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Abstract: This paper proposes an enhanced finite control set model predictive control (FCS-MPC)
strategy for voltage source converter (VSC) with a LC output filter. The proposed control scheme
is based on tracking the voltage reference trajectory by using only a single-step prediction within
the controller horizon. Besides, the suitability of different frequency control schemes with the
proposed scheme to prevent from inherent variable switching behaviour of conventional FCS-MPC
is investigated. Based on that, the proposed method targets two major factors influencing power
quality in grid forming applications by enhancing the output voltage harmonic distortion and also
preventing variable switching behaviour of FCS-MPC. Although compared to multi-step prediction
approaches, only a single-step multi-objective cost function to improve computation efficiency is
utilized, the introduced control schemes are able to deliver higher power quality compared to
its counterpart methods as well. Furthermore, the effect of different applied cost functions on
the transient response of the system is studied and investigated for the future use of the VSC in
microgrids (MGs). The effectiveness of the proposed scheme was assessed by simulation using
MATLAB/SIMULINK and experiment using a 5.5 kVA VSC module and the results were in
good agreement.

Keywords: finite control set (FCS); grid-forming converters; model predictive control (MPC);
cost function (CF); power quality; microgrid (MG)

1. Introduction

The concept of microgrids (MGs) has received considerable attention owing to its potential
to serve as an alternative power source utilizing unconventional sources interfaced by the power
converters, or supplying power to the critical loads in the main grid in case of networks failure [1].
Furthermore, MGs are an agglomeration of distributed energy systems, working in low-voltage,
and provide heat or power or combined heat and power (CHP) to a particular area. MGs provide
a platform to maximize reliability, availability, efficiency, security, and economic performance and
can operate independently to isolate themselves from the main grid in case of faults. Based on the
power converters operation, which are vital parts of MGs, they are classified into grid-following,
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grid-forming, and grid-supporting power converters [2,3]. The concept of a grid-forming power
converter, as the main focus of this paper, is fundamental to the operation of a low-inertia power
system dominated by non-rotational generation [4]. In such scenarios, grid-forming converters provide
the frequency and voltage references for regulation purposes. Hence, they form the references for the
other distributed generations (DGs) [5]. Moreover, grid-forming converters can be used in different
cases such as parallel operation, grid-connected, and islanded modes, where grid-forming converters
are supplied by stable power sources such as batteries, fuel cell modules, and turbines, as shown in
Figure 1 [6]. Bearing in mind that connecting a large number of DGs to the grid will result in some
difficulties in controlling the MGs system and therefore may cause severe problems in power quality,
stability, reliability, and also security [7–9]. The negative impact generated by the agglomeration
of the DGs in the MG entity can be resolved throughout applying some aspects such as optimized
cooperation, advanced control strategies, and proper coordination [10]. In fact, providing a high
power quality by using the grid forming converters is a very challenging process. Therefore, advanced
control techniques have to be adopted in order to diminish the adverse effects caused by poor quality
originators. The conventional way of realizing voltage source converter (VSC) control structure in
the MGs is through hierarchical and organized linear control loops utilizing a pulse width modulator
(PWM). Cascaded linear structure inherently introduces a low-pass filtering behaviour of the overall
control system where the dominant time constant tends to rise by an order of magnitude with every
loop. Moreover, as the converters usually have an LC filter installed at the output, there exists a
dynamic coupling between the inductor current and capacitor voltage, which is cumbersome when
cancelling it out due to the presence of computational and PWM delays.
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Figure 1. (a) Schematic representation of an islanded microgrid; and (b) the electrical model of the VSC.

