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Sensitivity and specificity 
of blood‑fluid levels for oral 
anticoagulant‑associated 
intracerebral haemorrhage
Abeer Almarzouki1,2, Duncan Wilson2, Gareth Ambler3, Clare Shakeshaft2, Hannah Cohen4, 
Tarek Yousry5, Rustam Al‑Shahi Salman6, Gregory Y. H. Lip7,8, Henry Houlden10, 
Martin M. Brown2, Keith W. Muir9, Hans Rolf Jäger5 & David J. Werring2*

Intracerebral haemorrhage (ICH) is a life‑threatening emergency, the incidence of which has increased 
in part due to an increase in the use of oral anticoagulants. A blood‑fluid level within the haematoma, 
as revealed by computed tomography (CT), has been suggested as a marker for oral anticoagulant‑
associated ICH (OAC‑ICH), but the diagnostic specificity and prognostic value of this finding remains 
unclear. In 855 patients with CT‑confirmed acute ICH scanned within 48 h of symptom onset, we 
investigated the sensitivity and specificity of the presence of a CT‑defined blood‑fluid level (rated 
blinded to anticoagulant status) for identifying concomitant anticoagulant use. We also investigated 
the association of the presence of a blood‑fluid level with six‑month case fatality. Eighteen patients 
(2.1%) had a blood‑fluid level identified on CT; of those with a blood‑fluid level, 15 (83.3%) were taking 
anticoagulants. The specificity of blood‑fluid level for OAC‑ICH was 99.4%; the sensitivity was 4.2%. 
We could not detect an association between the presence of a blood‑fluid level and an increased risk 
of death at six months (OR = 1.21, 95% CI 0.28–3.88, p = 0.769). The presence of a blood‑fluid level 
should alert clinicians to the possibility of OAC‑ICH, but absence of a blood‑fluid level is not useful in 
excluding OAC‑ICH.

Oral anticoagulant-associated intracerebral hemorrhage (OAC-ICH) is a devastating  disease1, with a reported 
90-day case fatality of 42%2–4. The incidence of OAC-ICH is growing substantially, with increased use of anti-
coagulant  therapy5. 5–12% of ICH is related to  OAC6, and is expected to increase with an ageing population 
increasingly exposed to oral  anticoagulants7. The risk of haematoma growth after OAC-ICH is as high as 54%8. 
Rapid identification of patients with OAC-ICH is important to allow rapid coagulation reversal, strict blood 
pressure management and transfer to a higher dependency  unit9.

The identification of patients with OAC-ICH can be challenging, for example, when patients cannot com-
municate and there is no clear history from an informant. Computerized tomography (CT) remains the initial 
neuroimaging tool of choice for identification of acute  ICH10. The presence of a blood-fluid level has been 
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suggested as a marker for OAC-ICH11,12, but with the exception of one study (a sub-study of INTERACT-2) 
most published studies are case reports or were done on small  samples11–15. In a study of 2065 patients from the 
INTERACT-2 study, blood-fluid levels on baseline CT (found in 19 patients in the sample) were associated with 
the use of warfarin as well as poor outcome 90 days after  ICH16.

In this study, we aimed to determine the prevalence, sensitivity and specificity of blood-fluid levels as a marker 
for OAC-ICH and its prognostic significance in a large multicentre prospective cohort of patients with ICH.

Methods
Participants. We included participants with CT-confirmed acute ICH (scanned within 48 h of symptom 
onset) recruited in the observational Clinical Relevance of Microbleeds in Stroke Study (CROMIS-2) conducted 
at 79 hospitals throughout the UK (and one in the Netherlands) between 2012 and 2015. The protocol has been 
published  elsewhere17. Briefly, patients were eligible if they were 18 years or older and had a spontaneous ICH 
not secondary to major trauma or a macrovascular cause, as previously  described18.

The CROMIS-2 study was approved by the UK National Health Service Research Ethics Committee and 
was carried out in accordance with the Declaration of Helsinki. Patients with capacity gave informed written 
consent. When patients could not consent, it was obtained in written form from a proxy (as defined by relevant 
local legislation).

