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Abstract. This paper is about speaker verification and horizontal lo-
calisation in the presence of conspicuous noise. Specifically, we are in-
terested in enabling a mobile robot to robustly and accurately spot the
presence of a target speaker and estimate his/her position in challeng-
ing acoustic scenarios. While several solutions to both tasks have been
proposed in the literature, little attention has been devoted to the devel-
opment of systems able to function in harsh noisy conditions. To address
these shortcomings, in this work we follow a purely data-driven approach
based on deep learning architectures which, by not requiring any knowl-
edge either on the nature of the masking noise or on the structure and
acoustics of the operation environment, it is able to reliably act in previ-
ously unexplored acoustic scenes. Our experimental evaluation, relying
on data collected in real environments with a robotic platform, demon-
strates that our framework is able to achieve high performance both in
the verification and localisation tasks, despite the presence of copious
noise.

Keywords: Speaker Localisation · Speaker Verification · Speech in Noise.

1 Introduction

Human-robot social interaction greatly relies on accurate detection and localisa-
tion of the various interlocutors [28]. In many instances, this interaction requires
voiced communication (e.g. a robot personal assistant executing commands ut-
tered by a specific user). Such social contexts, however, can be characterised by a
high levels of noise of a various nature, including the noise emitted by the robot
while moving. For instance, elderly people trying to communicate with a robot
might struggle to be perceived, because they might be simultaneously watching
TV at a high volume, there might be other people talking, or they might have
developed, through the years, non-coordination or weakness of the speech mech-
anism, resulting in the production of very feeble sounds. This paper explores the
possibility of spotting and localising a specific speaker in challenging scenarios,
characterised by a significantly low Signal-to-Noise Ratio (SNR) level, relying on
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the use of Convolutional Neural Networks (CNNs). Specifically, we are interested
in enabling a mobile robot assistant to spot the presence of its intended user in
the acoustic scene (known in the literature as speaker verification), and estimate
his/her position on the horizontal plane (i.e. speaker localisation).

Literature in robotics has provided us with several speaker detection and
recognition frameworks, most of which rely on face and voice characteristics
(see [19,26] among others). Despite the accuracy of such frameworks, situations
where noise might play a crucial role and heavily compromise the quality of the
sound perceived by the robot have not been yet investigated. This paper aims to
move a step in this direction by exploring the performance of an audio-only per-
ceptual system when challenged by extreme environmental conditions, which are
not known a priori. As the conditions of the application scenarios are not nec-
essarily either predictable or available, verification and localisation cannot take
into account and leverage the structure of the operation environment, or the
nature and characteristics of the overlapping noise. To address such constraints,
we build a dataset containing several kinds of potential maskers, combined in a
different fashion, and we opt for a pure data-driven approach, in the attempt
of developing a framework able to generalise to unexplored acoustic scenes. We
focus on binaural perception (i.e. stereo signals), and thus, on horizontal locali-
sation (i.e. estimation of the direction of arrival of the sound on the horizontal
plane), as a proof-of-concept. Yet, additional audio channels as well as sensing
modalities could be considered to extend the analysis to 3D localisation. Despite
the use of deep learning frameworks which, traditionally, require a large amount
of training data, in our scenario we are able to obtain remarkable performance
relying only on 30 min of target speech, allowing the use of such technology also
in scenarios where data collection might be particularly challenging (e.g. nursing
homes). Our experimental evaluation proves that our system is able to accurately
spot the presence of a specific speaker in the acoustic scene with an average ver-
ification rate of 94 %, and a median localisation error lower than 6°.

2 Related Works

Speaker Verification While traditionally this task has been addressed relying
on Gaussian Mixture Models (e.g. [19,21]), recent advances in machine learning,
particularly in the form of deep learning architectures (e.g. [8, 9]) have dictated
and driven the development of new methods able to achieve great precision, and
to overcome the need of defining hand-crafted features. Several speaker verifica-
tion systems, for instance, both text-dependent and text-independent have been
introduced (cf. [2,25] among others). While those frameworks show particularly
high accuracy in the classification process, not much can be said on how well they
operate in harsh noisy conditions. Our work, which aims to verify the presence
of a target speaker in the acoustic scene without relying on the use of specific
text (i.e. text-independent), shares the aspirations of [25] and [2], and, as [2] ex-
plores the possibility of treating the acoustic signals as images to which directly
apply CNNs. With respect to [2], however, in this paper we further challenge the
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verification procedure, by considering scenarios characterised by the presence of
heavy noise, of a a different nature and coming from different sources. The goal
is to investigate the robustness of similar systems when acting in the real-world,
when the presence of maskers of variegate types can, indeed, be plenteous.