In this paper, finite control set model predictive control (FCS-MPC) is used to control a stand-alone
voltage source converter in order to form a voltage reference and regulate the frequency for the
future use in MGs as a grid-forming type. FCS-MPC has been discussed intensively in [11–16]
for grid-connected applications and [17–19] provide detailed discussions on the performance of
different FCS-MPC algorithms. To sum up the detailed discussion in the references mentioned
above, FCS-MPC enabled simplicity and ease of including the constraints and non-linearities, and it
has been proposed to be applied in many applications such as electrical drives and grid-connected
power electronic systems [20,21]. Mainly, these promising results were achieved because of the
general concept of FCS-MPC, which is based on the principle of using a discrete model of the power
converter with an associated filter to predict its future behaviour for all possible control inputs and,
consequently, apply the one that minimizes a programmed cost function (CF) at every sampling
time [17] (see Figure 2). The key idea is to use the raw processing power to embed all the inner control
loops within a single algorithm that takes into account the model of the converter and its associated
filter. This structure provides flexibility and inherent fast response and it has been addressed in [22,23]
with a focus on balancing the power in between two parallel converters. Usually, CFs based on one
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step prediction/short-horizon become problematic when controlling higher-order plants (as in the
case of a LC filter) due to the couplings between different state variables [24]. This problem has been
solved in this paper by giving respect for all orders in order to decouple each variable and control
it separately without a need for more computations compared to the computational burden in the
long-horizon method [25,26]. That was done by proposing a solution, which explicitly deals with the
dynamic coupling between the inductor current and capacitor voltage, allowing the usage of and one
step prediction/horizon for effective voltage control of the converter associated with the LC filter.
Besides, the conventional FCS-MPC has a problem of variable switching frequency [27], and this has
led to some difficulties in the LC filter design resulting in low converter performance due to the use of
an inappropriate filter. Thereby, high power losses are introduced by including an oversized filter [28].
Therefore, many research studies have been devoted to finding a feasible solution to obtain a fixed
switching operation and facilitate the filter selection process [29,30]. The paper is structured as follows:
the converter model and the proposed controller are described in Section 2. In Section 3, frequency
control approaches are explained in detail. In Section 4, the obtained results and remarks to them are
given. Finally, the summary of the work is described in Section 5. Novelty and contributions of this
research are briefly summarized as follows:

1. Propose a new term in the CF, resulting in less computation and higher power quality compared
to the traditional schemes.

2. Address the suitability of different frequency control strategies such as Simple Penalization (SP),
Notch filter (N), and Periodic control (P) combined with the new improved algorithm (IMPC).

3. Discusses the suitable size of LC filter that can be associated with the converter when the
above-mentioned frequency control strategies are used with IMPC and CMPC algorithms.

4. Address the proper selection of sampling time for all conventional (CMPC) and improved
(IMPC) algorithms.

5. Shed light on many aspects such as spectrum analysis, steady-state operation, transient operation,
power quality and factors tuning for eight different predictive schemes such as CMPC, IMPC,
SP-CMPC, SP-IMPC, N-CMPC, N-IMPC, P-CMPC, and P-IMPC.
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Figure 2. Power circuit and FCS-MPC control structure of a standalone inverter for
microgrid applications.
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2. Converter Model and System Description

2.1. Converter Model

Figure 2 shows the circuit schematic of a two-level three-phase VSC. The power switches in each
leg operate in a complementary mode. The switching states can be represented by the switching
signals Ska, Skb, and Skc, which are defined as follows:

Ska =

{
1 if S1 on and S4 off
0 if S1 off and S4 on

(1)

Skb =

{
1 if S2 on and S5 off
0 if S2 off and S5 on

(2)

Skc =

{
1 if S3 on and S6 off
0 if S3 off and S6 on

(3)

The filter inductance equation can be expressed in the vectorial form as:

L f
diL f

dt
= Vi − Vc f (4)

where L f is the filter inductance (La, Lb, Lc). The equation that describes the dynamic behaviour of the
output voltage can be expressed mathematically as:

C f
dVc f

dt
= iL f − io (5)

where C f is the filter capacitance (Ca, Cb, Cc). These equations can be rewritten in the state
space model as:

dx
dt

= Ax + BVi + B2io (6)

where,

x =

[
iL f

Vc f

]
(7)

A =

[
−R f /L f −1/L f

1/C f 0

]
(8)

B =

[
1/L f

0

]
(9)

B2 =

[
0

−1/C f

]
(10)

where iL f and Vc f are the filter current and voltage respectively. io is the load current, which can be
estimated or measured. In this paper, io, iL f , and Vc f are measured and transformed to the alfa-beta
reference frame within the state space model. Vi is the inverter voltage of the system, and it has eight
different voltage vectors, as shown in Figure 3. More details for the state-space model derivation
and discretization method are presented in [31]. A discrete model is obtained from (6), and it can be
expressed as follows:

x
(

k + 1
)
= Aqx

(
k
)
+ Bqvi

(
k
)
+ Bdqio

(
k
)

(11)

where,
Aq = expATs (12)
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Bq =
∫ Ts

0
expAτ Bdτ (13)

Bdq =
∫ Ts

0
expAτ Bddτ (14)

where Ts is the sampling time. This model is used to predict the filter voltages and currents for every
possible input voltage. The selection of the optimal input voltage depends on the CF. In the next
subsections, the conventional FCS-MPC algorithm and the proposed one will be discussed.
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V0,7
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Figure 3. Voltage vectors generated by the inverter (Vi).

