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Abstract—A multi-cell Fog-Radio Access Network (F-RAN)
architecture is considered in which Internet of Things (IoT)
devices periodically make noisy observations of a Quantity
of Interest (QoI) and transmit using grant-free access in the
uplink. The devices in each cell are connected to an Edge Node
(EN), which may also have a finite-capacity fronthaul link to
a central processor. In contrast to conventional information-
agnostic protocols, the devices transmit using a Type-Based
Multiple Access (TBMA) protocol that is tailored to enable the
estimate of the field of correlated QoIs in each cell based on the
measurements received from IoT devices. In this paper, this form
of information-centric radio access is studied for the first time
in a multi-cell F-RAN model with edge or cloud detection. Edge
and cloud detection are designed and compared for a multi-cell
system. Optimal model-based detectors are introduced and the
resulting asymptotic behavior of the probability of error at cloud
and edge is derived. Then, for the scenario in which a statistical
model is not available, data-driven edge and cloud detectors are
discussed and evaluated in numerical results.

Index Terms—5G, IoT, Grant-Free Access, Type-Based
Multiple Access, Fog-RAN, Machine-Type Communications,
Information-Centric Access

I. INTRODUCTION

A. Context

Most commercial Internet of Things (IoT) systems are
currently based on proprietary protocols, most notably LoRa
[1] and Sigfox [2] [3], and target long-range low-duty cycle
transmission [4] [5]. With the advent of 5G, cellular systems
are expected to play an increasing role in IoT systems, thanks
to the introduction of NarrowBand IoT (NB-IoT) [6]. IoT
deployments based on cellular systems come with potential
advantages in terms of reliability and coverage, but they also
pose a number of novel challenges, particularly in terms of
interference management and system optimization.

A key communication primitive for IoT systems is grant-
free access, whereby devices transmit using randomly selected
preambles [7] [8]. Random access is agnostic to the infor-
mation being communicated, since all packets are generally
treated in the same way as independent messages. In this paper,
we observe that preambles in IoT systems can be repurposed
to serve as building blocks for a Type-Based Multiple Access
(TBMA) protocol enabling remote estimation [9]–[11]. We use
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this observation to introduce an information-centric protocol
based on TBMA that obtains a highly efficient grant-free
access scheme.

To define the problem of interest, as illustrated in Fig. 1, we
consider an IoT application that aims at detecting the spatial
distribution, of field, defined by a given Quantity of Interest
(QoI) θc in each cell c. As an example, the IoT network may
be deployed to monitor the pollution level across the covered
geographical area. IoT devices operate as sensors that observe
generally correlated information given that QoIs measured
in nearby locations are likely to be similar. A conventional
approach, implemented for instance in Sigfox, is to have each
device transmit its observation using grant-free access to the
local Edge Node (EN), which estimates the given QoI based
on the received observations. This solution has a number of
drawbacks that we address in this paper, namely:
• The communication protocol does not account for the

correlation in the devices’ observations and for the fact
that the goal of the system is not to retrieve individual
observations, but rather to estimate the field of QoIs;

• Local detection at the EN does not leverage the possible
availability of central, or “cloud”, processors that are con-
nected to multiple ENs via fronthaul links. The presence
of cloud processors, also known as Central Units in 3GPP
documents [12], define cellular architectures referred to
here as Fog-Radio Access Network (F-RAN) as in, e.g.,
[13] [14].

B. TBMA in F-RAN Systems

With regards to the first point raised above, in this work we
adopt an information-centric TBMA-based protocol. TBMA
is a random access technique introduced in [9] and [11] and
further studied, among other papers, in [10]. TBMA relies on
the fact that, in order to optimally estimate a given parameter,
only the histogram of the parameter-dependent measurements
is needed and not the individual observations of the devices.
Therefore, conventional transmission schemes that aim at
ensuring recovery of all individual observations at the receiver
are, generally, inefficient. In contrast, TBMA is designed to
allow the receiver to estimate the histogram of the observations
across the devices. To this end, in TBMA, all devices that
make the same measurement, upon suitable quantization [11],
transmit the same waveform in a non-orthogonal fashion
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Fig. 1: A multi-cell fog radio access network with IoT devices making observations of local quantities of interest (QoIs) θc

for each cell c. Each cell uses the same frequency band. The goal of the system is to compute an estimate θ̂c for each θc.
This can be done in: (a) a distributed fashion at each EN, or (b) a centralized fashion at the cloud.

to the receiver. Assigning orthogonal waveforms for each
measurement value hence yields bandwidth requirements that
do not scale with the number of devices but only with the size
of the quantized observation space. This produces potentially
dramatic savings in terms of bandwidth and overall power,
particularly in the regime of large number of devices [9] [11]
[10]. All prior work on TBMA assumed a single-cell scenario
with a single receiver.

Concerning the second point, with 5G, the cellular archi-
tecture is evolving from a base station-centric architecture,
which is characterized by local processing, to a fog-like
set-up, in which network functionalities can be distributed
more flexibly between centralized processing at the cloud
and local processing at the edge. Enabling this flexibility are
fronthaul links connecting ENs to the cloud processor and
network softwarization. At one extreme of the resulting F-
RAN architecture, all processing can be local, e.g., carried out
at the ENs, while, at the other, all processing can be centralized
as in a Cloud-Radio Access Network (C-RAN) [15] [16]. In
an IoT network, it is hence interesting to investigate under
which conditions a centralized, cloud-based, detection of the
QoIs can be advantageous. The problem is non-trivial due to
the limitations on the capacity of the fronthaul links (see, e.g.,
[15] [16]).

In this paper, as illustrated in Fig. 1, we investigate an
information-centric TBMA-based access scheme for F-RAN
IoT systems that integrates in-cell TBMA with inter-cell non-
orthogonal frequency reuse in the presence of either edge or
cloud detection.

C. Related Work

IoT systems have been studied from a number of view-
points, reflecting the variety of their use cases and deploy-
ments. A long line of work is concerned with understanding
and designing random access schemes that aim at recovering

either the individual messages sent by active devices and/or
their identities. These schemes can typically leverage spar-
sity in the devices’ activation [17]–[20], which are generally
assumed to be uncorrelated. Studies range from information-
theoretical analyses of unsourced random access [21] to ap-
plications of machine learning [22]–[24]. All these works im-
plicitly disregard any correlation in the devices’ messages and
adopt conventional separate source-channel coding techniques.
Correlation among devices’ message was recently considered
in [25] via a simple correlation model where all devices can
observe a common alarm message.

The problem of distributed detection based on local ob-
servations to a fusion center has been widely studied in
the literature on wireless sensor networks, which typically
assumes orthogonal transmissions [26]–[29]. As some illustra-
tive examples, references [30]–[33] considered the distributed
detection problem in the presence of multiple antennas at the
receiver, while cooperative transmission was studied as an
alternative solution in [34] [35].

TBMA can be interpreted as carrying out a special form of
Non-Orthogonal Multiple Access (NOMA) in that the devices
transmit using non-orthogonal waveforms. In this sense, it
is also related to the unsourced model of random access
studied in [36]. Unlike conventional NOMA (see, e.g., [37]–
[39]), in TBMA, the communication protocol is tailored to
the information being transmitted and to the detection task. It
can hence be interpreted as an example of joint source-channel
coding, which is more generally receiving renewed interest for
its potential spectral and power efficiency in IoT systems (see,
e.g., [40]–[42]). A recent related work is [43] that introduces a
novel Bayesian Message Passing technique with joint source-
channel coding via a non-orthogonal generalization of TBMA;
while in [44] a hybrid orthogonal and non-orthogonal multiple
access channel based on TBMA was introduced with an
optimized decision rule. Based on this review, to the best of
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our knowledge, TBMA has not been studied in multi-cell F-
RAN systems.

