or SHM—is shown in Figure 2, building
upon the framework of Bayesian decision theory.28 The
decision-maker wishes to select a single action a from the

domain A= fa1, . . . , amg of potential actions; the conse-
quences of adopting the terminal action a depend on the
state of the system, which cannot be predicted with cer-
tainty. Each potential state will be labeled by a u with
the domain u = fu1, . . . , umg. To obtain further informa-
tion on the importance of each state u, a single experi-
ment or SHM strategy e from a family E= fe1, . . . , emg
of potential SHM strategies should be selected. Each
potential outcome of an SHM experiment e will be
labeled by a z with domain Z= fz1, . . . , zmg. The
decision-maker assigns a utility u(e, z, a, u) to perform a
particular e, observing a particular z, taking a particular
action a, and then obtaining a particular u. The evalua-
tion u takes into account of the costs (monetary and
other) of SHM and the consequences (monetary and
other) of the terminal action as well as the system states.

The VoI can be found as the difference between the
maximum expected value of the utility obtained in pre-
posterior analysis and the maximum value of the utility

Figure 1. Decision problems in the context of SHM through life-cycle management of structures.

Figure 2. The classic format of decision tree23 regards SHM.
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obtained using only prior information, shown in equa-
tion (1). This means that a value to information is
assigned as expected utility gain caused by the optimal
decisions regarding information acquirement and
actions with and without that information relative to
the costs of collecting the information

VoIe = max
e

EZje max
a

EujZ u e, Z, a, uð Þ½ �
� �

�max
a

Eu u a, uð Þ½ �

ð1Þ

The VoI can be normalized in relation to the prior
utility resulting in the relative VoI (VoIe)

VoIe =
VoIe

max
a

Eu u a, uð Þ½ �
��� ��� ð2Þ

In this way, the identification of optimal SHM stra-
tegies is facilitated for both new and existing structures
under a range of operating conditions and constraints.
If the cost of this information is small in comparison to
the potential benefit of the information, the experiment
should be performed. If several different types of
experiments are possible, the decision-maker must
choose the experiment resulting the overall largest
expected value of utility.29 The pre-posterior Bayesian
decision analysis is utilized to model and to assess the
expected value of the utility relating to yet unknown
information, which can be modeled and forecasted
using the prior system-state models.

Structural probabilistic system performance

For any structural model, failure occurs when the
external load S exceeds the internal resistance (material
strength) R due to increase of damage and degradation.
Considering the resistance model uncertainty MR

and the loading model uncertainty Ms, the failure prob-
ability P(FS) of a series system with nj parallel subsys-
tems consisting of ni components can be written as
equation (3)

P FSð Þ= P
[nj

j = 1

\ni

i = 1

MR, i, jRi, j tð Þ �MS, i, jSi, j

� �
<0

 !
ð3Þ

Ri, j(t) is the time-variant resistance for a component,
and Si, j is the external loading on the component. The
resistance (strength) will be degraded due to the
increase of damage with time

Ri, j tð Þ= Ri, j, 0 Di, j � Di, j tð Þ
� �

ð4Þ

Ri, j, 0 is the initial resistance, and Di, j is the damage
limit of the component. Di, j(t) is the damage on a

component, which will be increasing with time. A gen-
eral damage model is introduced by Mori and
Ellingwood30

Di, j tð Þ= a(t � T0)b ð5Þ

where a is the annual deterioration rate of a compo-
nent, b is the deterioration type, and T0 is the deteriora-
tion initiating time. For b = 1, this corresponds to the
most applied corrosion models and to the Palmgren–
Miner fatigue model with a stationary stress process;
for b = 0.5, the model is representative of diffusion-
controlled deterioration; and for b = 2, the model
approximates concrete deterioration caused by sulfate
attack.

To calculate the probability of failure, a limit state
function is introduced, when gi, j<0 represents the com-
ponent failure due to deterioration

gi, j = MR, i, jRi, j, 0 Di, j � a(t � T0)b
� �

�MS, i, jSi, j tð Þ ð6Þ

It is noted that for many structural systems,
deterioration states of structural components are
correlated.31 Therefore, the correlation of the deteriora-
tion states should be accounted for. The deterioration
process follows equation (4). Stochastic dependence
can then be modeled32 by introducing a correlation
among the damage limit state, or among the para-
meters of the models describing the damage limit, for
example, deterioration rate a. The component failures
caused by deterioration are likely to occur at different
times depending on the nature of the deterioration pro-
cess, which will show a lower statistical dependence
than the failure events caused by overloading as all
components normally fail during the same load event.
The correlation coefficient for limit states of overload-
ing failure is thus close to 1.0,31 and the correlation
coefficient of deterioration states among components is
normally estimated less than 1.0.

DDS information

SHM consists of a very wide range of activities, which
should provide information of relevance for the man-
agement of existing and new structures for their
life-cycle performance. SHM systems are designed to
provide owners and operators with information about
the health of a structure. A main issue of SHM is to
develop approaches for damage diagnosis, involving
for example, signal processing methods for model iden-
tification and feature extraction.33–35

An approach encompassing DDS and algorithms,
which is used to evaluate the structural system perfor-
mance with DDS information has been developed by
Thöns.36 The employed damage detection method,
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which is the stochastic subspace damage detection
(SSDD) method,37 detects changes in the dynamic
properties of a structure, for example, due to stiffness
loss, from output-only ambient vibration measure-
ments in a (healthy) reference state and in the current
state. From these measurements, a test statistic is com-
puted that compares both states. This results in a chi-
square–distributed damage indicator, having a central
chi-square distribution in the reference state and a non-
central chi-square distribution in the damaged state. A
threshold is set up for a desired Type-I error for a deci-
sion between both states.