2.2. Conventional FCS-MPC Scheme for Voltage Regulation

Figure 2 shows a block diagram of a three-phase VSC based on a FCS-MPC algorithm. In its
basic form, the algorithm is executed sequentially, and at the beginning of each sample, it applies the
switching configuration, which is calculated in the previous calculation step. Then, it receives the
measurements and selects the new switching configurations accordingly and apply them at the next
instant. The following CF is implemented in a stationary reference frame (α − β):

g = (V∗
re fα

− Vp
c f α

(k + 1))2 + (V∗
re fβ

− Vp
c f β

(k + 1))2 (15)

where g is the CF, V∗
re fα

and V∗
re fβ

are the real and imaginary components of voltage reference signals

in the stationary reference frame, while Vp
c f α

(k + 1) and Vp
c f β

(k + 1) are the predicted components
for each possible switch configuration. The conventional CF, as in Equation (15), uses a regulation
strategy, which results in a minimal magnitude error at the next sampling instance. In first order plants,
the variable of interest is directly regulated by the control input, allowing an instantaneous change
of its derivative at a particular sampling instance. Hence, looking further than one prediction step
ahead is optimal only for the first order plants [25]. For second order plants, capacitor voltage in the
LC filter configuration is regulated indirectly through the inductor current. As the respective current
cannot change its value instantaneously, the capacitor cannot change its derivative instantaneously.
Therefore, no respect is given to the capacitor voltage derivative, which determines the heading of
its trajectory. There are two possibilities to improve the power quality of the discussed configuration.
Firstly, by applying a two-step or three-step prediction strategy, but using this approach makes the
computations too intensive for practical applications. The other possibility evaluates for one prediction
step by assuming that the same configuration will be kept for the next two periods (k + 2) in advance.
This approach requires a highly accurate model of the system and it does not consider the capacitor
voltage trajectory during inter-sampling periods [18,19].
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2.3. Proposed FCS-MPC Scheme

Using the voltage reference track as the only objective in the grid-forming converter is inadequate
with a second order plant. Therefore, in order to improve the capacitor voltage quality, an improved
CF is discussed here. As discussed in the previous subsection, the inability to control the derivative of
capacitor voltage is a fundamental cause of high THDv. Therefore, the ideal regulator should track
both the voltage reference and its derivative simultaneously, which can be included as two signals
treated as two separate references as follows:

V∗
c f
(t) = V∗

re f sin(ωre f t) + jV∗
re f cos(ωre f t) (16)

where V∗
re f and ωre f are the amplitude and frequency of the reference signal, respectively. The voltage

derivative reference is obtained as follows:

dV∗
c f
(t)

dt
= ωre f V∗

re f cos(ωre f t)− jωre f V∗
re f sin(ωre f t) (17)

Tracking of V∗
c f
(t) is already accomplished by the presented CF in Equation (15). Therefore,

what remains is to design a CF, which ensures that dVc(t)
dt tracks dV∗

c (t)
dt . In order to ensure that

the voltage derivative tracks the reference, the predicted value is needed and can be taken from the
predicted currents, which are calculated directly from the discrete model of the converter:

dVc f (t)

dt
=

iLα(t)− ioα(t)
C f

+ j
iLβ(t)− ioβ(t)

C f
(18)

It can be seen that the voltage derivative trajectory will be well tracked if the respective differences
between the first and second term from Equations (17) and (18) are minimized. These equations are
explicitly formulated as the following CF:

gI = (I f α(k + 1)− Ioα(k) + C f ωre f (V∗
re f β(k)))

2 + (I f β(k + 1)− Ioβ(k) + C f ωre f (V∗
re f α(k)))

2 (19)

The term gI can now be added to the conventional CF in Equation (20), and the weight λd controls
its effect:

g = (V∗
re fα

− Vp
c f α

(k + 1))2 + (V∗
re fβ

− Vp
c f β

(k + 1))2 + (λd ∗ gI) (20)

As introduced in this paper, another contribution is to find out the suitability of the frequency
control techniques with both conventional and improved CFs. Therefore, in the next section,
three different frequency control techniques such as, simple penalization (SP) control, Notch (N)
control and Periodic (P) control will be discussed and redesigned in order to be incorporated with the
improved and conventional CFs as well.

3. Frequency Control

The FCS-MPC algorithm decides the optimal states to minimize the voltage error, that is given
in every sample, but it leads to random commutations, resulting in no control over the switching
frequency for any time span. This may lead to introduce some losses, electromagnetic interference,
resonances, and unbalanced stresses on the switches. In order to control the switching frequency
through a single CF using the FCS-MPC, the algorithm should comply with some requirements such as
reference tracking, computation time, simplicity, and flexibility. In the same time, all objectives should
be regulated without hindering each other. In the case of initiating frequency control, it is important to
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have controllable objectives, which could be equal or unequal, in term of importance, to the proposed
derivative term in order to achieve good power quality. That can be done by designing the weighting
factors of each objective in the whole CF. Thus, in the discussed FCS-MPC strategy here, the CF should
regulate the switching frequency, not at the expense of the other objectives or at least with a minimum
impact. Thereby, if a control objective overwhelms the others, the controller will only care about
minimizing the considered objective, fading the other objectives or making them less important. In this
context, a detailed explanation for the improved CFs using different frequency control techniques of
simple penalization (SP), Notch (N) and Periodic (P) will be given in the next subsections.