Speaker Localisation Speaker or, more generally, sound source localisation,
has followed a similar pattern, and more traditional geometrical methods [19,22]
have been now superseded by deep learning approaches, such as [7, 14]. Both
those studies rely on cross-correlation information to train CNN-based models
to perform localisation. We are close in spirit to both those instances; but, as
in the case of the speaker verification task, we wish to explore the behaviour
of our system when coping with remarkably noisy scenes (e.g. while in [14],
SNR ≥ 0dB, in this work we consider scenarios with −5dB ≤ SNR ≤ −20dB),
where the competitive maskers can be of a different nature and not only rep-
resented by other speakers in known indoor scenes, to evaluate its performance
beyond laboratory and restrained environments. Furthermore, rather than util-
ising cross-correlation information, we propose the use of a stereo spectral rep-
resentation of the signals, based on the Gammatone filterbanks (cf. Section 3.1).

In summary, the use of deep learning for speaker verification and localisation
has been already investigated in the literature. Yet, with respect to those studies,
this paper offers three main contributions:

– we consider challenging scenarios where −5dB ≤ SNR ≤ −20dB, while
previous works only operate on positive levels of SNR;

– we consider both indoor and outdoor scenarios, and propose solutions able
to operate robustly in both situations, overcoming any dependence on the
structure of the operation environment and on the noise’s characteristics;

– we propose the use of spectral stereo features, rather than ones based on
cross-correlation, generally used for speaker localisation, to better cope with
the presence of massive noise.

3 Technical Approach

Similarly to previous works in the area [19], our framework relies on a two-
stage approach: firstly the incoming audio signal is fed to a CNN to verify the
presence of the target speaker; secondly, in case the target speaker is present,
further analysis is performed to estimate the Direction of Arrival (DoA) of the
sound (i.e. horizontal localisation). A description of the feature representation of
the various signals is given in Section 3.1, while the deep learning architectures
employed are illustrated in Section 3.2.

3.1 Feature Representation

Traditionally, speaker recognition and verification tasks have been performed
employing Mel-Frequency Cepstrum Coefficients (MFCCs) as feature represen-
tations of the audio signals; yet, recent works (e.g. [3, 18]) demonstrated that
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the discriminative power of MFCCs greatly decreases when dealing with more
realistic, dynamic and complex noisy scenarios. In this work, we adopt gamma-
tonegrams, which are a visual representation of the energy of a signal based on
short-time Fourier transform (STFT) and the application of Gammatone filter-
banks [13], which have been firstly introduced in [11]. It has been proved, indeed,
that such filtering, is able to guarantee robustness to noise for speech analysis
tasks [15, 24]. The gammatonegrams are generated following the specification
illustrated in [29] and [17], employing a bank of 64 filters. Examples of gamma-
tonegrams from our dataset representing, respectively, target speech, noise and
their combination at −20 dB are reported in Figure 1.
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(a) Target Speech
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(b) Noise
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(c) Target Speech in Noise

Fig. 1: Example of the gammatonegram representation of sound frames of 1 s.
From left to right: target speech, noise, and their combination at −20 dB. The
energy of the time-frequency bins is expressed in decibel (dB).

3.2 Architecture

We approach both tasks using CNN-based models. We refer to the CNN used
for verification as VER-MONO, and to the one used for localisation as LOC-
STEREO. The two architectures differ in the input size and, consequently, in the
size of the fully-connected layer, and in the structure of the output layer. Indeed,
while the former takes the gammatonegram of a single channel as input, the latter
considers a stereo gammatonegram, where the gammatonegrams corresponding
the the audio channels are disposed side by side. Further details are provided
in Figure 2. Furthermore, different loss functions are utilised in the training
phase: while in the case of VER-MONO, we optimise a soft-max combined with
a cross-entropy loss function to implement classification (i.e. target speaker vs
anything/anyone else), in the case of the LOC-STEREO network, we minimise
the Euclidean loss between the estimated DoA of the sound and the ground
truth value.

4 Experimental Evaluation

We performed four kinds of experiments to validate our framework.