Imaging. CT imaging was performed within 48 h of ICH onset in all patients. Digital CT images were col-
lected in uncompressed Digital Imaging and Communication in Medicine (DICOM) format and analysed cen-
trally. CT scans were examined for the presence of a blood-fluid level by two researchers (blind to anticoagulant 
status and clinical outcome). The raters were a neuroscience graduate student (A.A.) and a vascular neurologist 
(D.W.) with experience in neuroimaging research—A.A. performed the initial ratings, which were then checked 
and discussed with D.W.. As described  previously11, a blood-fluid level was defined according to the following 
features: (1) upper compartment hypodense to the brain, (2) lower compartment hyperdense to the brain and 
(3) a sharply defined horizontal interface between the upper and lower compartments (Fig. 1). ICH location was 
classified as infratentorial, deep, or lobar (cortical or cortical–subcortical) using a validated rating  instrument19.

Baseline and follow up data. Data collected at baseline included age, sex, ethnicity, pre-morbid function 
assessed by the modified Rankin scale, clinical information, history of comorbidities (e.g., hypertension, atrial 
fibrillation), history of previous ischaemic stroke, ICH or TIA), and use of antithrombotic drugs prior to ICH. 
We recorded examination findings on admission, systolic and diastolic blood pressure, Glasgow coma scale 
score, the international normalized ratio (INR), and the use of surgical intervention. Mortality was assessed at 
six months post-ICH using information provided by the National Health Service digital data (Health and Social 
Care Information Centre)17.

Statistical analyses. We performed statistical analyses using SPSS version 24 and R version 3.4.3. We visu-
ally inspected the distribution of the data using histograms for continuous variables. We analysed data that were 
not normally distributed using appropriate non-parametric tests. The results of this study were expressed as 

Figure 1.  Typical blood-fluid level on an acute CT scan of a patient with an intracerebral hemorrhage in the left 
parietal lobe.
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median and interquartile range (IQR) for continuous variables and as numbers and percentages (%) for cat-
egorical variables. We divided the sample into a blood-fluid level group and a non-blood-fluid level group. We 
tested the differences between the two groups using independent-sample Mann–Whitney U tests for continuous 
variables, while Fisher’s exact test was used for categorical variables. The assumptions of these tests were checked 
and the corresponding effect sizes are reported. The effect sizes used were r for the Mann–Whitney U test (the 
Z-value divided by the square root of the total number of observations)20 and the odds ratio for the chi-squared 
test.

We calculated the sensitivity, specificity, and positive and negative predictive values of fluid level for antico-
agulation (as well as their 95% confidence intervals; 95% CI). We tested the association between the anticoagulant 
status and CT-defined blood-fluid level using a chi-squared test. The association between the presence of a blood-
fluid level and various clinical and imaging parameters was assessed using logistic regression. The association 
between blood-fluid level and six-month mortality was assessed using logistic regression with adjustment for 
prespecified clinically important variables known to be associated with outcomes: age, sex, premorbid mRS, ICH 
location, hematoma volume, intraventricular extension of the hemorrhage, and oral anticoagulant use. All model 
assumptions were checked. For all analyses, p < 0.05 (two-tailed) was considered significant.

Results
We included 857 patients with a median age of 75.5 years (IQR = 65.8–82.4), of whom 361 (42.1%) were female 
(Fig. 2). Anticoagulant status was unknown in six patients in the study sample, none of whom had a blood-fluid 
level. Of the 360 patients on anticoagulant therapy in the study sample, 20 were on a Factor Xa inhibitor, two 
were on Dabigatran, and the rest were on warfarin.