In this paper, the improvement is based on tracking the capacitor current, and including it in
the main CF as a secondary objective in order to control its importance by a factor λd. Accordingly,
the predictive schemes in Equations (27)–(29), should guarantee the optimum operation without
introducing any conflicts between the other objectives which is leading to a degradation in the controller
performance. The controllers damping ability, derivative term, has been tested at 2 kHz, which is the
concentrated switching frequency, and that is relatively higher than the resonance frequency. The idea
is to test all kind of studied CFs at the same conditions. Furthermore, the physical filter values LC,
as introduced in Table 1, were available in the laboratory for experimental validations.

Table 1. Filter design parameters for the simulation and experimental setup.

Parameter 5.5 kVA System (Experimental) System Model (Simulation)

S 5.5 kVA 5.5 kVA
Vo 230 230
Vdc 600 600
∆ I 10% 10%
Qc <5%S <5%S
fg 50 Hz 50 Hz

ZRd XC f (ωr) XC f (ωr)
fres 10 fs< fr<1/2 fs 10 fs< fr<1/2 fs

fs 40 kHz

-40 kHz in order to com-
apare with the experimental (Ts = 25 µs)

-80 kHz in order to show
the sampling effects (Ts = 12.5 µs)

L f 5 mH
-For 80 kHz = 2.5 mH
-For 40 kHz = 5 mH

C f 60 µF
-For 80 kHz = 20 µF
-For 40 kHz = 60 µF

3.1. Simple Penalization

A basic strategy to regulate the switching frequency is to penalize the act of commutation,
which can be controlled by the λsw and yield to :

∆Sk = λsw(Sk − Sk−1)
2 (21)

When adding Equation (21), which illustrates the simple penalization frequency control technique
(SP) to the conventional or improved CFs, the switching frequency is controlled. In case the voltage or
its derivative has a large error, its corresponding value in the cost function would be large enough
to overcome the penalization during the switching. Thus, strong importance should be given to
the penalization term by setting the value of λsw high, then the commutation of the last step will be
maintained to provide switching’s reduction. Figure 4 shows the relative importance of the penalization
term with the voltage tracking term. This strategy leads to a lower average frequency and higher
voltage error, as shown in Figure 5. Considering that the spectrum will still spread in a wide band
range and concentrated more to the lower frequencies. Later on, in the results and discussion section,
the weighting factor design for both SP-CMPC and SP-IMPC will be discussed.
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Figure 5. Simulation result for the (SP-CMPC): instantaneous voltage error during sweeping the
weighting factor λsw in the same manner as the above figure using the CF in Equation (21) with the
conventional tracking system.

3.2. Notch Filter

The aforementioned strategy focuses on the reduction of the switching while this strategy aims
to concentrate the voltage spectrum around the desired frequency by utilizing a digital notch filter.
Generally, notch filters are shaping the spectrum at certain frequencies, where they need different
weight values, to allow control of harmonics. The notch filter is designed for the IMPC scheme in order
to control the switching frequency of the grid-forming converter. The implementation of the notch
filter is done using the discrete-time domain. Therefore, the CF can be modified as:

gm1 = λnFn(g) (22)

where λn is the weighting factor and Fn is the second-order band-stop filter. A Tustin discretization of
the notch filter is considered in the filter design. Similarly, the derivative term gI in Equation (19) can
be modified as:

gm2 = λnFn(gI) (23)

The implemented notch filter in this paper, which has a frequency concentration at 2 kHz is
illustrated in Equation (24):

H2kH =
0.9849z2 − 1.875z + 0.9849

z2 − 1.875z + 0.9698
(24)

Notably, changing the filter bandwidth gives a different spreading range around the desired
frequency. Similarly to the SP controller, the weighting factor design for both N-CMPC and N-IMPC
will be discussed in the results and discussion section.
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3.3. Periodic Control

The periodic control strategy focuses on fixing the time it takes for two consecutive similar
commutations [32]. It means that any two ups or downs, same direction, form a similar commutation.
The objective is to control the Tup and Tdown. The key idea is to achieve a modulation behaviour similar
to the PWM pattern.