– Experiment 1: we train the VER-MONO network and evaluate its perfor-
mance at verifying the presence of the target speaker against other random
speakers, robot’s, and environmental noise.
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Fig. 2: The figure reports the two-stage approach operating in the framework:
firstly the incoming audio signal is fed to a CNNs to verify the presence of the tar-
get speaker (VER-MONO) through a binary classification paradigm; secondly,
in case the target speaker is present, further analysis is performed to estimate
the DoA of the sound through a regression model (LOC-STEREO). The figure
reports details on the architecture used for verification, which consists of two
5 × 5 convolutional layers, followed by a 2 × 2 max pooling, and one fully con-
nected layer. All layers are equipped with a Rectified Linear Unit (ReLU). The
regression employs the same architecture, but while VER-MONO operates on
the gammatonagram of only one of the two channels available, LOC-STEREO
acts on the gammatonegrams of both channels, disposed side by side. The fully-
connected layer will have, thus, a different size as well. Lastly, the regression
network counts only one unit in its output layer.

– Experiment 2: we compare the behaviour of the VER-MONO network with
a different one, having the same architecture, but where verification is per-
formed on a stereo gammatonegram (organised side by side, as in LOC-
STEREO), and which we name VER-STEREO. The goal is to investigate
whether having a stereo combination of the audio signals might help the
network in the verification process.

– Experiment 3: we train the LOC-STEREO network, and evaluate its per-
formance in the DoA estimation of the speaker’s voice.

– Experiment 4: we compare the behaviour of the LOC-STEREO network
with a different one, having the same architecture, but where localisation
is performed on the cross-correlation between the gammatonegrams corre-
sponding to the audio signals in the two channels, named LOC-CROSS and
used as a benchmark. We also compare the behaviour of LOC-STEREO and
LOC-CROSS with a more traditional geometrical method [19], indicated as
BASELINE.
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4.1 The Dataset

To evaluate our framework, we built a dataset where the voices of three speakers
are combined with several kinds of noise, at different level of SNRs. Specifically,
we consider particularly challenging scenarios characterised by significantly low
SNRs: SNR ∈ {−5dB,−15dB,−20dB}. As our goal is enabling mobile robots
to spot the presence of a speaker of reference in the acoustic scene, and localise
him/her on the horizontal plane, the speech utterances were recorded with the
speaker standing at different angles with respect to the front of the robot, and
the sound emitted by the motors of the robot was also considered as one of the
potential sources of noise (i.e. the robot might move to follow the speaker, or
being already moving while it encounters the voice of the speaker). The data was
recorded by using two Knowles omnidirectional boom microphones, mounted in
proximity of each of the two front wheels of a Clearpath Husky A200 platform
(shown in Figure 3), and an ALESIS IO4 audio interface, at a sampling frequency
of 44.1 kHz and a resolution of 16 bits. The speakers’ voices were recorded in
a silent, but realistic environment (i.e. perturbations due to reflections etc are
present), accounting for a total of around 90 min minutes of speech data (i.e.
30 min minutes per speaker used as a reference). In addition to the robot’s noise,
we also considered other sources of stereo environmental noise from the Urban
Sound Dataset [23], and from other publicly available databases, such as www.

freesound.org, as well as random speech from [6]. Care was taken so that
the environmental noise selected is characterised by moving sound sources, and
covering both outdoor and indoor scenarios. Following previous works (e.g. [4]
[16] [20]), we opted for collecting the data corresponding to the target speech
and the masking noise separately, because this would allow us to directly control
the level of SNR, and to isolate and accurately quantify the impact of the noise
on the verification and localisation tasks.

4.2 Implementation Details

We trained the networks using mini-batch gradient descent based on back-
propagation, employing the Adam optimisation algorithm [12]. Dropout [10]
was applied to each layer for both architectures with a keeping probability of
0.75. The models were implemented using the Tensorflow [1] libraries. Similarly
to previous works on deep learning in the auditory domain (cf. [5], [27]), we
randomly split our dataset into training set (70%) and testing set (30%).

4.3 Experiment 1 and 2: Speaker Verification

We perform speaker verification at different SNR levels (SNR ∈ {−5dB,−15dB,
−20dB}), comparing the behaviour of the VER-MONO and VER-STEREO net-
works, when operating on frames of 1s. In both cases, the verification is imple-
mented as a binary classification problem, where one class refers to a combination
of the target speaker and different kinds of noise (as described in Section 4.1),
and the other class is obtained as random combinations of urban noise, robots’
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noise and voices from one or more speakers different from the target one. Ta-
ble 1 reports the results of those experiments. We observe that both networks are
characterised by high accuracy, with the VER-MONO providing slightly greater
performance. This suggests that the verification process does not benefit from
the use of stereo information.