A blood-fluid level was demonstrated in eighteen patients (2.1%) by acute CT imaging (within 48 h of the 
ICH). Table 1 summarises the characteristics of the participants between the two groups. Compared to the 

Figure 2.  Flowchart showing the recruitment of patients for this study, including reasons for exclusion.
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non-blood-fluid level group, the blood-fluid level group had a significantly higher INR (3.05 (2.23–3.9) versus 
1.10 (1.00–2.30), p = 0.0001, r = 0.13). The blood-fluid level group were more often taking an anticoagulant (war-
farin in all cases) at ICH onset than the non-blood-fluid level group (15 [83.3%] versus 345 [41%]; p = 0.0004). 
The blood-fluid level group also underwent OAC reversal more frequently, in 13 (72.2%) versus 256 (30.5%) 
(p = 0.0005) and had significantly more atrial fibrillation (14 [77.8%] compared to 289 [34.4%], p = 0.0008) in 
the non-blood-fluid level group. Overall, there was no statistically significant difference in death at six months 
post-ICH between the blood-fluid level group and the non-blood-fluid level group (3 [20.0%] vs. 124 [14.8%], 
p = 0.7312).

Blood‑fluid level sensitivity and specificity to OAC‑ICH. Of the patients in whom a blood-fluid level 
was seen (n = 18), the majority (15/18 (83.3%) were on anticoagulants (see Supplementary Table 1). The non-
blood-fluid level group consisted of 839 patients. Less than half of this group was on anticoagulants (345/839, 
41%). The presence of a blood-fluid level was significantly associated with the use of anticoagulants (χ2 = 12.6, 
p < 0.001, odds ratio [OR] 7.1, 95% CI 2.0–38.6; p < 0.001).

The presence of a blood-fluid level identifies just 4% (95% CI 2–7%) of patients on anticoagulants (sensitiv-
ity). However, the absence of a blood-fluid level identifies 99% (95% CI 98–100%) of patients who are not on 
anticoagulants (specificity). Of all the patients with a blood-fluid level, 83% were on anticoagulants (positive 
predictive value, 95% CI 59–96%). The negative predictive value, the probability that patients with no blood-fluid 
level were not on anticoagulants, was 59% (95% CI 55–62%).

Haematoma characteristics of OAC‑ICH associated with blood‑fluid level on CT. Haematomas 
of the patients in the blood-fluid level group (median = 14.1, IQR = 5.5–23.7) were significantly larger than those 
of patients in the non-blood-fluid level group (median = 7.0, IQR = 2.3–17.2) (p = 0.045). Blood-fluid level-asso-

Table 1.  Patient baseline and follow up characteristics in each group. ICH intracerebral haemorrhage, TIA 
transient ischemic attack, SBP systolic blood pressure, DBP diastolic blood pressure, GCS Glasgow coma scale, 
INR International normalized ratio, AC anticoagulant. *Note that data on sex was missing from one patient in 
the sample. **Note that data on hematoma location was missing from 23 patients in the sample. The differences 
between the groups were statistically significant (p < 0.05) for the variables shown in bold. IS: ischemic stroke.

Characteristic Total number n = 857 Fluid level n = 18 Non fluid level n = 839 p value

Age (years) (median, IQR) 75.5 (65.8–82.4) 79.5 (70.5–83.0) 75.5 (65.6–82.3) 0.2588