The non-centrality parameter of the distribution in
the damaged state can be obtained easily from mea-
surements of the structure in the reference state and
from model-based information on the damage within
the theoretical framework of the method.38 This allows
in particular an efficient model-based computation of
the probability of indication for any damage, without
the need of recording or simulating data from the dam-
aged structure.39

In general, the performance of the DDS depends on
the following properties:

1. Properties of the measurement system, like number
and positions of sensors, type of sensors, sampling
frequency fs, and measurement duration. These
properties are typically set up by the user.

2. Stochastic system properties, like ambient excita-
tion properties and the measurement noise level.
These properties are not or only partially controlled
by the user.

Besides these properties, the performance of the
DDS strongly depends on the chosen damage detection
method and its setup. This includes in particular the
desired Type-I error for the indication threshold
between healthy and damaged states, which also needs
to be set for the SSDD method.

Note that the considered damage detection method
is used as an example in this study, and any damage
detection method can be used in our VoI framework if
it can provide the probability of indication for the dam-
ages included in the employed deterioration model.

Integrity management actions

Integrity management actions are the possible actions
that the decision-maker can take during the service life
of a structure to ensure safety and functionality, for
example, maintenance, inspection, repair, and replace.
The decision of theoretical optimal choice of integrity
management actions can be derived in the form of deci-
sion rules, which relate an experimental outcome to an
action. Decision rules can—once they are derived—

enhance significantly the computational efficiency.
Examples of decision rules are:40

� If the monitoring outcome is above the threshold
value, an inspection is made.

� If the inspection outcome is above a threshold
value, a repair is made.

� If the expected value of damage size is above a
threshold value, an inspection or repair is made.

Pre-posterior updating with DDS information

Let D denote the damage size of a structural system or
component, which is the vector of degradation consist-
ing of random variables of Di, j from equation (5).
fD(D) denotes the probability density function of D.
Considering that a DDS is used to inspect a structure
or structural component, the quality of the measure-
ment can be represented by the probability density
function for indication, given a damage size r(I jD). It
can then be used to calculate the probability of indicat-
ing the damage with size D. The probability of indica-
tion of detecting damage is then given as

P Ið Þ=

ð
OD

r I jDð ÞfD Dð ÞdD ð7Þ

as referenced by Hong.41 OD represents the domain of
D. Since the value of r(I jD) ranges from 0 to 1, to com-
pute equation (7), a uniformly distributed random vari-
able m can be introduced to form a limit-state function.
The probability of no indication of detecting damage
P(�I) can be calculated by integrating in the region
which is defined using the limit-state function gU <0.
The limit-state function gU is defined as the difference
between the probability of indication given damage
P(I jD) and m

P �Ið Þ= 1� P Ið Þ=

ð
OD

1� r I jDð Þð ÞfD Dð ÞdD ð8Þ

gU = P I jDð Þ � m ð9Þ

The pre-posterior probability of failure if no damage
is detected P(FsjD \ �I) can be written as equation (10)
and solved by two joint limit-state functions of gS

and gU

P FsjD \ �Ið Þ= P FsjD,�Ið ÞP �Ið Þ = P gS<0 \ gU <0ð Þ ð10Þ

where P(�I) is the probability of no indication,
P(�I jFs,D) is the probability of no indication given
damage and failure. The limit-state function gS<0 can
refer to equation (6).

Long et al. 5



Utility modeling and analysis

Let u be the utility function considering the costs and
benefits. The total costs are the sum of individual costs,
for example, cost of consequences like failure, cost of
actions like inspection, repair, and replacement, costs
of monitoring. The failure costs should include both
direct and indirect costs regarding fatalities, economic,
environmental, and social impact. The monitoring costs
include investment, installation, operation, and moni-
toring system replacement costs. While some individual
costs like monitoring costs can be estimated referencing
similar cases from literatures and standards, repair
costs should be modeled carefully considering the dam-
age status of the structure.

Data from damaged buildings suggest that the repair
costs are dependent on the overall damage state,42–44

the more overall damage is present in a structure, the
higher are the repair costs for restoring the structure to
the original state. The repair costs dependency on the
damage state is modeled in most case, either as a
linear function with a limit of repairable damage,42,43

or as a non-linearly increasing function of damage.45 In
the article, the cost of repair is modeled as a non-
linearly increasing function of damage, dependent on
the initial investment cost of the bridge CI , the service
life TSL and the repair year tj following Higuchi,46

yielding

CR =
CI

TSL + 2� tj

ð11Þ

The repair action is performed when the probability
of failure exceeds the target probability PTarget, which
serves as a boundary to the decision analysis. The utility
analysis will be formulated following the decision tree
analysis.