The problem of studying the performance trade-offs be-
tween processing at the edge and at the cloud has been studied
in a number of works, including for content delivery [45] [46],
scheduling [47], and coexistence of different 5G services [48].

D. Main Contributions

The main contributions of this paper are summarized as
follows:
• An information-centric grant free access scheme is in-

troduced for F-RAN IoT cellular systems that combines
in-cell TBMA and inter-cell non-orthogonal frequency
reuse;

• Optimal edge and cloud detectors are derived for the
system at hand that leverage correlations in the QoIs
across different cells;

• An analytical study of the performance of optimal cloud
and edge detection is provided in terms of detection error
exponents;

• Assuming absence of model knowledge at the edge or
cloud, learning-based data-driven detection schemes are
considered for both cloud and edge processing.

The rest of the paper is organized as follows. In Sec. II we
detail both the system and the signal models. In Sec. III we
highlight the communication protocol used by the devices in
addition to the performance metrics utilized to evaluate the
performance of the system. In Sec. IV and V we study and
analyze edge and cloud detection with optimal detection and
the corresponding asymptotic behaviour respectively. In Sec.
VI, we investigate data-driven edge and cloud detection for the
case where a statistical model is not available. Numerical re-
sults are presented in Sec. VII and conclusions and extensions
are proposed in Sec. VIII.

Notation: Lower-case bold characters represent vectors and
upper-case bold characters represent matrices. AT denotes
the transpose of matrix A. |A| denotes the determinant of
matrix A. A(i, j) denotes the element of A located at the i-th
row and j-th column. CN (x|µ, σ2) is the probability density
function (pdf) of a complex Gaussian random variable (RV)
with mean µ and standard deviation σ. P(x|λ) represents the
probability mass function (pmf) of a Poisson RV with mean λ.
C(f1||f2) and D(f1||f2) represent the Chernoff information
and the Kullback-Leibler (KL) divergence respectively for
the probability distributions f1 and f2. Given a < b, [a, b]
represents the segment of values between a and b.

II. SYSTEM AND SIGNAL MODEL

A. System Model

As illustrated in Fig. 1, we study a multi-cell wireless fog
network that aims at detecting a field of Quantities of Interest
(QoIs), such as temperature or pollution level, based on signals
received from IoT devices. Each cell contains a single-antenna
Edge Node (EN) and multiple IoT devices. We assume that the
QoI is described in each cell c by a Random Variable (RV) θc.
RVs {θc} are generally correlated across cells, and each device

in cell c makes a noisy measurement of θc. For example, QoI
θc may represent the pollution level in the area covered by
cell c. In this paper, we assume for simplicity of notation and
analysis that each QoI can take two possible values θ0 and θ1.
Continuing the example above, θc may represent a low (θ0) or
high (θ1) pollution level in cell c. Extensions to more general
QoIs follow directly but at the cost of a more cumbersome
notation and analysis as further discussed in Sec. VIII.

The IoT devices are interrogated periodically by their local
EN over a number L of collection intervals, which are syn-
chronized across all cells. In each collection interval, a number
of devices in each cell c transmit their measurements in the
uplink using a grant-free access protocol based on Type-Based
Multiple Access (TBMA) [11] [10]. Note that the random
activation pattern assumed here can also model aspects such
as discontinuous access to the QoI or to sufficient energy-
communication resources at the devices. Mathematically, in
any collection interval l = 1, . . . , L, each IoT device in cell
c is active probabilistically, independently of the observation
being sensed, so that the total number N c

l of devices active
in collection interval l in cell c is a Poisson RV with mean λ
and probability mass function Pr[N c

l = n] = P(n|λ). When
active, a device transmits a noisy measurement of the local
QoI θc in the uplink. All devices share the same spectrum
and hence their transmissions generally interfere, both within
the same cell and across different cells.

We compare two different architectures for detection of the
QoIs: (i) Edge detection: Detection of each QoI θc is done
locally at the EN in cell c based on the uplink signals received
from the IoT devices, producing a local estimate θ̂c (see
Fig. 1a); and (ii) Cloud detection: The ENs are connected with
orthogonal finite-capacity digital fronthaul links to a cloud
processor with fronthaul capacity of C [bit/s/Hz]. As in a C-
RAN architecture [16], each EN forwards the received signal
upon quantization to the cloud processor using the fronthaul
link. Unlike conventional C-RAN systems, here the goal is
for the cloud to compute estimates {θ̂c} of all QoIs {θc} (see
Fig. 1b).

B. Signal Model

When active, an IoT device i in cell c during the l-th
collection observes a measurement Xc

i,l. We assume that the
measurement takes values in an alphabet {1, 2, . . . ,M} of
size M . If the observation is analog, measurement Xc

i,l can
be obtained upon quantization to M levels. The problem of
designing the quantizer is an interesting direction for future
research (see Sec. VIII). For the purpose of this analysis, a
number of levels M may be translated into a mean-squared
error due to quantization that scales as 2−M using standard
quantization where the mean-squared error is equal to ∆2/12
[49] with ∆ being the step size of the uniform quantizer.

The distribution of each observation Xc
i,l depends on the

underlying QoI as

Pr[Xc
i,l = m|θc = θ0] = pc0(m)

and Pr[Xc
i,l = m|θc = θ1] = pc1(m),

(1)
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Fig. 2: Two-cell system model. Dashed lines represent inter-
ference channels.

for m = 1, . . . ,M . In words, devices in cell c make generally
noisy measurements with θc-dependent distributions pc0(·) and
pc1(·). When conditioned on QoIs {θc}, measurements Xc

i,l are
independent across all values of the cell index c, device index
i, and the collection index l.

While the analysis can be generalized for a multi-cell sce-
nario as further discussed in Sec. VIII, we henceforth focus on
the two-cell case illustrated in Fig. 2 in order to concentrate on
the essence of the problem without complicating the notation.
Furthermore, with the aim of highlighting the role of the
correlation between the QoIs in the two cells in the analysis,
we define the joint distribution of the QoIs in the two cells as

p(θ1, θ2) =
ρ

2
1{θ1=θ2} +

1− ρ
2

1{θ1 6=θ2}, (2)

where 0 ≤ ρ ≤ 1 represents a “correlation” parameter that
measures the probability that the two QoIs have the same
value, i.e., ρ = Pr[θ1 = θ2]. In practice, the value of ρ depends
on the QoI and the size of the cells. However, this value is
not needed at the receiver neither for detection nor decoding.
This model depends on the single parameter ρ, describing the
correlation of the QoIs at the two cells. Note, in particular, that,
when ρ = 0.5, the two QoIs are independent. We also observe
that, under model (2), the two QoIs are equiprobable, i.e.,
Pr(θc = θj) = 0.5 for j ∈ {0, 1} and c ∈ {0, 1}. Furthermore,
when ρ = 0.5, the two QoIs are independent (these could
correspond, e.g., to heat and pollution levels). Extension of
the analysis to a general joint distribution between the QoIs
is straightforward. In practice, the value of ρ depends on the
specific QoIs being measured and on the set-up of the system.
It should be mentioned that the value of ρ need not be known
at the receiver.