Male n, (%)* 496 (57.9%) 14 (77.8%) 482 (57.4%) 0.0957

White background n, (%) 743 (86.7%) 15 (88.2%) 728 (86.8%) 0.5657

Anticoagulants n, (%) 360 (42.0%) 15 (83.3%) 345 (41.1%) 0.0004

Comorbidities

Atrial fibrillation n, (%) 303 (35.4%) 14 (77.8%) 289 (34.4%) 0.0008

Hypertension n, (%) 566 (66.0%) 12 (66.7%) 554 (66.0%) 1.0000

History of previous stroke

IS n, (%) 118 (13.8%) 4 (25.0%) 114 (13.6%) 0.2647

ICH n, (%) 35 (4.1%) 2 (12.5%) 33 (3.9%) 0.1430

TIA n, (%) 98 (11.4%) 1 (6.7%) 97 (11.6%) 1.000

Medication on admission

Aspirin n, (%) 189 (22.1%) 1 (5.9%) 188 (22.4%) 0.1403

Warfarin n, (%) 323 (37.7%) 14 (77.8%) 309 (36.8%) 0.0008

Clinical measurements

SBP (median, IQR) 166 (147–190) 160 (140–172) 167 (147–190) 0.1475

DBP (median, IQR) 90 (79–105) 83 (78.5–91.5) 90 (79–105) 0.2745

GCS (median, IQR) 15 (14–15) 15 (14–15) 15 (14–15) 0.8221

Blood results on admission

INR (median, IQR) 1.11 (1.00–2.40) 3.05 (2.23–3.90) 1.10 (1.00–2.30) 0.0001

Management received

Surgery n, (%) 29 (3.4%) 2 (11.1%) 27 (3.2%) 0.1242

AC reversal n, (%) 269 (31.4%) 13 (72.2%) 256 (31.1%) 0.0005

Haematoma location** 0.0524

Lobar n, (%) 296 (34.5%) 10 (55.6%) 286 (34.1%)

Deep n, (%) 459 (53.6%) 5 (27.8%) 454 (54.1%)

Infratentorial n, (%) 79 (9.2%) 3 (16.7%) 76 (9.1%)

Haematoma volume (median, IQR) 7.1 (2.4–17.5) 14.1 (5.5–23.7) 7.0 (2.3–17.2) 0.0451

Intraventricular extension n, (%) 249 (29.1%) 2 (11.1%) 247 (29.4%) 0.1345

Deceased n, (%) 127 (14.8%) 3 (20.0%) 124 (14.8%) 0.7312
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ciated haematomas tended to have a lobar location (55.6%), but there were no statistically significant differences 
in haematoma location between the groups (p = 0.0524).

Factors associated with blood‑fluid level in patients on anticoagulants. In a multivariate logistic 
regression including age (OR 1.00, 95% CI 0.95–1.97, p = 0.867), sex (OR 2.68, 95% CI 0.70–13.38 , p = 0.176), 
haematoma location (OR 0.93 , 95% CI 0.391–2.04 , p = 0.858), haematoma volume (OR 0.99, 95% CI 0.96–1.02, 
p = 0.775), intraventricular extension (OR 0.15, 95% CI 0.007–0.93, p = 0.097), hypertension (OR 1.05 , 95% CI 
0.31–4.34, p = 0.944), and platelet count (OR 1.00, 95% CI 0.99–1.01, p = 0.559), only the INR was significantly 
associated with the presence of a blood-fluid level in patients on anticoagulants (OR 1.58 , 95% CI 1.08–2.34 , 
p = 0.0174).

Prognostic significance of blood‑fluid level on mortality. Six hundred and ninety-nine patients 
(81.6%) had follow up at 6 months and complete data for the logistic regression analysis. In this analysis, the 
presence of a blood-fluid level was not significantly associated with higher odds of death at six months (OR 1.21, 
95% CI 0.28–3.88, p = 0.7690). In a multivariable analysis, older age, higher pre-morbid mRS, larger haema-
toma volume, intraventricular extension, and oral anticoagulant use were all associated with higher mortality 
(Table 2).

Discussion
In this study, we found a blood-fluid level in 18 out of 855 (2%) patients with acute ICH using CT imaging. A 
blood-fluid level was associated with the use of anticoagulants with a high specificity (99%) but low sensitivity 
(4%). Patients with a blood-fluid level also had larger ICH volumes but no evidence of higher mortality.

Our reported prevalence of a blood-fluid level is similar to that in a recent large ICH study that reported a 
prevalence rate of 1%16; however, no sensitivity level was reported in their study. In terms of diagnostic agreement, 
our results differed somewhat from those reported in previous studies. The sensitivity of the blood-fluid level 
for coagulopathy was found to be 59.4% in the study by Pfleger et al.11 and 41.6% in the study by Gökce et al.12, 
while it was considerably lower (4%) in our study. However, Pfleger et al.’s study did not group patients based 
on use of OACs, but based on the presence of coagulopathy in general. Pfleger et al.’s study included patients 
on warfarin, patients with liver failure, diffuse intravascular coagulation, and other causes of coagulopathy, the 
pathophysiology of which may be different to OAC-associated ICH. In addition, our study had a substantially 
larger sample size than previous studies and included patients on non-vitamin K antagonist oral anticoagulants, 
which may have influenced the sensitivity estimates.