The utility can be analyzed depending on the state
of information acquirement at the time of the analysis.
There are two types of analysis28 named extensive form
and normal form to compute the utility. In this article,
the extensive form analysis is applied. If the probabil-
ities of the various system states corresponding to dif-
ferent consequences of action have been estimated,
which means that information on action a and state u
are given. Assume u in total has m states, the expected
utility of action ai can be calculated by

Eu u ai, uð Þ½ �=
Xm

j = 1

u ai, uj

� �
P uj

� �
ð12Þ

P(uj) is the assigned prior probability at state uj.
After calculating all the expected utilities corresponding
to the different actions, the optimal action will result in
the one with highest expected utility, which is called
prior utility U

U = max
a

Eu u a, uð Þ½ � ð13Þ

If additional information becomes available, which
means that a specific SHM experiment e has been
implemented and a specific outcome of the experiment
z is known. The expected utility is modeling by

Eujz u z, ai, uð Þ½ �=
Xm

j = 1

u z, ai, uj

� �
P ujjz
� �

ð14Þ

P(ujjz) is the posterior probability, given the out-
come of z, which is updated by Bayles’s rule. The maxi-
mum utility in this case is called posterior utility. When
the SHM strategy or the experiment is planned but the
result is still unknown, then the expected utility is mod-
eled with forecasted information based on the prior
models. The SHM experiment e and the probability of
each of the l outcomes of the experiment z will be
assigned. The expected values of the utility should be
found for each possible action a for a specific experi-
ment e and outcome z. The maximum utility is called
pre-posterior utility U�, which is calculated by

U� = max
e

EZje max
a

EujZ u e,Z, a, uð Þ½ �
� �

ð15Þ

EZje max
a

EujZ u e,Z, a, uð Þ½ �
� �

= max
a

Xl

k = 1

Xm

j = 1

u e, z, a, uj

� �
P ujjzk

� �
P zk , eið Þ

ð16Þ

P(zk , ei) is the probability of outcome zk from experi-
ment of ei. P(ujjzk)P(zk , ei) is the pre-posterior probabil-
ity, which can be modeled as P(uj \ zk).

Generic parametric analysis of the value of
DDS information

The parametric analysis of the value of DDS informa-
tion takes basis in a generic structural system under
degradation. The generic and representative structural
system constitutes a series system accounting for the
dependence in the component failure modes and in the
deterioration of the individual structural components.
Such system is representative, as it takes basis in com-
mon assumptions for target reliability determination
and code calibration.47,48 The complete decision sce-
nario encompassing the decision-maker, the decision
point time, the temporal framing of the decision analy-
sis, the specific structural system and component failure
and deterioration models and their dependencies, the
specific DDS information, and the utility models are
introduced in the following sections.
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Decision scenario

A Pratt truss girder as shown in Figure 3 is considered
under operation and maintenance phase. It is assumed
to experience an unusually high deterioration in the
first 15 years of operation. For the remaining 35 years
of the service life, a bridge manager wants to design a
maintenance plan. The manager considers whether the
bridge should be repaired regularly after certain times
without SHM or is it worthwhile to do SHM before
repairing directly to minimize the risk and expected
costs. Therefore, a VoI analysis is performed to provide
the decision basis. The basic decision problem is
whether to choose e0, that is, no SHM or e1, that is,
DDS. If implementing DDS, there will be a cost of
monitoring CM with outcome of chances z1 indication
of damage or z2 no indication of damage. The outcome
of DDS will be influenced by the deterioration type b,
deterioration rate a, point in time employment year tm,
number of sensors, sensor location, measurement noise,
and Type-I error for indication threshold. So, the
decision-maker is wondering how to design a monitor-
ing and maintenance plan accordingly with different
deterioration rates and environment? If choosing DDS,
at which point in time during service life to implement
it? How many sensors should be installed? Where to
place the sensors? How does measurement noise affect
the result? and How to set the Type-I error for the indi-
cation threshold for the DDS? Based on the varied
information acquired by the DDS system outcome, the
manager has two options of actions, either a0 do noth-
ing or a1 repair the truss girder. When performing a
repair action, there will be a repair cost CR. Based on
the choice of actions, the truss bridge girder could be
either u1 safe or u2 failure state within the designed ser-
vice life TSL of 50 years. The failure of the truss will
lead to the cost CF , which account for the direct and
indirect consequences. The respective decision tree is
shown in Figure 4. With different combination of

deterioration rate a, point in time employment year tm,
number of sensors, sensor location, measurement noise,
Type-I error for indication threshold, and the decision
tree branches will be expanded.

The costs model is shown in Table 1, considering
the discount rate r in general for long-term regulations
ranged between 0.01 to 0.05 per year;49 here we
adopt for our calculation a constant discount rate of
r = 0.02 per year. The initial investment cost is chosen
for convenience as CI = 100 monetary units. The failure
cost CF and DDS cost CM are set in relation to the initial
investment costs. The normalized failure cost is set to
CF=CI = 10 and CM=CI = 0:001 per sensor is assumed.