We denote by Hc
i,l ∼ CN (µH , σ

2
H) the flat-fading Ricean

fading channel, with mean µH and variance σ2
H , from device

i to the EN in the same cell c during collection interval l; and

by Gci,l ∼ CN (µG, σ
2
G), with mean µG and variance σ2

G, the
flat-fading Ricean fading channel from device i in cell c′ 6= c
to the EN in cell c during collection interval l. All channels
are assumed i.i.d. across indices i, l and c. In the next section,
we detail the communication protocol, including the physical-
layer model and the performance metrics used.

III. COMMUNICATION PROTOCOL AND PERFORMANCE
METRICS

In this section, we detail the communication protocol and
the performance metrics used to evaluate the system’s perfor-
mance.

A. Communication Protocol

As mentioned in Sec. I, based on the single-cell results
in [9]–[11], in this paper we focus on an information-centric
TBMA-based protocol that leverages the correlation between
observations of different devices in different cells. To this
end, within the available bandwidth and time per-collection
interval, as in [9], we assume the presence of M orthogonal
waveforms {φm(t),m = 1, . . . ,M} with unit energy. In
practice, preambles allocated for the random access phase in
cellular standards can be used as waveforms. These waveforms
are used in a non-orthogonal fashion by the IoT devices to
transmit their observations in the uplink. As detailed next, we
allow for non-orthogonal frequency reuse across the two cells,
and study also the orthogonal frequency reuse for comparison.

Non-orthogonal frequency reuse: According to TBMA, each
waveform φm(t) encodes the value m ∈ {1, . . . ,M} of the
observations of a device. The signal transmitted by a device i
in cell c that is active in interval l is then given as

Sci,l(t) =
√
EsφXc

i,l
(t), (3)

that is, we have Sci,l(t) =
√
Esφm(t) if the observed signal is

Xc
i,l(t) = m, where Es is the transmission energy of a device

per collection interval. With TBMA, devices observing the
same value m hence transmit using the same waveform. This
is why, as discussed in Sec. I, the spectral resources required
by TBMA scale with the number M of observations values
rather than with the total amount of information by all the
active devices, which may be much larger than M .

The received signal at the EN in cell c during the l-th
collection can be written as

Y cl (t) =

Nc
l∑

i=1

Hc
i,lS

c
i,l(t) +

Nc′
l∑

i=1

Gci,lS
c′

i,l(t) +W c
l (t), (4)

where Wl(t) ∼ CN (0,W0) is white Gaussian noise, i.i.d. over
l and c, with power W0; and c′ 6= c represents the index of
the other cell. The first term in (4) represents the contribution
from the IoT devices in the same cell c, while the second
term represents the contribution from IoT devices from the
other cell c′.

Given the orthogonality of the waveforms {φm(t)}, a
demodulator based on a bank of matched filters can be
implemented at each EN without loss of optimality [10]. After
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matched filtering of the received signal with all waveforms
φm(t) for m = 1, . . . ,M , each EN c obtains the M×1 vector

Yc
l =

1√
Es

[〈φ1(t), Y cl (t)〉, . . . , 〈φM (t), Y cl (t)〉]T

=

Nc
l∑

i=1

Hc
i,leXc

i,l
+

Nc′
l∑

i=1

Gci,leXc′
i,l

+ Wl,

(5)

where Wl is a vector with i.i.d. CN (0,SNR−1) elements,
with SNR = Es/W0; and em represents an M×1 unit vector
with all zero entries except in position m. In (5), we used the
notation 〈a(t), b(t)〉 =

∫
a(t)b(t)dt to represent the correlation

integral as applied to the given correlation interval. To gain
insight into the operation of TBMA, we note that, in the
absence of noise and inter-cell interference, and if the channel
coefficients are all equal one, i.e., with µG = σ2

G = σ2
H = 0

and µH = 1, the m-th element of vector Yc
l is equal to the

number of active devices that have observed the m-th data
level in cell c [9].

Orthogonal frequency reuse: For reference, we also consider
a rate-1/2 frequency reuse scheme that eliminates inter-cell in-
terference. In this baseline scheme, the M available orthogonal
resources are equally partitioned between the two cells, so that
in each cell only M/2 orthogonal waveforms are available. We
assume here M to be even for simplicity of notation. In this
case, each active IoT device i in cell c quantizes its observation
Xc
i,l to M/2 levels as X̂c

i,l = m if Xc
i,l ∈ {2m − 1, 2m} for

m = 1, . . . ,M/2 before transmission. The signal received at
EN c during collection l can hence be written as

Yc
l =

1√
Es

[〈Y cl (t), φ1(t)〉, . . . , 〈Y cl (t), φM/2(t)〉]T

=

Nc
l∑

i=1

Hc
i,leX̂c

i,l
+ Wc

l .

(6)

Comparing (6) with (5), we observe that, on the one hand,
orthogonal frequency reuse reduces the resolution of the obser-
vations of each device from M to M/2 levels, but, on the other
hand, it removes inter-cell interference. In the remainder of this
paper, we consider and derive the performance of the more
general non-orthogonal frequency reuse. The performance for
orthogonal frequency reuse can be derived the same way by
replacing the number of resources M by M/2 and setting
the interference channel coefficients to zero in all the derived
equations. As for detection of the QoI, as illustrated in Fig. 1,
we study both edge and cloud detection described as follows:

Edge Detection: With edge detection, each EN c produces
an estimate θ̂c of the RV θc based on the received signals Yc

l

for all collection intervals l = 1, . . . , L, where Yl
c is given

in (5) and (6) for non-orthogonal and orthogonal frequency
reuse, respectively.

Cloud Detection: With cloud detection, each EN c com-
presses the received signals {Yc

l }Ll=1 across all L collection
intervals and sends the resulting compressed signals {Ŷc

l }Ll=1

to the cloud. Compression is needed in order to account for

the finite fronthaul capacity C. The cloud carries out joint
detection of both QoIs {θ1, θ2} producing estimates {θ̂1, θ̂2}.

B. Performance Metrics

The performance of cloud and edge detection methods will
be evaluated in terms of the joint error probability

Pe = Pr[∪2c=1{θ̂c 6= θc}], (7)

where θ̂c is the estimate of the QoI θc obtained at EN c or at
the cloud, for edge detection and cloud detection respectively.
In order to enable analysis, we will also study analytically the
scaling of the error probability Pe as a function of the number
L of collections. From large deviation theory, the detection
error probability Pe decays exponentially as [50]

Pe = exp(−LE + o(L)) with L→∞, (8)

where o(L)/L→ 0 as L→∞, for some detection error expo-
nent E. We will hence be interested in computing analytically
the error exponent E for edge and cloud detection to verify
our experimental results using optimal and machine learning
based detection where Pe is used as a performance metric. In
the latter, a finite number of collections L is considered in
order to capture realistic low-latency IoT scenarios.

In the next two sections, we consider the case in which the
model (1)-(4) is available for the design of optimal detection
at edge and cloud, and describe the resulting detectors and
their asymptotic behavior in terms of the error probability via
the error exponent when L→∞. Then, in Sec. VI, we study
the case in which the detectors need to be learned from data
rather than being derived from a mathematical model.

IV. OPTIMAL DETECTION

In this section, we assume that the joint distribution (1)-
(4) of the QoI, of the observations, and of the received signal
is known, and we detail the corresponding optimal detectors
at edge and cloud. The performance of these detectors is
evaluated numerically in terms of the probability of error Pe
(7) in Sec. VII.