Although there have been a few case reports of a blood-fluid level in patients with no underlying 
 coagulopathy21–23, our findings suggest that in acute ICH a blood-fluid level is highly specific for OAC-ICH 
(99%), consistent with previous clinical  studies11,12,16. We have also confirmed previous observations that a blood-
fluid level is associated with larger haematoma  volume11,12,16, which is associated with worse clinical  outcome24. 
The presence of a blood-fluid level was not associated with mortality at six months in our study. This result sug-
gests that the value of this sign is in diagnosing intracerebral hemorrhage associated with anticoagulants, but 
that it has no prognostic significance. This is at odds with the results from the INTERACT-2  data16, however, 
the relatively low prevalence of patients with blood-fluid level in both these studies may have led to spurious 
results. As previously  suggested16,25, a possible association between blood-fluid levels and increased mortality 
may be related to faster haematoma growth, but this needs to be further investigated in larger, longitudinal 
imaging studies.

Our study has strengths. We recruited a large cohort of ICH patients from 80 hospitals, so our findings should 
be widely generalisable. We used a strict definition of blood-fluid level, included only acute (< 2 days) CT scans, 
and performed the blood-fluid level rating blinded to anticoagulant use and outcome. The main limitation of 
our study is the small number of participants in the blood-fluid level group, which limits its statistical power. 
Although our study suggests that higher INR is associated with a higher prevalence of blood-fluid level in patients 

Table 2.  Association between blood-fluid level and mortality. Reference categories are shown in parentheses 
for the categorical variables in the models.

OR 95% CI p value

Unadjusted model

Blood-fluid level (yes) 1.21 0.28–3.88 0.7690

Fully adjusted model

Blood-fluid level (yes) 0.82 0.67–3.08 0.7852

Age 1.06 1.03–1.08  < 0.0001

Sex (female) 0.97 0.61–1.54 0.8903

Location (lobar) 0.99 0.66–1.47 0.9549

Pre-morbid MRS 1.52 1.28–1.81  < 0.0001

Hematoma volume 1.02 1.01–1.03  < 0.0001

Intraventricular extension 2.13 1.32–3.43 0.0018

Oral anticoagulant use (yes) 1.84 1.18–2.91 0.0080
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on anticoagulants, larger future cohorts are needed to investigate the relationship between INR and blood-fluid 
level in more detail, to determine whether the presence of a blood-fluid level occurs mainly with INRs outside the 
therapeutic range. One mechanism proposed to explain this is that, in the absence of normal blood clotting, red 
blood cells fall to the bottom of the haematoma, leaving plasma at the top, causing a sedimentation level. If this 
mechanism underlies blood-fluid levels, clotting might take time to eventually occur, meaning that the detection 
of this sign would be dependent on the time from ICH onset to imaging. This could not be investigated in the 
current study because the exact time from onset to imaging was not available, but future studies may shed light 
on this possibility. Finally, our study required consent from either the patient or a proxy, effectively excluding 
patients with large, clinically devastating ICH. Overall, this led to our included cohort being less mildly affected 
than a general ICH cohort.

The implications of this study are that the presence of a blood-fluid level on the CT scan of a patient with 
ICH should alert clinicians that the patient is likely to be taking an OAC. This is associated with a high risk of 
hematoma growth and  mortality26. In such patients, higher-level care, intensive blood pressure control, rapid 
coagulation assays, and reversal of anticoagulation might be  appropriate27–30. However, physicians must consider 
the small chance that, in rare cases, the presence of blood-fluid level may not be associated with OAC use. This 
is particularly important because blind reversal could lead to adverse events such as  thrombosis30.

In conclusion, the presence of a blood-fluid level on an acute CT scan is specific for anticoagulant treatment 
and is not associated with higher mortality at 6 months. Clinicians should be aware that patients with this sign 
are likely to be taking an OAC, which may help guide the acute management of such patients.

Data availability
Analyses for the CROMIS-2 study are ongoing; once all of these analyses are completed, the CROMIS-2 Steering 
Committee will consider applications from other researchers for access to anonymised source data.
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