VoI analysis

The value of DDS information when monitoring at
year tm is written as VoI(tm)

VoI tmð Þ = U�SL tmð Þ � USL ð17Þ

where USL is the expected service life utilities without
monitoring. U�SL(tm) is the expected service life utilities

with monitoring at year tm. Then the relative VoI will

be: VoI(tm) =VoI(tm)=jUSLj. The expected service life
utilities without monitoring USL is

USL =max UF ; UF,R½ � ð18Þ

where UF is the utility of doing nothing and fail, UF,R is
the utility of doing repair and fail. The utility of doing
nothing and fail UF is calculated as

UF =�
XTSL

t = 1

P FStð Þ � CF �
1

1 + gð Þt
ð19Þ

P FS tð Þ= P gS tð Þ<0ð Þ ð20Þ

where P(FSt) is the prior probability of system failure at
year t. The utility of doing repair and fail UF,R is

Figure 3. Illustration of truss bridge girder.
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UF,R =�
XTSL

t = 1

P FSt,RStj

� �
� CF �

1

1 + gð Þt
�
XnR

n = 1

CR �
1

1 + gð Þtj

ð21Þ

P FSt,RStj

� �
=

P FStð Þ, t\tj = arg P FStj

� �
= PTarget

� �
P FS t�tjð Þ
� �

, t ø tj = arg P FStj

� �
= PTarget

� �
8<
:

ð22Þ

where P(FSt,RStj ) is the probability of system failure at
year t, after repair event RStj at year tj. tj is the repair
year when the prior probability of system failure P(FSt)
equals to the target probability PTarget. The system will
behave like a new system after repair with same prob-
abilistic characteristics as originally. nR is the number
of repair times during the service life. The expected ser-
vice life utilities with monitoring U�SL(tm) at tm can be
written as

U�SL tmð Þ= UM +max UFjI ; UFjI ,R

	 

+max UFj�I ; UFj�I ,R

h i
ð23Þ

where UM is the utility of monitoring, UFjI is the utility
of failure given indication of damage, UFj�I is the utility
of failure given no indication of damage, UFjI ,R is the
utility of failure, given indication of damage and repair,
UFj�I ,R is the utility of failure given no indication of
damage and repair. The utility of monitoring UM is

UM =� 1� P FS tm

� �� �
� CM �

1

1 + gð Þtm
ð24Þ

The utility of failure given indication of damage UFjI
is calculated as

UFjI =�
XTSL

t = 1

P FS t \ Itmð Þ � CF �
1

1 + gð Þt
ð25Þ

P FS t \ Itmð Þ=
P FStð Þ, t\tm

P gS tð Þ<0 \ gU tmð Þø 0ð Þ, t ø tm

�
ð26Þ

P(FSt \ Itm ) is the pre-posterior probability of system
failure at year t if doing monitoring and giving indica-
tion of damage at year tm and doing nothing. The utility
of failure given no indication of damage UFj�I is calcu-
lated as

Figure 4. Illustration of decision tree.

Table 1. Costs model.

Discount
rate
r

Failure
cost
CF

DDS cost
(per sensor)
CM

Investment
cost
CI

0.02 1000 0.1 100

DDS: damage detection system.
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UFj�I =�
XTSL

t = 1

P FS t \ �I tmð Þ � CF �
1

1 + gð Þt
ð27Þ

P FSt \ �I tmð Þ =
P FStð Þ, t\tm

P gS tð Þ<0 \ gU tmð Þ<0ð Þ, t ø tm

�
ð28Þ

where P(FSt \ �Itm ) is pre-posterior probability of system
failure at year t if doing monitoring and giving no indi-
cation of damage at year tm and doing nothing.

The utility of failure given indication of damage and
repair UFjI ,R is

UFjI ,R =�
XTSL

t = 1

P FS t \ Itmð Þ,RStj

� �
� CF �

1

1 + gð Þt

�
XnI ,R

n = 1

CR �
1

1 + gð Þtj

ð29Þ

P FS t \ Itmð Þ,RStj

� �
=

P FS tð Þ, t\tm

P FSt \ Itmð Þ, tm<t\tj = arg P FS tj \ Itm

� �
= PTarget

� �
P FS t�tjð Þ
� �

, t ø tj = arg P FStj \ Itm

� �
= PTarget

� �
8>>><
>>>:

ð30Þ

where P((FSt \ Itm ),RStj ) is pre-posterior probability of
system failure at year t and giving indication of damage
at year tm and repairing at year tj. Here, tj is the year
when the P(FSt \ Itm ) equals to the PTarget. nI ,R is the
number of repair times during the service life after
implementing DDS for 1 year at tm and giving indica-
tion of damage.

The utility of failure given no indication of damage
and repair UFj�I ,R is

UFj�I ,R =�
XTSL

t = 1

P FS t \ �I tmð Þ,RStj

� �
� CF �

1

1 + gð Þt

�
Xn�I ,R

n = 1

CR �
1

1 + gð Þtj

ð31Þ

P FSt \ �I tmð Þ,RStj

� �
=

P FS tð Þ, t\tm

P FSt \ �I tmð Þ, tm<t\tj = arg P FS tj \
�I tm

� �
= PTarget

� �
P FS t�tjð Þ
� �

, t ø tj = arg P FS tj \ �I tm

� �
= PTarget

� �
8>>><
>>>:

ð32Þ

where P((FSt \ �Itm ),RStj ) is pre-posterior probability of
system failure at year t if doing monitoring and giving
no indication of damage at year tm and repairing at year

tj. Here, tj is year when the P(FSt \ �Itm ) equals to the
PTarget. n�I ,R is the number of repair times during the ser-
vice life after implementing DDS for 1 year at tm and
giving no indication of damage.

Structural probabilistic performance

The truss bridge girder has 29 components with 16 joint
nodes. Assume a probabilistic extreme loading S, which
is Weibull distributed with mean of 3.5 and standard
deviation of 0.1, applied vertically on the truss and
evenly distributed on the lower nodes 2, 3, 4, 5, 6, 7, 8
with 1/7 S. Thus, the axial force on each beam element
are calculated by the equilibrium equations. The truss’s
beams have similar geometrical and probabilistic
properties.