A. Optimal Edge Detection

With edge detection, each EN in cell c performs the binary
test

Hc0 : θc = θ0 versus Hc1 : θc = θ1 (9)

based on the available received signals Yc = {Yc
l }Ll=1

in (5). The optimum Bayesian decision rule that minimizes
the probability of error at each EN chooses the hypothesis
with the Maximum A Posteriori (MAP) probability. Since the
hypotheses in (9) are a priori equiprobable the MAP rule is
given by the log-likelihood ratio test:

log
f(Yc|θc = θ0)

f(Yc|θc = θ1)

θ̂c=θ0
≷

θ̂c=θ1

0. (10)
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Using the law of total probability and the i.i.d. property across
collection intervals l, the likelihood can be expressed as

f(Yc|θc = θj) =
1∑
k=0

L∏
l=1

f(Yc
l |θc = θj , θ

c′ = θk)

× Pr(θc
′

= θk|θc = θj),

(11)

where Pr(θc
′

= θk|θc = θj) = 2Pr(θc
′

= θk, θ
c = θj) is the

conditional probability of the QoI in cell c′ obtained from (2),
and f(Yc

l |θc = θj , θ
c′ = θk) represents the distribution of the

signal (4) received at EN c during interval l when we have
θc = θj and θc

′
= θk. This distribution can be written as

f(Yc
l |θc = θj ,θ

c′ = θk) =
M∏
m=1

∞∑
n1=0

∞∑
n2=0

P(n1|λpcj(m))

× P(n2|λpc
′

k (m))CN (Y cl (m)|µn1,n2 , σ
2
n1,n2

),
(12)

where we have defined

µn1,n2
= n1µH +n2µG, and σ2

n1,n2
= n1σ

2
H +n2σ

2
G+W0.

(13)
The distribution (12) follows since: (i) conditioned on the num-
bers n1 and n2 of active devices in cell c and c′, respectively,
the distribution of Y cl (t) in (4) is complex Gaussian with mean
µn1,n2

and variance σ2
n1,n2

; and (ii) by the Poisson thinning
property [51], the average number of devices transmitting
signal level m in cell c under hypothesis θc = θj is equal
to λpcj(m).

B. Optimal Cloud Detection

The cloud tackles the quaternary hypothesis testing problem
of distinguishing among hypotheses Hjk : (θ1, θ2) = (θj , θk)
for j, k ∈ {0, 1} on the basis of the quantized signals {Ŷl}Ll=1

received from both ENs on the fronthaul links. The optimal
test for deciding among multiple hypotheses is the Bayes MAP
rule that chooses the hypothesis Hjk by solving the problem

argmax
{j,k}∈{0,1}2

{
log p(θj , θk)+

L∑
l=1

log f(Ŷl|θ1 = θj , θ
2 = θk)

}
,

(14)
where the first term represents the prior probability of hypoth-
esis Hjk while the second term represents the distribution of
the compressed signals Ŷl = [(Ŷ1

l )
T, (Ŷ2

l )
T]T sent on the

fronthaul links. This is derived next.
Following a by now standard approach, see, e.g., [15]

[52], the impact of fronthaul quantization is modeled as an
additional quantization noise. In particular, the signal received
at the cloud from EN c can be written accordingly as

Ŷc
l = Yc

l + Qc
l , (15)

where Qc
l represents the quantization noise vector. As in most

prior references (see, e.g., [15] [52]), the quantization noise
vector Qc

l is assumed to have i.i.d. elements being normally
distributed with zero mean and variance σ2

qc .
This assumption is justified by the fact that a high-

dimensional dithered lattice quantizer, such as Trellis Coded

Quantization, preceded by a linear transform can obtain a
Gaussian quantization noise with any desired quantization
spectrum [53] [54]. Furthermore, reference [55] demonstrates
that the assumption of additive Gaussian quantization noise
is also valid for uniform scalar quantizers when the input
distribution is continuous.
Furthermore, from rate-distortion theory, the fronthaul capacity
constraint implies the following inequality [52], for each EN
c

MC ≥ I(Yc
l ; Ŷ

c
l ). (16)

This is because the number of bits available to transmit
each measurement Ŷc

l is given by C bits per symbol, or
equivalently per orthogonal spectral resource, that is, MC bits
in total for all M resources. From (16), one can in principle
derive the quantization noise power σ2

qc .
Evaluating the mutual information in (16) directly is, how-

ever, made difficult by the non-Gaussianity of the received
signals Yc

l . To tackle this issue, we bound the mutual infor-
mation term in (16) using the property that the Gaussian dis-
tribution maximizes the differential entropy under covariance
constraints [50], obtaining the following result.

Lemma 1: The quantization noise power can be upper
bounded as σ2

qc ≤ σ̄2
qc , where σ̄2

qc is obtained by solving the
non-linear equation

MC =
1

2

M∑
m=1

log(∑1
j=0

∑1
k=0 Pr(θ1 = θ1j , θ

2 = θ2k)Σcj,k(m,m) + σ2
qc

(σ2
qc)M

)
.

(17)
where

Σcj,k(m,m) = σ2
Hλp

c
j(m) + σ2

Gλp
c
k(m) +

1

SNR
(18)

are the diagonal elements of the covariance matrix Σc
j,k of Yc

l

when θc = θj and θc
′

= θk.
Proof: See Appendix A for details.

Using Lemma 1, the distribution of the received signal
f(Ŷl|θ1 = θj , θ

2 = θk) in (14) can be evaluated as in (12)
but with a variance of σ2

n1,n2
+ σ2

qc in lieu of σ2
n1,n2

for each
cell c.

V. ASYMPTOTIC PERFORMANCE

In this section, we derive the error exponent E in (8) for
the optimal detectors discussed in Sec. IV when the number
of collection intervals L grows to infinity. In order to simplify
the analysis, as in [10], we will take the assumption of large
average number of active devices, i.e., of large λ. This scenario
is practically relevant for scenarios such as massive Machine
Type Communication systems (mMTC), with large devices’
density [4]. In Sec. VII, we will further support the conclusions
of the analysis by means of numerical results for smaller
values of L and λ.
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A. Edge Detection

The error exponent E in (8) using edge detection can be
lower bounded as shown in the following proposition.

Proposition 1: Under the optimal Bayesian detector (10),
the error exponent E in (8) in the large-λ regime and for any
0 < ρ < 1 is lower bounded as E ≥ Eedge = minc∈{1,2}E

c,
where

Ec = min
k∈{0,1}

max
α∈[0,1][

1

2

M∑
m=1

log
(αΣc1,k(m,m) + (1− α)Σc2,k(m,m)

(Σc1,k(m,m))α(Σc2,k(m,m))1−α

)
+
α(1− α)

2

M∑
m=1

(µc1,k(m)− µc2,k(m))2

(αΣc1,k(m,m) + (1− α)Σc2,k(m,m))

]
(19)

with
µcj,k(m) = µHλp

c
j(m) + µGλp

c′

k (m) (20)

and Σcj,k(m,m) given in (18) for j, k ∈ {0, 1}, m ∈
[1, . . . ,M ] and c′ 6= c ∈ {1, 2}.

Proof: In a manner similar to [10, Theorem 3], the proof of
the above theorem relies on the Central Limit Theorem (CLT)
with random number of summands [50, p. 369] and on the
error exponent for optimal binary Bayesian detection based
on the Chernoff Information [50]. We refer to Appendix B for
details.