In periodic control, the switching frequency is compared with a reference time Tr, which is used
for both up and down events in order to achieve the desired performance by applying the states,
which are minimizing the error. The cost function, which is given in Equation (25) shows how the up
and down events can be evaluated in order to regulate the switching frequency as follows:

gp = λp((Tup − Tr)
2 + (Tdown − Tr)

2) (25)

where it can be rewritten as the following in the discrete form:

gp = λp((Kup − Kr)
2T2

s + (Kdown − Kr)
2T2

s ). (26)

The algorithm predicts the state of Kup =
Tup
Ts

and Kdown = Tdown
Ts

for all possible states, which are

eight states in the case of the VSC. It is worth to mention that Kr = fs
fr

is the reference frequency
that is given to the MPC controller to reshape the spectrum around the frequency of interest and its
multiples. The factor λp is used to mitigate the deviation as long as the stability of the overall system is
preserved. The complete CFs of the conventional (P-CMPC) and improved (P-IMPC) periodic schemes
are calculated in Equation (29).

gs =

SP−IMPC︷ ︸︸ ︷
SP−CMPC︷ ︸︸ ︷

g + λsw(Sk − Sk−1)
2 +gI (27)

gn =

N−IMPC︷ ︸︸ ︷
N−CMPC︷ ︸︸ ︷

g + λnFn(Vre f − Vc f )
2 +gI + λnFn(gI) (28)

gp =

P−IMPC︷ ︸︸ ︷
P−CMPC︷ ︸︸ ︷

g + λp((Kup − Kr)
2T2

s + (Kdown − Kr)
2T2

s ) +gI (29)

4. Results and Discussion

All discussed predictive control algorithms were implemented using the dSpace with DS 1007
power dual-core 2 GHz processor board. A flow chart showing the implementation steps of all
algorithms can be found in Figure 6. The maximum achieved turn around time was around 22 µs.
It should be noted that 9 µs was introduced by the auxiliary tasks (A/D conversion). In order to
reduce the time taken by the A/D, an observer could be used to estimate the load current instead of
measuring it. Since the dSpace A/D samples at a rate of 1 MS/s, that will save 3 µs from the total
needed time. Moreover, the computational delay of exact Ts is compensated as discussed in [33].
The overall parameter of the test setup and simulation model can be seen in Table 1, and the setup
is shown in Figure 7. Due to the setup limitation, both the simulation model and the setup have
been operating at a 40 kHz sampling frequency. In order to illustrate the effect of different samplings,
simulation results, in which the sampling is 80 kHz, are provided. FCS-MPCs based on the periodic,
notch, penalization control algorithms have been verified experimentally, where a 5.5 kW rated power
system has been built for that purpose. The power stage comprises a delta-star transformer to provide
the DC-link voltage through an input filter to a rectifier. A two-level three-phase VSC (Danfoss type),
the LC filter on the converter side, is loaded with a linear load. It should be noted that the Danfoss
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VSC contains electrolytic DC-link capacitor. In this work, the LC filter design was based on choosing
low resonance frequency, as shown in Figure 8, to verify and make the FCS-MPC algorithms feasible
for the study. As future work, each algorithm should have its optimized filter design, which will be
briefly summarized later in the end of this paper.

io Vcf iLf

Transformations to αβ 

reference frame

Delay compensation 

ip,Vp

Eq (27)  SP-MPC or

SP-IMPC  Eq (28) N-

MPC or N-IMPC Eq (29) 

P-MPC or P-IMPC

j>8 j=j+1

gopt = min[gj]

Sk+1 = Sopt

Sk+1 Sk

Initialize j to j=1

Predictions

Cost function

Optimization

Electrical measurements in abc 

reference frame

No

Yes

Figure 6. Flowchart of the implemented algorithms using dSpace.
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Figure 7. Experimental setup.

Lf

Cf

R= 0.4 Ω
L = 5 mH
C = 60 μF
Damping ratio (ξ)=  7.7000e-06
Cut-off frequency (fc) = 290 Hz
Quality factor (Q) = 22.82

Resonance has a peak of 27 dB

Figure 8. A bode plot shows the frequency response of the LC, which is used in the experimental setup.

4.1. Spectrum Analysis

The spectrum analysis is shown in this work in order to validate the functionality of the proposed
FCS-MPC algorithms, where several points have been observed during the tests as follows:

� In Figure 9, the switching frequency fixed behaviour is obtained successfully by the periodic
control technique. In case of having no control over the switching frequency, both conventional
and improved FCS-MPC have high switching fluctuations. Thus, the output voltage and current
harmonics are spread to a wide range of frequencies, as shown in Figure 10.

� Figure 11 shows the output current spectrum on phase (a) following a reference frequency of
2 kHz using P-CMPC strategy. Here, it can be seen clearly that the output spectrum presents
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a similar behaviour as the one achieved with using a modulator. In Figure 12, P-IMPC has a
magnitude’s reduction in the output spectrum, which is resulting in a higher power quality than
the P-CMPC as it is shown in the time between 0.26 s and 0.36 s.