The failure of a truss component can be the failure
by yielding when it is under tension as well as failure by
buckling when it is under compression. If the compo-
nent is under tension, the critical strength is the yield
strength sy, the corresponding tension resistance is Ry,
which is related to the properties of materials. Ry is
modeled as lognormal distributed with 0.1 coefficient
of variation and the mean value is calibrated to a prob-
ability of system failure of 10�6 disregarding any dam-
age, considering the consequence of failure is large and
the relative cost of safety measure is small.34 If the com-
ponent is under bucking, the critical strength is the
buckling strength, which follows the Euler buckling
formula

sb =
p2EI

AL2
ð33Þ

where sb is the buckling strength, L is the column
length, A is the cross-section area, which is (10=144) m2

in this case, I is the cross-sectional moment of inertia,
E is the Young’s modulus, which is 14,400 MPa for cal-
culation. The corresponding buckling resistance Rb is
also modeled as lognormal distribution with mean of
Rb = sb � A and 0.07 standard deviation. The limit-state
functions of 29 components can be formulated as fol-
lows. Due to the absence of redundancy, a series-
system formulation is chosen for the truss bridge gir-
der; the system limit-state function is the minimum of
the ni components limit-state function

gS = min
i = 1 to ni

MR, iRi, 0 Di � Di tð Þð Þ �MS, iSið Þ ð34Þ

Then the probability of system failure P(FS), which
is coupled with time-variant damage models describing
continuously the deterioration process and structural
resistance degradation throughout the service life can
be written as

Long et al. 9



P FSð Þ = P
[ni

i = 1

MR, i Ri, 0 Di � a t � T0ð Þb
� �

�MS, iSi

� �
<0

 !

ð35Þ

According to JCSS (Joint Committee on Structural
Safety),50 the resistance model uncertainty MR, i is mod-
eled as lognormal distributed with mean of 1 and stan-
dard deviation of 0.05; the loading model uncertainty
MS, i is lognormal distributed with mean of 1 and stan-
dard deviation of 0.1; and the damage limit of compo-
nent Di is modeled as lognormal distributed with mean
of 1 and standard deviation of 0.3. The annual dete-
rioration rate a, the deterioration type b, and the dete-
rioration initiating time T0 are modeled accordingly to
Long et al.51

According to literature52 with general corrosion,
damage is equated to the total amount of metal lost.
This may be expressed in terms of thickness lost, for
example an expression in mm per year, or mass lost,
such as grams per square meter per year. Corrosion rate
on a carbon steel surface,53 in atmospheric environment
for example, industrial environment is 0.025–0.050 mm
per year and in marine environment is 0.125–1 mm per
year. So that three different deterioration rates are
selected in this article to present three different deterior-
ating conditions. It is assumed that the system is
required to take repair actions when the probability of
failure exceeds 10�4 according to the same target relia-
bility class with high costs of safety measures.50

As previously stated in section ‘‘Structural probabil-
istic system performance,’’ the correlation among dete-
rioration states of structural components should be
accounted for. For computation convenience, the sto-
chastic dependence is modeled by introducing a corre-
lation among the parameters of the models describing
deterioration. The damage limit is fully correlated.
Thus, the correlation of the initial resistances Ri, 0 and

the deterioration rate a among 29 components, rRi, 0

and ra is assumed to 0.5. It should be noted that due to
the non-redundancy of the truss structure, the depen-
dency among the deterioration process of different
components will not strongly influence the system relia-
bility as, for example, shown by Thöns et al.36

The probability of component/system failure is cal-
culated by Monte Carlo simulations based on Table 2.
The prior probability of system failure will increase
with time. The failure probabilities with a low dete-
rioration rate and same initial year but varied dete-
rioration types are shown in Figure 5(a). The failure
probability of the diffusion-controlled type of dete-
rioration will always be below the target probability
during the entire service life requiring no repair.
However, if the system is under corrosion and fatigue,
it is required to do the first repair at year 25 and in
total need to be repaired three times during service life.
If it is the type of sulfate attack concrete deterioration,
it needs to do the first repair at year 18 and in total to
be repaired nine times, which is shown in Figure 5(b).
The computation results of failure probabilities with
same deterioration type of corrosion and fatigue but
varied deterioration rate and initial year are shown in
Figure 5(c).

Properties of DDS

The DDS can detect stiffness loss in the elements of the
structure. A connection to the damage states is made in
this regard as follows. A stiffness loss dki is expressed as
the relative change of ratio of the initial axial stiffness
ki, 0 for element i

dki = 1� ki

ki, 0

ð36Þ

Table 2. Summary of the prior probabilistic model parameters.