The term in (19) being optimized over k corresponds to
the Chernoff information [50, Chapter 11] for the binary test
between the distributions of the received signal Yc

l under
hypotheses θc = θ0 and θc = θ1 when θc

′
= θk. In fact,

for large values of λ, when θc = θj and θc
′

= θk, the
received signal Yc

l in (5) can be shown to be approximately
distributed as CN (µcj,k,Σ

c
j,k), with mean vector µcj,k =

[µcj,k(1), . . . , µcj,k(M)]T and diagonal covariance matrix Σc
j,k

with diagonal elements Σcj,k(m,m).

B. Cloud Detection

Here we analyze the performance of joint detection at the
cloud described in (14) in terms of the error exponent E.

Proposition 2: Under the optimal detector (14), the error
exponent E in (8) in the large-λ regime for cloud detection
can be lower bounded as E ≥ Ecloud = min{j,k}∈{0,1}2Ej,k,
where

Ej,k = min
{j′,k′}6={j,k}

max
α∈[0,1]

[1

2
log
|αΣj,k + (1− α)Σj′,k′ |
|Σj,k|α|Σj′,k′ |1−α

+
α(1− α)

2
(µj,k − µj′,k′)

T(αΣj,k + (1− α)Σj′,k′)
−1

× (µj,k − µj′,k′)
]
,

(21)
where the 2M × 1 vector µj,k is defined as

µj,k(m) = µ1
j,k(m) for m = 1, . . . ,M

and µj,k(m) = µ2
k,j(m) for m = M + 1, . . . , 2M,

(22)

where µcj,k(m) is defined in (20), and the 2M×2M covariance
matrix Σj,k is given as

Σj,k(m,m) = Σ1
j,k(m,m) + σ2

q1 for m = 1, . . . ,M,

Σj,k(m,m) = Σ2
k,j(m,m) + σ2

q2 for m = M + 1, . . . , 2M,

Σj,k(m,M +m) = Σj,k(M +m,m) =

p1j (m)(1− p1j (m))λµHµG + p2k(m)(1− p2k(m))λµHµG

for m = 1, . . . ,M,
(23)

where Σcj,k(m,m) is defined in (18) and all other entries of
matrix Σj,k are zero.

Proof: The proof follows in a manner similar to Proposition
1 as we detail in Appendix C.

The term in (21) being optimized over {j′, k′} corresponds
to the Chernoff information for the binary test between the
distribution of the signal received at the cloud under hypothe-
ses (θc = θj , θ

c′ = θk) and (θc = θj′ , θ
c′ = θk′). As for edge

detection, the signal received at the cloud under hypothesis
Hjk is approximately distributed as CN (µj,k,Σj,k), where the
elements of the mean vector µj,k and covariance matrix Σj,k

are described in (22) and (23). Note that, by (23), the signals
received from cell c and c′ are correlated, when conditioned
on any hypothesis Hj,k, if channels have non-zero mean.

C. Edge vs Cloud Detection

In this section, we prove that the performance of cloud
detection is superior to edge detection in terms of error
exponent as long as the inter-cell channel power gain power
σ2
G is sufficiently large. The main result can be summarized

in the following theorem.
Theorem 1: The error exponents derived in Proposition 1

and Proposition 2 satisfy the following limits

lim
σ2
G→∞

Eedge = 0 and lim
σ2
G→∞

Ecloud > 0. (24)

Proof: The proof can be found in Appendix D.
Theorem 1 implies that, for high inter-cell power gains, edge

detection leads to vanishing small error exponent, while this is
not the case for cloud detection. This demonstrates that edge
detection is inter-cell interference limited, while this is not the
case for cloud detection. In practice, as shown via numerical
results in Sec. VII, fairly low interference power levels are
sufficient for cloud detection to outperform edge detection.

In Sec. VII, the comparison between the error exponents
for edge detection and cloud detection is done in terms of the
lower bounds via numerical simulations. Furthermore, it was
found that these lower bounds provide good insights on the
performance of the system in the non-asymptotic regime with
finite L where real optimal detection is used.

VI. EDGE AND CLOUD LEARNING

In the previous sections, we have assumed that ENs and
the cloud are aware of the joint distribution (1)-(4) of the
QoIs, observations, and received signals. As a result, the
conditional distributions f(Yc|θc) are known at each EN c
and the distributions f(Ŷ|θ1, θ2) are known at the cloud for all
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values of the QoIs. These distributions are needed in order to
implement the optimal detectors (10) and (14) at the edge and
cloud respectively. In contrast, in this section, we assume lack
of knowledge of the aforementioned distributions and use data-
driven learning-based techniques at the edge and the cloud in
order to train edge and cloud detectors. The performance of
these detectors is evaluated using the probability of error Pe,
and it is compared with the optimal detectors’ performance,
in Sec. VII.

A. Edge Learning

In order to enable the training of a binary classifier at
each EN c, we assume the availability of a labeled training
set for supervised learning. This data set is defined by N
i.i.d. observations {(Yc(n), θc(n))} for n = 1, . . . , N , where
Yc(n) = [(Yc

1(n))T, . . . , (Yc
L(n))T]T is the ML × 1 vector

of observations at EN c, which is distributed according to
the unknown conditional distribution f(Yc(n)|θc(n)) and
θc(n) ∈ {θ0, θ1} is the binary QoI. This data set can be
obtained offline during a calibration phase that uses either
direct measurements or synthetically generated data from
an emulator of the radio environment of interest [56]. Any
binary classifier can be trained based on this data set in
order to generalize the mapping between input Yc and output
θc outside the training set. For illustration, we consider a
feedforward neural network, which is described through the
functional relations (see, e.g., [57] [58])

h1 = h(W1Ỹc(n))

hb = h(Wbhb−1) for b = 1, . . . , B

Pr(θc = θ1) = σ(wB+1hB),

(25)

where B is the number of hidden layers; hb represents the
vector of outputs of the b-th hidden layer with weight matrix
Wb for b = 1, . . . , B; wB+1 is the vector of weights for
the last layer; h(·) is a non-linear function, here taken to
be hyperbolic tangent [58]; σ(x) = 1/(1 + e−x) is the
sigmoid function; and we have Ỹc = [1, (Yc)T]T as the
input of the neural network. The output of the neural network
provides the probability that the QoI is equal θ1 for the given
weights {{Wb}Bb=1,w

B+1}. The neural network is trained
to minimize the cross-entropy loss via the backpropagation
algorithm. Details of this standard procedure can be found,
e.g., in [57] [58].

B. Cloud Learning

Unlike the ENs, the cloud needs to train a multi-class
classifier in order to distinguish among the four hypotheses
Hjk : (θ1, θ2) = (θj , θk) for j, k ∈ {0, 1}. To enable super-
vised learning, we assume the availability of a labelled training
set defined by N i.i.d. observations {(Ŷ(n), θ1(n), θ2(n))} for
n = 1, . . . , N , where Ŷ(n) = [(Ŷ1(n))T, . . . , (ŶL(n))T]T

is the 2ML × 1 vector of observations at the cloud, which
is distributed according to the unknown joint distribution
f(Ŷ(n)|θ1(n), θ2(n)) and (θ1, θ2) are the QoIs for the two
cells. While any multi-class classifier can be used, here we

consider a classifier based on a neural network as discussed
above. Unlike the classifier in (25), the cloud-based classifier
contains four output neurons with each neuron representing the
probability of one of the four hypotheses. The output layer is
defined as in (25) but with a softmax non-linearity in lieu of
the sigmoid [57] [58]. Training is carried out by optimizing
the cross-entropy criterion.