� A series of tests were performed on all algorithms to compare the spectrum performance of
each method using the experimental setup. That can be verified in Figures 13 and 14. It can
be concluded from the figures that N-IMPC and N-CMPC have higher spectrum magnitude
than the P-CMPC and P-IMPC. It can be seen also that it is difficult to keep the spectrum
magnitude at the desired frequency in case of using SP-IMPC. Bearing in mind that the SP-CMPC
can not be operating at exactly 2 kHz. All these findings make P-IMPC the best algorithm,
among the discussed ones in this paper, in terms of fixed switching frequency while providing
high power quality. In addition, it is easy to obtain the reference switching frequency and
follow it accurately. Table 2 summarizes the THDv for each method utilizing the same LC filter
design. It can be concluded that periodic control has a better THDv in both the conventional and
improved FCS-MPC.

� Figure 15 shows the measured switching frequency in cases where using the P-CMPC and P-IMPC
as discussed in Equation (29). It depicts that in P-IMPC, the deviation from the reference is a little
higher compared to the conventional P-CMPC, and the reason is that the weighting factors for
both tests, in this case, were kept constant. That was to illustrate the effect of using the same
weighting factors for both algorithms.

� Figure 16a,b show two important aspects. Firstly, they show how the periodic control strategy
follows the different references resulting in a fixed switching frequency. Secondly, they show the
effect of samplings, which indicates that P-CMPC and P-IMPC are using high sampling frequency
to give better fixed switching frequency performance.
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Figure 9. Different frequency concentrations using periodic control with conventional CMPC.
(a) P-CMPC at 1 kHz; (b) P-CMPC at 2 kHz; and (c) P-CMPC at 4 kHz.
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Figure 10. The spectrum of the conventional CF (CMPC).
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Figure 11. Experimental results of output load current (phase a) with its corresponding spectrum
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Figure 13. Obtained experimental spectrum results using three different frequency control
methodologies with improved CF (IMPC). (a) Notch control; (b) periodic control; and (c) simple
penalization control.
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Figure 14. Obtained experimental spectrum results using three different frequency control
methodologies with conventional CF (CMPC). (a) Notch control; (b) periodic control; and (c) simple
penalization control.
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Figure 16. The effectiveness of periodic control at different reference frequencies using two sampling
values. (a) 80 kHz sampling; and (b) 40 kHz sampling. (a) The switching frequency measurements for
different references Kr; (b) The switching frequency measurements for different references Kr.

4.2. Dynamic Response

All FCS-MPC algorithms were discussed in this work have been tested in order to observe the
dynamic operation in case of load changes. A power change of more than 30% of the total power has
occurred suddenly in order to test all controllers. As shown in Figure 17, it can be seen that αβ currents
using SP-IMPC, N-IMPC, and P-IMPC still responded to the instant load changes exactly the same
as the IMPC. One reason behind this is the accurate design of each CF, which guarantees no conflicts
between the several objectives in one CF. Furthermore, Figures 18 and 19 show the power deviation
of conventional and improved CFs with/without including the frequency control terms. Due to the
ability of the IMPC to better regulate the voltage and current quantities, the power deviation in case of
using frequency control terms with IMPC shows promising results.

Finally, it has to be noticed that a proper low-pass filter and correct weight factors design are
crucial to preserve the dynamic properties of the proposed algorithms and obtain the best possible
power quality.
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Figure 17. Obtained experimental results for the dynamic response of the VSC using the proposed CFs,
load step from 270 W to 1900 W, where (a) is the dynamic response for (N-IMPC) strategy, (b) periodic
(P-IMPC), (c) simple penalization (SP-IMPC), and (d) without frequency control (IMPC).
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Figure 18. Dynamic response of active power using frequency control methodologies with the
conventional CF (CMPC). (a) Notch filter control using the conventional CF (N-CMPC) ; (b) periodic
control using the conventional CF (P-CMPC); (c) simple penalization control using the conventional
CF (SP-CMPC); and (d) conventional CF (CMPC).
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Figure 19. Dynamic response of active power using frequency control methodologies with improved
CF (IMPC). (a) Notch filter control using the improved CF (N-IMPC), where the power deviation is
less than the conventional CF (N-CMPC) with 1.47 % average; (b) periodic control using the improved
CF (P-IMPC), where the power deviation is less than the conventional (P-CMPC) with 5.36 % average;
(c) simple penalization control using the improved CF (SP-IMPC), where the power deviation is less
than the conventional CF (SP-CMPC) with 1.39 % average; and (d) improved (IMPC).