Variable Description Dim. Dist. Exp.value SD

Ry Yield resistance MPa LN Cali. CoV = 0.1
Rb Buckling resistance MPa LN Equation (33) 0.07
MR, i Resistance uncertainty MPa LN 1.0 0.05
Si Loading MPa WBL 3.5 0.1
MS, i Loading uncertainty MPa LN 1.0 0.1
Di Damage limit – LN 1.00 0.3
T0 Deterioration initial time Year Det. 15/10/5 –
b Deterioration type Diffusion-controlled deterioration Det. 0.5 –

Corrosion and fatigue 1
Sulfate attack concrete deterioration 2

a Deterioration rate (/year) Low T0 = 15 LN 1.3E–5 0.001
Medium T0 = 10 LN 7.6E–5
High T0 = 5 LN 2.54E–4
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The element stiffness ki has a relation with cross-
section area Ai, length L and Young’s modulus E,
ki = E�Ai(t)=L. The cross-section Ai is reduced due to
the increase of damage states Di

Ai tð Þ= Ai, 0 � h Di tð Þð Þ ð37Þ

Ai, 0 is the initial cross-sectional area, Ai(t) is the
cross-sectional area at time t, h is the function between
damage state and the cross-section area. Then, the rela-
tion between damage state and stiffness loss can be
expressed as

dki = 1� Ai, 0 � h Di tð Þð Þ
Ai, 0

ð38Þ

dki = g � h Di tð Þð Þ ð39Þ

g is the correction factor, in which g = 1=Ai, 0. There
is small uncertainty about the cross-section area,
length, and Young’s modulus, so that the stiffness loss
uncertainty will be very small, which is neglected. To
simplify computation, we adopt dki = Di(t). The prob-
ability of damage indication is calculated for the SSDD
method based on the described damage states.30

Hereby, the following parameters of the detection sys-
tem are considered.

The number of sensors, their location, and their
noise properties influence the structural information
content that is contained in the measurement data. In
particular, it is well known that the number and loca-
tions of sensors can be optimized to obtain more precise
information about the dynamic properties of struc-
tures.54 An explicit link of the sensor placement to the
performance of the considered damage detection
method has been made by Döhler et al.55 Thus, the
number and location of sensors have a direct influence
on the damage detection probabilities, and hence on
the VoI that is examined in this article. Measurement
noise (as a property of the used sensors) affects the

signal-to-noise ratio and thus the information content
in the signals56 and is therefore also an important factor
for the examination of the VoI. The Type-I error rate is
a user-defined value for the trade-off between a low
false-alarm rate and a high probability of detection. It
is a design parameter for any damage detection method,
reflecting the applied reliability concept57 and has there-
fore a direct influence on the decisions taken based on
the outcome of the damage detection method. Hence,
its influence on the VoI should also be examined.

Following the above argumentation, five scenarios
of DDS settings are investigated. Within all the scenar-
ios, the structural system is under deterioration type
b = 1 corresponding to corrosion or fatigue, which is
reasonable for the deterioration of a steel truss bridge
girder. For the reference scenario, the bridge is under
low deterioration, the DDS is modeled with the accel-
eration sensors located in nodes 12, 13, 14 of the truss
in Y-direction recording the vibration response and
using the DDS algorithm. Based on the dynamic struc-
tural system model, a reference data set of length
N = 10,000 at a sampling frequency of 50 Hz is simu-
lated in the undamaged state. Ambient excitation
(white noise) is assumed at all degrees of freedom,
whose covariance is the identity matrix. Measurement
noise is added on the resulting accelerations with stan-
dard deviation at each sensor of 5% of the standard
deviation of the signal. The Type-I error for the indica-
tion threshold is set as 1%.

Based on the reference scenario, scenario (a) varies
the number of sensors between 1, 3, 5, and 8. Scenario
(b) varies the sensor positions when the number of sen-
sors is fixed with three sensors. Scenario (c) changes the
measurement noise from 5% to 1%, 50% and 100%.
Scenario (d) changes the Type-I error for indication
threshold from 1% to 0.1% and 5%. Scenario (e) varies
the deterioration rate a from low to medium and high.
A summary of the DDS parameters and deterioration
scenarios is shown in Table 3.

Figure 5. (a) Prior probability of system failure with varied deterioration types, (b) prior repair plan with varied deterioration
types, and (c) prior probability of system failure with varied deterioration rate and initial year.
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The probability of damage indication in each moni-
toring year is computed and shown in Figure 6. The
investigation of monitoring year is focused on the
period from the initial deterioration year to the first
scheduled repair year without monitoring from prior

analysis as shown in Figure 5(b), in order to plan moni-
toring before directly repair. Figure 6(a) shows that the
probability of damage indication P(I jD(tm)) increases
with the increasing number of sensors from 1, 3, 5 to 8
accordingly, which indicates that it is more probable to

Table 3. Summary of the sensor configuration and deterioration scenarios.

Scenario Sensor number Sensor node location Measurement noise Type-I error Deterioration rate a

Initial year Mean SD

Base 3 12, 13, 14 5% 1% T0 = 15 1.3E-5 0.001
(a) 1 13

3 11, 12, 13
5 11, 12, 13, 14, 15
8 11, 12, 13, 14, 15, 4, 5, 6

(b) 3 4, 5, 6
2, 5, 8
2, 3, 4
11, 13, 15

(c) 12, 13, 14 1%
50%
100%

(d) 5% 0.1%
5%
1%

(e) 3 12, 13, 14 5% 1% T0 = 15 1.3E–5
T0 = 10 7.6E–5
T0 = 5 2.54E–4

Figure 6. Probability of damage indication with varied scenarios (a) to (e).
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detect the damage with more sensors. When installing
three sensors, it is observed in (b) that the closer the
sensor location is to the weakest components 11 and 12
which have the largest axial force from calculation, the
larger the probability of damage indication will be. The
maximum P(I jD(tm)) during the service life will be the
case when the sensors are located in nodes 12, 13, and
14 (components 11 and 12). It is noted that due to the
symmetry of the truss bridge girder, the sensor posi-
tions in node 4, 5, and 6 will lead to the same curve as
for the sensor locations in 12, 13, and 14. When increas-
ing the measurement noise in scenario (c), the probabil-
ity of damage indication P(I jD(tm)) decreases, which
means that it will be more difficult to detect damage
when there is more noise. The probability of damage
indication P(I jD(tm)) increases when the Type-I error
for indication threshold is increased shown in Figure
6(d). For the same setting of the DDS, the probability
of damage indication P(I jD(tm)) increases with higher
deterioration rate, which is shown in Figure 6(e).