VII. NUMERICAL RESULTS

In this section, we discuss the performance of edge and
cloud-based detection and learning as a function of different
system parameters, such as inter-cell interference strength and
fronthaul capacity, through numerical examples. For the opti-
mal detectors described in Sec. IV, which require knowledge
of the measurements and channel models, we consider both the
analytical performance in terms of error exponent derived in
Sec. V and the performance in the regime with a finite number
L of observations evaluated via Monte Carlo simulations. For
the learning-based solution, we evaluate the performance under
the system model discussed in Sec. II in order to ensure a fair
comparison with model-based solutions.

The system contains two cells as illustrated in Fig. 2, and
unless specified otherwise, we set the system parameters as
follows: average number of active devices per cell λ = 4;
average SNR equal to SNR = 3 dB; direct channel parameters
µH = 1 and σ2

H = 1; inter-cell channel parameters µG = 1
and σ2

G = 1; correlation between the QoIs in the two cells
ρ = 0.85; and number of observations levels M = 4.
The assumption of equal statistics for direct and inter-cell
channel parameters reflects an ultra-dense network deployment
as considered in [59, Sec. III] [60, Sec. IV.B]. Furthermore,
the conditional distributions of the observations for both cells
are given for QoI value θ0 as p10(1) = p20(1) = 0.4, p10(2) =
p20(2) = 0.3, p10(3) = p20(3) = 0.2 and p10(4) = p20(4) = 0.1
and for QoI value θ1 p11(m) = p21(m) = p10(M−m+1). Note
that, under QoI θ0, devices in both cells tend to measurements
with small values m, while the opposite is true under QoI θ1.
For example, value θ0 may represent a low pollution level or
temperature.

Asymptotic analysis: The gains of cloud decoding with un-
limited fronthaul are due to the operation of the overall cloud-
based system as a multi-antenna receiver. This is clearly ad-
vantageous as compared to edge detection, which is based on
a single-antenna receiver architecture. In Fig. 3, we investigate
how the potential gains of cloud decoding are modified in the
presence of a limited-capacity fronthaul. When the fronthaul
capacity C is small enough, making fronthaul quantization
noise significant, cloud detection can in fact be outperformed
by edge detection. In this case, the performance degradation
caused by quantization noise dominates the multi-antenna gain
for cloud decoding. In contrast, if C is sufficiently large,
edge and cloud detection have the same performance when
σ2
G is small, in which case no benefits can be accrued via

joint decoding at the cloud, but cloud detection can vastly
outperform edge detection when σ2

G is large enough.
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Fig. 3: Error exponent for edge and cloud detection as function
of the inter-cell power gain σ2

G (µH = 1, σ2
H = 1, µG = 0,

λ = 4, and SNR = 3 dB).
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Fig. 4: Error exponent for edge and cloud detection as function
of the fronthaul capacity C (µH = 1, σ2

H = 1, µG = 0, σ2
G =

1, and λ = 4).

The role of the fronthaul capacity in determining the relative
performance of the edge and cloud detection is further ex-
plored in Fig. 4, where we plot the error exponent as function
of the fronthaul capacity C for two different values of the
SNR. Consistently with the discussion above, the cloud’s de-
tection performance is observed to increase with the fronthaul
capacity, outperforming edge detection for large enough C.
Furthermore, the threshold value of C at which cloud detection
outperforms edge detection is as low as 1 bit/s/Hz.

Probability of error for optimal detection: We now
complement the results from the analysis by evaluating the
probability of error of the optimal detectors described in Sec.
IV via Monte Carlo simulations. Throughout, we set L = 5
collections. We start in Fig. 5 by plotting the probability
of error as a function of the inter-cell power gain σ2

G. In
a manner consistent with the analytical results illustrated
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Fig. 5: Probability of error for edge and cloud detection as
function of σ2

G (µH = 1, σ2
H = 1, µG = 1, σ2

G = 1, SNR =
3 dB, L = 5 and λ = 4).

in Fig. 3, the probability of error for edge detection with
non-orthogonal frequency reuse is seen to increase when the
interference’s power increases. In contrast, for cloud detection,
the probability of error grows larger with an increasing inter-
cell gain for smaller values of σ2

G, and then it decreases
gradually for higher values of σ2

G as the inter-cell signals
become beneficial for joint detection at the cloud.

In Fig. 5, we also compare the performance of non-
orthogonal frequency reuse in all cells, which has been
assumed thus far, with orthogonal frequency reuse. For
edge detection, orthogonal frequency reuse outperforms non-
orthogonal frequency reuse for high inter-cell interference
power, in which regime the rate gain of having more radio
resources in the non-orthogonal reuse scheme is outweighted
by the absence of interference with the orthogonal scheme. In
contrast, for cloud detection, for high enough inter-cell power,
inter-cell signals become useful thanks to joint decoding, and
thus, non-orthogonal frequency reuse outperforms orthogonal
frequency reuse.

We now study the impact of the fronthaul capacity C by
plotting the probability of error for optimal edge and cloud
detection as function of C in Fig. 6. Confirming the discussion
based on the asymptotic analysis considered in Fig. 4, we
observe that the probability of error for optimal cloud detection
decreases as function of the fronthaul capacity, and, for a large
enough value of C, cloud detection is able to outperform edge
detection.

Since the asymptotic analysis is insensitive to the value
of the QoI correlation parameter ρ, in Fig. 7, we evaluate
the impact of ρ by studying the probability of error as
function of ρ for both optimal edge and cloud detection.
For ρ = 0, the QoIs in the two cells have opposite values
with probability one. Therefore, given the large value of the
inter-cell gain, the signals received at the ENs are close to
being statistically indistinguishable under the two possible
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Fig. 6: Probability of error for optimal edge and cloud detec-
tion as function of C (µH = 1, σ2

H = 1, µG = 1, σ2
G = 1,

L = 5, ρ = 0.85 and λ = 4).
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Fig. 7: Probability of error for edge and cloud detection
using both learning and optimal detection as function of the
correlation ρ between the two QoIs in the two cells (C = 5,
µH = 1, σ2

H = 1, µG = 1, σ2
G = 1, SNR = 3 dB, L = 5

and λ = 4).

hypotheses (θ1 = θ0, θ
2 = θ1) and (θ1 = θ1, θ

2 = θ0). In
contrast, when ρ increases, the two QoIs are more likely to
have the same value, decreasing the probability of error for
both cloud and edge. Note that, even for ρ = 0.5, which
corresponds to independent QoIs, cloud detection can improve
over edge detection. This is because the lack of correlation
between the QoIs does not remove the advantage of joint
processing of the interfering signals from different cells.
In Fig. 8, we plot the probability of error as function of

the SNR for both edge and cloud detection for L = 10,
λ = 8 and two different values of the inter-cell power gain
σ2
G. Confirming the theoretical conclusions in the paper, we

observe that increasing the inter-cell power gain decreases
the probability of error for cloud detection, which is not
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Fig. 8: Probability of error for edge and cloud detection using
optimal detection as function of the signal to noise ratio (SNR)
(C = 10, µH = 1, σ2

H = 1, µG = 1, σ2
G = 1, L = 10 and

λ = 8).
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Fig. 9: Probability of error for edge and cloud detection using
learning as function of the training set size (C = 5, µH =
1, σ2

H = 1, µG = 1, σ2
G = 1, SNR = 3 dB, ρ = 0.85, and

λ = 4).

interference limited. In contrast, the performance of edge
detection does not improve significantly with larger SNR
values, due to the limitations caused by inter-cell interference.