Fig. 3: Clearpath Husky
A200 used in the experi-
ments.

Verification Accuracy

SNR VER-MONO VER-STEREO

-5dB 99.1 ± 0.80 99.88 ± 0.56
-15dB 98.65 ± 0.46 95.20 ± 0.82
-20dB 86.02 ± 2.42 82.26 ± 2.21

Average 94.85 92.19

Table 1: Verification accuracy (mean and
variance), when employing the VER-MONO
and the VER-STEREO networks in scenar-
ios characterised by different SNRs. Accu-
racy is expressed as the percentage of correct
verifications.

4.4 Experiment 3 and 4: Speaker Localisation

We perform speaker horizontal localisation at different SNR levels (SNR ∈
{−5dB,−15dB,−20dB}), comparing the behaviour of the LOC-STEREO and
LOC-CROSS networks, when operating on frames of either 1s or 500ms. We also
compare the results obtained by both deep learning approaches with a more tra-
ditional geometric method based on Interaural Time Difference [19], indicated as
BASELINE. In all cases, localisation of the target speaker is carried out against
different noise combinations, as described in Section 4.1. Table 2 reports the
results of those experiments. We observe that by employing either the LOC-
STEREO or the LOC-CROSS networks, localisation accuracy degrades when
dealing with shorter frames. This might be due to the fact that, since we do
not apply any voice activity detection algorithm neither in training or testing,
we might get more 500ms-frames with not enough speech information for the
network to train a reliable model. Indeed, the performance of the BASELINE
approach, which doesn’t rely on a specific learned model, greatly drop at lower
SNRs, but shows consistent results independently on the frame size. We also see
that using a stereo gammatonegram (i.e. gammatonegrams from both channels
put side by side) remarkably help the localisation process, with respect to us-
ing the representation based on cross-correlation. We believe this is due to the
presence of heavy noise, which might mask cues useful for speaker localisation
when computing the cross-correlation. The difference between the behaviour of
the two networks is reported in Figures 4 and 5. The greatest performance is ob-
tained when using the LOC-STEREO on frames of 1s, which provides a median
error lower than 6° even when SNR = −20dB. Considering that the frames are
randomly selected, and that, in reality, those will come as a consecutive audio
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Localisation Accuracy

LOC-STEREO LOC-CROSS BASELINE

FL −5dB −15dB −20dB All −5dB −15dB −20dB All −5dB −15dB −20dB All
500 ms 16.47 21.01 21.90 18.45 21.02 22.7 21.75 22.10 6.6 17.8 26.5 15.9
1 s 5.09 5.32 5.43 5.24 19.93 22.38 23.4 21.57 5.5 16.7 27.1 15.3

Table 2: The table reports the median of the the absolute error (expressed in
degrees) in the DoA prediction obtained by using the LOC-STEREO, the LOC-
CROSS networks, and the BASELINE approach. FL refers to the frame length.

stream, the error could be further decreased through outlier removal (i.e. by
applying a median filter).
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Fig. 4: From left to right: histogram of the absolute error in the localisation,
when using the LOC-STEREO and the LOC-CROSS networks, operating on
frames of 1s.
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Fig. 5: From left to right: histogram of the absolute error in the localisation,
when using the LOC-STEREO and the LOC-CROSS networks, operating on
frames of 500ms.

5 Conclusions

In this work, we explored speaker verification and horizontal localisation in chal-
lenging indoor and outdoor acoustic scenarios characterised by the presence of
copious and unpredictable noise. We addressed both tasks employing a fully
data-driven approach, based on CNN architectures. Our experimental evalua-
tion, implemented on a robotic platform, demonstrated that the framework pre-
sented is able to perform both tasks (i.e. verification and localisation) robustly
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and with a high level of accuracy. Future work will investigate the possibil-
ity of developing multi-modal systems (e.g. audio-visual) to enable more robust
and accurate in-noise human-robot interaction. Furthermore, domain adaptation
techniques could be used to reduce the amount of data necessary to train the
models to extend the use of this framework to situations where only few speech
data from the target speaker is available (e.g. a guide robot interacting with
people in museums, airports or malls.)
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