Pre-posterior updating

The pre-posterior probability of system failure given
damage detection information is computed following

section ‘‘Pre-posterior updating with DDS informa-
tion’’ taking basis in the Bayesian updating methods.
The results are shown in Figure 7 when a DDS is moni-
toring at a specific year with detecting no damage.
When increasing the number of sensors (a), the updated
probability of failure is much lower than in the case
with only one sensor. However, it can be seen that the
pre-posterior probability of system failure will not be
lower if installing more than three sensors. Instead, the
curve of the pre-posterior probability is similar if more
than one sensor is installed, which can be explained
that only sensor in a specific position provides suffi-
cient information. When installing three sensors (b), if
the sensor positions are far away from the weakest
components 11 and 12 (nodes 12, 13, and 14), such as
in node 2, 3, or 4, the updated probability of failure will
be larger toward the end of the service life. Changes in
the measurement noise (c) only have a small influence
on the updated curve of the pre-posterior probability,
which result in larger values toward to the end of the
service life when the measurement noise is large. When
increasing the Type-I error threshold (d), the updated
pre-posterior probability of failure during service
life shows only minor differences. When increasing
the deterioration rate (e), the relative reduction of

Figure 7. Pre-posterior probability of system failure during service life with varied scenarios (a) to (e) when monitoring and
detecting no damage at a certain year.

Long et al. 13



pre-posterior probability of failure given no damage
indication is smaller.

VoI analysis results

The VoI depending on the DDS monitoring year are
computed following section ‘‘VoI analysis.’’ The rela-
tive VoI (VoI) for the considered DDS and structural
system parameters is shown in Figure 8. When the dete-
rioration rate is low, the VoI is increasing fast from
year 16 in the beginning and slowly decreases when
reaching year 25. From Figure 8(a), the VoI is increas-
ing when increasing the number of sensors from 1 to 3,
but when increasing the number from 3 to 5 to 8, the
VoI is decreasing. When there is more than one sensor,
more sensors lead to a higher probability of damage
indication, but it does not lead to higher VoI because
some sensors did not provide additional valuable infor-
mation. In contrast, it will lead a lower VoI because of
higher sensor costs. The beneficial number of sensors is
three sensors.

Figure 8(b) gives an indication of VoI with changes
of the sensor layout when only three sensors are
selected. When the number of sensors is constant, the
sensors which are located near the weakest components
11 and 12 will yield a higher probability of damage

indication, which results in a higher VoI. The recom-
mended sensor locations are subsequently in node 12,
13, and 14.

Figure 8(c) investigates the relationship between VoI
and DDS measurement noise. If the sensor number,
positions are constant, then higher measurement noise
leads to a lower probability of damage indication,
because it will be harder to detect the damage. Hence,
the VoI will be lower.

Figure 8(d) describes how the VoI behaves with the
Type-I error threshold. The VoI decreases when
increasing the Type-I error threshold. Indeed, a higher
Type-I error threshold results in more false alarms, and
the system will detect more of the small damages.
Then, the repair cost per time will be lower due to the
early stage of damage, but more repairs may be needed
during the whole service life, which results in higher
total repair costs and a lower VoI.

When increasing the deterioration rate from low to
medium and high based on the reference scenario in
Figure 8(e), the change of the VoI is stronger with time
when the deterioration is medium and high. This is
because, the damage size will grow faster and larger
with time than in low deterioration, which will lead to
higher risk and repair costs. So that the choice of the
right monitoring time will be important to help reduce

Figure 8. Relative value of information with varied scenarios (a) to (e) and different DDS monitoring year.
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the risk and repair costs, resulting a strong influence on
VoI. The highest VoI will appear when the deteriora-
tion rate is medium, which can be explained by avoid-
ing high risks of structure failure when the damage is
too high and unnecessary repair when the damage
is too small. The optimized year to implement DDS
will be year 19 when under low deterioration, year 14
under medium deterioration, and year 8 under high
deterioration.

From Figure 8(a) to (c), the impact of the three mea-
surement parameters: sensor number, sensor location,
and measurement noise, is decreasing with monitoring
time. They show a similar behavior since they all influ-
ence the structural information content and are directly
related to the structural condition. For the sensor num-
bers, it is important to have a minimum number of sen-
sors. However, increasing the number of sensors beyond
the minimum number leads to a moderate decrease of
the VoI. Having sensor locations close to the weakest
component increases the VoI, but if the sensors are in
the vicinity of the weak point, the influence on the VoI
is not strong. The effect of the measurement noise on
VoI can be neglected toward the end of the service life.
This is due to the increase of damage size resulting in a
more pronounced measurement signal, which is influ-
enced less by the noise. However, in Figure 8(d), the
effect of the Type-I error on the VoI increases with mon-
itoring time. This is because the system will barely have
damage in the beginning, the probability of damage
indication will be very small no matter what the Type-I
error is. With increasing service life, the damage is grow-
ing to a more detectable size, the probability of damage
indication will be affected more by the Type-I error. As
shown in Figure 8(e), the most sensitive parameter over
the entire service life of the system is the deterioration
rate because it directly influences the risk of the struc-
tural failure and costs for repair.