Edge and cloud learning: We now evaluate the perfor-
mance of learning-based detection as a function of the size
N of the available training set. Training is done using scaled
conjugate gradient backpropagation on the cross-entropy loss,
as proposed in [61] and implemented in MATLAB’s Deep
Learning tool box 1 with fixed learning rate equal to 0.01.
In Fig. 9, we plot the probability of error for both edge
and cloud detection using the optimal and learning-based

1https://www.mathworks.com/products/deep-learning.html
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detection techniques as function of N . For both edge and
cloud detection, the probability of error decreases as function
of the training set size until it approximates closely the optimal
detector’s probability of error. The key observations in Fig. 9 is
that the probability of error for cloud learning converges faster
than edge learning to the optimal error. Even though the cloud
detector performs a quaternary hypothesis testing problem, its
operation in a larger domain space makes it easier to train
an effective detector. This is particularly the case for large
correlation coefficients, here ρ = 0.85, since this implies that
two hypotheses, namely, H00 and H11, have a significantly
higher prior probability than the remaining two hypotheses.

VIII. CONCLUSIONS AND EXTENSIONS

This paper considers the problem of detecting correlated
quantities of interest (QoIs) in a multi-cell Fog-Radio Access
Network (F-RAN) architecture. An information-centric grant-
free access scheme is proposed that combines Type-Based
Multiple Access (TBMA) [10] with inter-cell non-orthogonal
frequency reuse scheme. For this scheme, detecting QoIs at the
cloud via a fronthaul-aided network architecture was found
to be advantageous over separate edge detection for high
enough fronthaul capacity in the presence of sufficiently large
inter-cell power gains. This is because cloud detection can
benefit from inter-cell interference via joint decoding when the
correlation between QoIs among different cells is high enough
thanks to TBMA. The latter observation was also verified
analytically for the asymptotic regime when the number of
measurement collections from devices goes to infinity. Under
the same conditions, cloud detection was seen via numerical
results to outperform edge detection even without model
information in the presence of limited data used for supervised
learning.

Finally, the proposed protocol can be implemented by
using the random access preambles from the standard cellular
protocols. Hence, this form of TBMA changes only the
interpretation of those preambles, which means that it can be
implemented without intervention on the physical layer of the
existing IoT devices.

Some extensions and open problems are discussed next.
First, it would be interesting to consider QoIs with more
than two values and multi-cell network with more than two
cells. The analysis of this scenario follows directly from
the derivations in this paper at the cost of a significantly
more cumbersome notation. To briefly elaborate on this point,
assume that each QoI in each cell c can take Q values, i.e.,
θc ∈ {θc1, . . . , θcQ} and that there are K cells. In this case, each
EN performs a Q-ary hypothesis test to distinguish among the
Q hypotheses Hcq : θc = θcq for q ∈ {1, . . . , Q}. The optimal
test for deciding among multiple hypothesis at the edge is
given by the MAP rule

argmax
q∈{1,...,Q}

{
log p(θq) +

L∑
l=1

log f(Yc
l |θc = θq)

}
, (26)

which generalizes (10). The optimal cloud detector aims to
solve the QK-ary hypothesis testing problem among hypothe-

ses Hq1,...,qK : (θ1, . . . , θK) = (θ1q1 , . . . , θ
K
qK ) for qk ∈

{1, . . . , Q}. The optimal detector in this case can be written
as the MAP rule

argmax
(q1,...,qK)∈{1,...,Q}K

{
log p(θq1 , . . . , θqK )

+
L∑
l=1

log f(Ŷl|θ1 = θq1 , . . . , θ
K = θqK )

}
,

(27)
which generalizes (14). Analysis of (26)-(27) can now be
carried out by following the same steps in the paper via
Chernoff information and the union bound.

Second, an interesting extension would be to study the
design of optimized quantizers between analog observations
and discrete levels used for grant-free access.

Third, another interesting direction of research, following
[5] [48], is to consider the coexistence of IoT devices with
other 5G services, most notably eMBB and URLLC. While
orthogonal resource allocation among services would yield
separate design problems, non-orthogonal multiple access
across different services was found to be advantageous in [5]
[48]. As a brief note on this problem, in contrast with the
sporadic and short IoT transmissions, eMBB transmissions
typically span multiple time slots [62]. Accordingly, from each
IoT device point of view, eMBB signals may be treated as
an additional source of noise. However, IoT signals may be
decoded and cancelled prior to eMBB decoding [5]. Like IoT
traffic, URLLC traffic is instead typically sporadic and hard to
predict. Detectors should hence be designed in order to adapt
to the possible presence of URLLC signals. As for URLLC
transmissions, the key issue is guaranteeing high reliability
despite interference from IoT signals.

Fourth, the comparison of the error exponents of edge and
cloud detection was done in terms of lower bounds based
on the union bound. A more fundamental investigation would
account for the tightness of such bounds.

Finally, it would be interesting to generalize the setup
to include different “types” of QoIs (for e.g., pollution and
humidity levels). In this case, TBMA as used in this paper
will fall short, as devices measuring different types of QoIs
cannot be differentiated. To adapt TBMA for this scenario,
one could use different codewords for distinct measurements
made by sensors. For instance, devices measuring one QoI
(e.g., pollution level) in one part of the cell may use a
set of codewords, while devices measuring the other QoI
(e.g., humidity level) in another part of the cell may use a
different set. Note that these sets may not be orthogonal if
the receiver used a more sophisticated decoder, for e.g., based
on a Bayesian formulation. A similar approach was recently
investigated in [43].

APPENDIX

A. Proof of Lemma 1

The mutual information term in (16) can be written as

I(Yc
l ; Y

c
l + Qc

l ) = h(Yc
l + Qc

l )−M log(2πσ2
qc), (28)
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where the equality follows from the assumption that the
quantization noises are Gaussian and independent across all
observations. The first term in equation (28) can be bounded
as

h(Yc
l + Qc

l ) ≤ log(2πe|ΣYc
l

+ σ2
qcI|), (29)

where ΣYc
l

is the covariance matrix of vector Yc
l . The

inequality follows by the property of the Gaussian distribution
of maximizing the differential entropy under a covariance
constraint [50]. Using the law of iterated expectations, the
covariance ΣYc

l
can be written as

ΣYc
l

=
1∑
j=0

1∑
k=0

Pr(θ1 = θj , θ
2 = θk)Σc

j,k, (30)

where matrices Σc
j,k are diagonal and represent the covariance

matrices of Yc
l when hypothesis θc = θj and θc

′
= θk hold

as defined in Proposition 1. This concludes the proof.