4.3. Sampling Effect

As the sampling time (Ts) decreases, the rejection of disturbances usually improves. However,
when (Ts) becomes too small, the computational effort increases dramatically. Therefore, the optimal
choice is a balance of computational burden and power quality. Figure 20a,b show two points; initially,
they confirm that the frequency control algorithms are significantly influenced by sampling time
values. Secondly, they show how samplings affect the dynamic changes when a load step is applied.
The presented results show the behaviour of the predictive control implemented using periodic
control for the grid forming application. It can be seen that the deviation in the case of 40 kHz
sampling is high and varies between 4 kHz and 4.5 kHz, while in the 80 kHz the variance is between
4 kHz and 4.15 kHz.

4.4. Steady-State Operation

For the steady-state performance evaluation, all FCS-MPC algorithms were discussed in this
work have been observed during the steady-state operation. Apparently and during the tests stage,
all algorithms showed very good performance in terms of controller stability. However, N-CMPC
requires more computation time, which introduces some difficulties in the implementation. On the
other hand, the power qualites of N-IMPC, SP-IMPC, and P-IMPC have a significant improvement
compared to N-CMPC, SP-CMPC, and P-CMPC. The P-IMPC has around 5% reduction in the active
power fluctuation comparing to the P-CMPC, which is a significant outcome compared to the N-IMPC
and SP-IMPC. Bearing in mind that the steady-state performance of all algorithms can be observed
also in Figures 11, 12, 17 and 20.
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Figure 20. Sampling effect: a comparison between the switching frequency and currents response of
the 40 kHz and 80 kHz samplings. (a) A step response from 2.2 kW to 5.2 kW when Ts = 25 µs; and
(b) a step response from 2.2 kW to 5.2 kW when Ts = 12.5 µs. (a) Experimental results: the dynamic
response for a VSC using a periodic control strategy having a 40 kHz sampling; (b) Simulated dynamic
response for VSC using periodic control strategy having an 80 kHz sampling frequency.

4.5. Factor weights

Three optimization criteria have been employed in this paper in order to choose the best factor
values and maintain system stability. Mainly, the tuning process was based on the relative importance
between the objectives and in this work, the tuning processes of P-CMPC and P-IMPC schemes
are shown as an example. Normally, there are no specific guidelines to determine the exact tuning
factors of any multi-objective function. In this paper, the relative importance between objectives was
determined by defining the priority of each objective. As shown in Figure 21, different tuning of
P-IMPC gives somehow a reduced switching frequency until the fixed switching behaviour is reached
at 0.8 s and at 1 s for P-CMPC. The importance which is given to the periodic objective determines
how the output performance is, in terms of the fixed switching frequency. It worth to mention that
power quality is greatly maintained. Figure 22 demonstrates the performance of P-CMPC and P-IMPC
during the selection of weighting factors for all three cases, which are defined in Table 2. It can be seen
that both equal and higher importance criterion give very good results in terms of switching frequency
and THDv for P-IMPC. In the end, Table 3 summarizes the characteristics of all eight algorithms to
have an overview of their features. The Table includes THDv, stability assessment, implementation,
computational burden, and switching behaviour.
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Figure 21. Weighting factors drifting based on the relative importance: average switching frequency
and THDv of the Vα for the three criteria; (black line) the derivative term is higher importance than the
periodic term; (red line) the derivative term is lower importance than the periodic term; and (grey line)
the derivative term is equal importance to the periodic term. (a) Average switching frequency for the
three criteria; and (b) THDv of Vα for the three criteria.

Table 2. Relative Importance between Objectives

Relative Importanace Frequency Control Methods Improved MPC (IMPC)

Case I High importance Low importance
Case II Equal importance Equal importance
Case III Low importance High importance
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Figure 22. Measured switching frequencies and THDv for the three criteria at 1 kW (a) the drift of the
weights, where the derivative weighting factor λd is equal to the periodic weighting factor λp; (b) the
drift of the weights, where the derivative weighting factor λd is lower than the periodic weighting
factor λp; and (c) the drift of the weights, where the derivative weighting factor λd is higher than
the periodic weighting factor λp. (a) Equal importance case; (b) Lower importance case; (c) Higher
importance case.
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Table 3. Characteristics of the implemented conventional and proposed MPC schemes.