With Figure 8(a) to (e), the optimal DDS and struc-
tural system can be identified as: three sensors in nodes
12, 13 and 14 with 1% measurement noise and 0.1%
Type-I error threshold to be employed at year 14 of the
service life on a truss girder with a medium deteriora-
tion rate.

Discussion

The primary purpose of this study is to determine the
structural and DDS influencing parameters on the
value of DDS. Earlier research suggests that the value
of SHM can be quantified,6 previous application study
focusses on methods of quantifying the VoI.58 Our
analysis provides a new insight into the relationship
between VoI-based decision-making and DDS before
its implementation. The results indicate that the

VoI-based decision support facilitates that optimal
SHM and structural system parameters can be identi-
fied leading to the maximum expected value of the util-
ity gain. The utility gain may encompass, for example,
an increased benefit generation, reduced costs for the
structural integrity management and reduced risk of
structural failure. These results clearly support some of
the earlier research53 that the quantification of the
value of the DDS information may serve as a basis for
DDS design and employment optimization.

Within the scope of this article, DDS information
and structural system parameters have been identified
leading to the highest expected risk and cost reduction
for the structural integrity management of a representa-
tive engineering structure. The VoI-based decision-
support beyond the scope of this article may encompass
various other decision scenarios such as the combina-
tion of different monitoring/measurement strategies
and techniques to determine the optimal maintenance
planning as well as service life extension.18,59

From the viewpoint of structural integrity manage-
ment, there is no necessity for continuous monitoring
with a DDS, as a single application in the service yields
a significant risk and cost reduction, through achieving
a significant value of DDS information. It should be
noted that multiple DDS information may incorporate
a high dependency and thus may prevent an increase of
the VoI. However, multiple and continuous structural
health information and their dependencies require fur-
ther research.

The application of VoI-based decision on the truss
girder has demonstrated its ability to support the design
and employment of a DDS before implementation. The
parametric analysis of the value of DDS information
takes basis in a generic and representative structural
system accounting for the dependence in the component
failure modes and in the deterioration of the individual
structural components. The choice of the structural sys-
tem and a comprehensive generic deterioration model is
representative for many—but not all—structural sys-
tems according to codes and standards. Besides, due to
the complexity of the decision scenario and the decision
analysis, assumptions focusing on fatigue and corrosion
degradation in conjunction with well-justified repair
and normalized cost models are applied. However, there
are still many challenges ahead. Clearly, for a specific
application, it is required to adjust the decision scenario
including the calibration of the generic and normalized
models, for example, with a more specific degradation
modeling approach.

Conclusion

This article introduces the VoI-based method to deter-
mine the structural system influencing parameters with
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deterioration type and deterioration rate as well as
DDS-influencing parameters including the number of
sensors, sensor location, measurement noise, and Type-
I error for indication threshold. Through quantification
of the value of DDS, it is shown that the design of the
DDS system (i.e. the number of sensors, sensor posi-
tions, noise, and indication threshold) can be optimized
as well as its deployment time to achieve maximum
expected life-cycle benefits.

This article facilitates comprehensive guidance for (a)
designing DDS by sensor number, sensor location, (b)
decision support for DDS employment by degradation
mechanisms, and (c) for the DDS utilization by deter-
mining the optimal time of information acquirement.

The example of the deteriorating truss bridge girder
under fatigue or corrosion illustrates that

1. It is cost and risk reduction efficient to implement
DDS compared to the scenario when directly
repairing without monitoring.

2. The structural deterioration rate is the most sensi-
tive parameter effecting of relative VoI of DDS
over the entire service life.

3. The optimal DDS employment year varies
depending on the DDS and structural system
properties.

4. The employment of only one DDS measurement in
the service yields a high relative VoI.

5. The number of sensors should be chosen with opti-
mization as more sensors do not lead to a higher
relative VoI.

6. The sensor locations should be chosen with thor-
ough consideration of the damage and failure sce-
narios of the structural system.

7. The measurement noise and the Type-I error for
indication threshold should be controlled as small
as possible in order to achieve the highest relative
VoI.

8. The value of DDS information quantification can
be a powerful tool to determine optimal settings
and sensor employment.

It should be noted that only a finite set out of many
possible sensor configurations have been analyzed in
this study, and there might be other configurations
which may lead to a slightly higher relative VoI.
Nevertheless, the results can be used as an example to
develop optimal lifetime maintenance strategies for
similar bridges to optimize the DDS settings and sensor
configuration for maximum expected utilities before
implementation of the DDS.
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23. Thöns S, Schneider R and Faber MH. Quantification of

the value of structural health monitoring information for

fatigue deteriorating structural systems. In: Proceedings

of the 12th international conference on applications of sta-

tistics and probability in civil engineering, ICASP12, Van-

couver, BC, Canada, 12–15 July 2015.
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38. Döhler M, Mevel L and Zhang Q. Fault detection, isola-

tion and quantification from Gaussian residuals with

application to structural damage diagnosis. Annu Rev

Control 2016; 42: 244–256.
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