B. Proof of Proposition 1

From the union bound Pe ≤ P 1
e + P 2

e with P ce = Pr[θ̂c 6=
θc] and the identity P ce = 1

2Pr[θ̂c 6= θc|θc′ = θ0] + 1
2Pr[θ̂c 6=

θc|θc′ = θ1], we directly obtain the lower bound on the error
exponent

E ≥ min
c∈{0,1}

min
k∈{0,1}

Eck, (31)

where Eck = − limL→∞
1
L log Pr[θ̂c 6= θc|θc′ = θk] is the

error exponent for detection of QoI θc conditioned on the
condition θc

′
= θk. Under the optimal Bayesian detector

(10), the detection error exponent Eck is given by the Chernoff
information [50, Chapter 11] as

Eck = C(f0,k(Yc
l ), f1,k(Yc

l )), (32)

where we have denoted fj,k(Yc
l ) = f(Yc

l |θc = θj , θ
c′ =

θk) for brevity. Computing the error exponent in (32) requires
finding the distributions fj,k(Yc

l ) for j, k ∈ {0, 1}. Following
[10], this can be approximated by a Gaussian distribution in
the regime of large λ thanks to the Central Limit Theorem
(CLT) with random number of summands [51, p. 369]. In
particular, referring to [10] for details, we can conclude that,
when λ → ∞, the conditional distribution fj,k(Yc) tends in
distribution to CN (µj,k,Σj,k), where µj,k and Σj,k are the
mean vector and covariance matrix respectively when θc = θj
and θc

′
= θk and are defined in (20) and (18).

The Chernoff Information between two Gaussian distribu-
tions can be obtained by maximizing over α ∈ [0, 1] the α-
Chernoff information defined as [63]

Cα(f0,k(Yc
l ), f1,k(Yc

l )) =

1

2
log
|αΣ0,k + (1− α)Σ1,k|
|Σ0,k|α|Σ1,k|1−α

+
α(1− α)

2
(µ0,k − µ1,k)T

× (αΣ0,k + (1− α)Σ1,k)−1(µ0,k − µ1,k).
(33)

By plugging in (31) and (33) the expressions of µj,k and Σj,k

and using (32) we obtain the desired result.

C. Proof of Proposition 2

Using the law of iterated expectation, the error probability
can be written as

Pe =
∑

j,k∈{0,1}

P (θc = θj , θ
c′ = θk)Pe|Hjk

, (34)

where

Pe|Hjk
=

∑
{j′,k′}6={j,k}

Pr(θ̂c = θj′ , θ̂
c′ = θk′ |θc = θj , θ

c = θk)

(35)
is the probability of error when hypothesis Hj,k holds, i.e.,
θc = θj and θc

′
= θk. Furthermore, defining the log-likelihood

Ljk(Ŷl)= max
j,k∈{0,1}

[
log fj,k(Ŷc

l )+log Pr(θc = θj , θ
c′ = θk)

]
,

(36)
we have

Pr[θ̂c = θj′ , θ̂
c′ = θk′ |θc = θj , θ

c′ = θk]

= Pr
[
Lj′k′(Ŷl) ≥ max

{j′′k′′}6={j′k′}
Lj′′k′′(Ŷl)|θc= θj , θ

c′= θk

]
≤ Pr

[
Lj′k′(Ŷ

c
l ) ≥ Ljk(Ŷc

l )|θc = θj , θ
c′ = θk

]
= Pr

[
log

fj′k′(Ŷ
c
l )

fjk(Ŷc
l )
≥ log

Pr(θc = θj , θ
c′ = θk)

Pr(θc = θj′ , θc
′ = θk′)

]
= e−LD(f?

j′k′ ||fjk)+O(L),
(37)

where the last equality follows from Sanov’s Theorem [50,
p. 362] with f?j′k′(Y) ∝ fλj′k′(Y)f1−λjk (Y) and λ chosen to
satisfy the equality

D(f?||fjk)−D(f?||fj′k′) = (1/L) log
Pr(θc = θj , θ

c′ = θk)

Pr(θc = θj′ , θc
′ = θk′)

.

(38)
For L → ∞, using (38) and the relation between KL
divergences and Chernoff information we obtain [50]

D(f?||fjk) = D(f?||fj′k′) = C(fj′k′ ||fjk) = C(fjk||fj′k′).
(39)

Finally using (35), (37) and (39), the probability of error (34)
can be bounded as

Pe ≤
∑

j,k∈{0,1}

Pr(θc = θj , θ
c′ = θk)

∑
j′k′ 6=j,k

e−LC(fj′k′ ||fjk)+o(L).

(40)
The proof is then concluded as for Proposition 1 by invoking
the CLT with random number of summands.

D. Proof of Theorem 1

To prove the limit in (24), we show that the limits
limσ2

G→∞Ec = 0 hold for c ∈ {1, 2}. To this end, we observe
from (19) that the first term in Ec tends to zero since, from
(18), its limit equals

lim
σ2
G→∞

M∑
m=1

log
( σ2

Gλp
c
k(m)

(σ2
Gλp

c
k(m))α+1−α

)
= 0. (41)
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A similar argument applies to the second term in (19), whose
limit equals

lim
σ2
G→∞

α(1− α)

2

M∑
m=1

(µc1,k(m)− µc2,k(m))2

σ2
Gλp

c
k(m)

= 0. (42)

Moving to the cloud’s error exponent Ecloud, we start by
characterizing the asymptotic behaviour of the quantization
noise when σ2

G →∞.
Lemma 2: The fronthaul quantization noise for any cell c ∈
{1, 2} satisfies the following limit

lim
σ2
G→∞

σ2
qc

σ2
G

= λ
1

2M2 . (43)

Proof: Using Lemma 1, we have the following approximation

MC =
1

2

M∑
m=1

log(∑1
j=0

∑1
k=0 Pr(θ1 = θ1j , θ

2 = θ2k)Σcj,k(m,m) + σ2
qc

(σ2
qc)M

)
.

≈ 1

2

M∑
m=1

log

(
σ2
Gλ(pc0(m) + pc1(m))

(σ2
qc)M

)
,

(44)
from which we can directly derive (43).

Using Lemma 2, the diagonal elements of each covariance
matrix Σj,k in (23) satisfy the limits

Σj,k(m,m)/σ2
G → λp1k(m) + λ

1
2M2 , for m = 1, . . . ,M

Σj,k(m,m)/σ2
G → λp2j (m) + λ

1
2M2 , for m =M+1,. . .,2M,

(45)
while the off-diagonal elements, being independent of σ2

G, are
unaffected by the limit. In order to prove that the limit of
Ecloud is positive, it is enough to show that the expression
being optimized in Ej,k as per (21) is strictly larger than 0 for
some α and any {j′, k′} 6= {j, k}. This follows because of the
positive semi-definiteness of matrix (αΣj,k+(1−α)Σj′,k′)

−1

and the following argument.
First, by (45), matrices Σj,k and Σj′,k′ are diagonally

dominant matrices when σ2
G →∞ and hence their determinant

tends to the product of their diagonal elements, Σj,k(m,m)
and Σj′,k′(m,m) respectively. More formally, we have

lim
σ2
G→∞

1

2
log
|αΣj,k + (1− α)Σj′,k′ |
|Σj,k|α|Σj′,k′ |1−α

=
1

2
log

(
M∏
m=1

αp1k(m) + (1− α)p1k′(m)

(p1k(m))α(p1k′(m))1−α

×
2M∏

m=M+1

αp2j (m) + (1− α)p2k′(m)

(p2j (m))α(p2j′(m))1−α

)
.

(46)

Second, each term in the products in (46) is of the form

αx+ (1− α)y

xαy1−α
(47)

with x = p1k(m) ∈ [0; 1] and y = p1k′(m) ∈ [0; 1].
Using the weighted arithmetic mean-geometric mean (AM-
GM) inequality [64, pp. 74–75], the expression (47) is larger
or equal to one with equality when x = y. However, given that
{j, k} 6= {j′, k′}, there exist at least one term in the products
in (46) that is strictly larger than one. This means that (46) is
strictly positive, which concludes the proof.
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