CMPC without
Frequency Control

IMPC without
Frequency Control

CMPC +
SP-Control

IMPC + SP-Control CMPC +
Notch Control

IMPC +
Notch Control

CMPC +
Periodic Control

IMPC +
Periodic Control

THDv Low Low High Low High Low High Low

Stability Stable Stable Stable Stable
Stable at high
frequencies Stable Stable Stable

Switching frequency Variable Variable Reduced-
variable

Reduced-
variable Variable Variable Fixed Fixed

Implementation
Intuitive
very easy

Intuitive
very easy

Intuitive
very easy

Intuitive
very easy

Intuitive
easy

Intuitive
easy

Intuitive
easy

Intuitive
easy

Computational burden 1.056225 s 1.0583 s 1.0672 s 1.0694 s 1.1788 s 1.1812 s 1.0775 s 1.0859 s

Weighting factors No Factors λd λsw λd, λsw λn λd, λn λp λd, λp

Transient
Excellent
0.0035 s

Excellent
0.0030 s

Excellent
0.042 s

Excellent
0.037 s

Excellent
0.059 s

Excellent
0.052 s

Excellent
0.040 s

Excellent
0.035 s

Output THDv 0.7% 0.3% 7.52% 2.62% 5.67% 4.14% 5.51% 3.11%

Current error 0.159% 0.07% 3.90% 1.35% 2.23% 1.51% 2.62% 0.23%

Sampling time (Ts) 40 kHz 40 kHz 40 kHz 40 kHz 40 kHz 40 kHz 40 kHz 40 kHz

Switching frequency Avg ≈ 12 kHz Avg ≈ 11.5 kHz Desired frequency +
large error ≈ 2 kHz

Desired frequency +
large error ≈ 2 kHz

Desired frequency +
large error ≈ 2 kHz

Desired frequency +
large error ≈ 2 kHz

Desired frequency +
small error ≈ 2 kHz

Desired frequency +
small error ≈ 2 kHz

Output filter size

L = 5 mH
C = 60 µF

can be optimized to
L = 2.3 mH,
C = 25 µF

L = 5 mH
C = 60 µF

can be optimized to
L = 2.3 mH,
C = 15 µF

L = 5 mH
C = 60 µF

L = 5 mH
C = 60 µF

L = 5 mH
C = 60 µF

L = 5 mH
C = 60 µF

L = 3 mH
C = 60 µF

can be optimized to
L = 3 mH,
C = 40 µF

L = 5 mH
C = 60 µF

can be optimized to
L = 3 mH,
C = 40 µF
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5. Conclusions

In this work, a proposal of an improved FCS-MPC is presented, and the suitability of three
different frequency control approaches has been investigated. The frequency control algorithms with
the improved scheme introduced new FCS-MPC regulators for grid forming converters. The primary
objective of the CF is to predict the voltage, while the secondary objective is to improve the power
quality for enhancement purposes. In order to have similar characteristics as the conventional linear
controllers, FCS-MPC should control the switching frequency and reshape the spectrum at desired
values. One advantage is to reduce the losses by reducing the average switching frequency, where
the new CFs do not introduce a high computational burden. Another advantage is to control system,
which uses only one-step prediction. In this respect, the steady-state performance of the system
becomes comparable with some recent proposed FCS-MPCs, which achieve good power quality using
longer horizon or multi-step prediction. Besides, this work has shown that the frequency can be
concentrated, while the feature of the fast dynamic response is retained. Some challenges have been
solved during this work-study, and there were as follows:

� Weight factors tuning, which affects the performance of the power converter. This challenge
solved by defining the importance of each objective in multi-objective CF.

� Another challenge was to include the most suitable frequency control objectives without
using a modulator and send the optimized actuation based on the error evaluated by the CF.
This challenge has been solved by investigating the performance of each frequency control scheme
combined with the improved FCS-MPC.

� High-frequency sampling, which is solved by concentrating the switching frequency at a relatively
lower frequency. That allowed the standard setups to handling this kind of controllers.

In the end, this work showed that the proposed derivative, FCS-MPC based scheme could improve
any approach introduced so far for controlling the switching frequency. Periodic control achieved
promising results in terms of power quality and fixed switching behaviour. Moreover, periodic control
has a simple and easy implementation for further consideration in the grid-forming applications.
The proposed cost function is applicable for complicated systems such as the matrix or neutral point
clamped converters. The idea behind using VSC is to simply illustrate the new schemes and verify
the frequency control methods and providing some comparisons. As future work, researchers are
seeking new techniques to eliminate the weighting factors or using intelligent technologies in order to
calculate the weighting factors online resulting in much more flexibility.
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Nomenclature

FCS Finite control set
MPC Model predictive control
CMPC Conventional model predictive control
CHP Combined heat and power
CF Cost function
SP Simple penalization
N Notch control
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IMPC Improved model predictive control
P Periodic control
THDv Total harmonics distortion voltage
λp Periodic weighting factor
LC Inductor and capacitor filter
Ts Sampling time
Vc f Capacitor voltage
io Inductor current
λn Notch weighting factor
λsw Simple penalization weighting factor
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