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 12 

SUMMARY 13 

This paper investigates a stochastic bi-level scheduling model for decision-making of a load serving entity (LSE) 14 

in competitive day-ahead (DA) and balancing markets with uncertainties. In this model, LSE as the main 15 

interacting player of the market sells electricity to end-use customers and plug-in electric vehicles (PEVs) to 16 

maximize its expected profit. Therefore, a two-level decision-making process with different objectives is 17 

considered to solve the problem. In one level, the objective is to maximize the LSE’s profit by optimally scheduling 18 

of responsive loads and PEVs charging/discharging process, while in the other level, the payments of the customers 19 

and PEV owners should be minimized in a competitive market. In the proposed decision-making process, to model 20 

the uncertainties, market prices, required energy of customers and PEVs as well as the rival LSEs’ prices are 21 

considered as random variables. The bi-level stochastic problem is then converted into a linear single-level 22 

stochastic model with equilibrium constraints by using Karush–Kuhn–Tucker (KKT) optimality conditions as 23 

well as duality theory. A case study is implemented to indicate the applicability of the intended model. 24 

 25 

Index Terms— Bi-level scheduling, demand response, plug-in electric vehicle (PEV), energy management, load 26 

serving entity (LSE).  27 

 28 

1. INTRODUCTION 29 

 There is an appearing consensus that demand-side management (DSM) can have an active duty 30 

in keeping balance between supply and demand in future smart grids [1]. At demand side of a smart 31 

restructured power system, responsive loads can not only supply various types of demand response 32 

(DR) services such as peak load shifting and ancillary services [2], but also contribute heavily in 33 

reduction of operating cost and emission as well as improvement of system reliability [3]. Moreover, 34 

plug-in electric vehicles (PEVs) as highly elastic resources at the demand side could make a number 35 

of advantages to the future smart grids by their charging and discharging power. Therefore, DSM is 36 

more important, especially when the technology such as vehicle-to-grid enables PEVs to work as the 37 

grid resources by providing power back to the system [4], [5]. 38 

A demand-side aggregator is widely contemplated as an independent load serving entity (LSE), 39 

who is responsible for making bids in electricity markets on behalf of a group of customers [6], 40 

maximizing their profits and providing their electricity demands [7]. Therefore, LSEs has a 41 

substantial duty as a middle agent between end-users and system operator and aggregates customers 42 
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to take part in the electricity market. In this regard, scheduling strategies for the LSEs has been the 43 

subject area of many research works. A robust optimization approach is proposed in [8] to handle 44 

market price uncertainty, in which the retailer seeks to minimize the energy procurement costs with 45 

only considering DR programs. In [9] a strategic bidding framework for LSE agent has been proposed 46 

in which the objective is to maximize LSE’s profit by implementing DR programs. In the same work, 47 

energy management of PEVs as a significant part of responsive loads has not been considered in the 48 

LSE scheduling process. In [10], an energy management system, that simulates the tasks of an LSE, 49 

adjusts the price-responsive loads and allows the group of demands to exchange energy at proper 50 

periods such that to maximize their utility function. In the mentioned work, the energy management 51 

system is not a profit-seeking entity as it is considered in this work. A bi-level complementarity model 52 

for a price-maker energy storage system to determine the most beneficial trading actions in pool-53 

based markets, including day-ahead (DA) and balancing settlements is represented in [11]. Also, the 54 

uncertainties of the problem are incorporated into the model using a set of scenarios generated. A 55 

mathematical program with equilibrium constraints has been provided by [12] to maximize the profit 56 

of PEV aggregator and to minimize the PEV owners’ costs. In [13], joint bidding and pricing problem 57 

of an LSE as a bi-level framework is modeled such that the optimal energy bids and reserve offers 58 

that the LSE submits to the wholesale electricity markets as well as its optimal energy and reserve 59 

prices in the retail electricity markets are determined simultaneously so as to maximize the LSE’s 60 

profit. Although, efficient models for LSE scheduling has been presented in [13], competition among 61 

the LSEs in the retail market has not been addressed.  62 

In most of the reviewed market models, the LSE plays as a middleman for the end-use customers 63 

and proposes the energy bids to the independent system operator (ISO). However, in fact the LSE as 64 

a mediator can specify prices different from the one defined by the ISO to make profit [14]. On the 65 

other hand, since, the electricity industry is changing into a distributed and competitive craft, 66 

competition among the market agents is facilitated. In such competitive environment, the interaction 67 

between LSEs and customers’ responses to the retail prices, should be considered in the operational 68 

decision-making of the LSE. So far, there is some works introducing competition into the LSE 69 

scheduling problem. Also, authors in [15] propose a Stackelberg game between LSEs and end-use 70 

customers to maximize their revenus. However, the effect of PEVs scheduling in decision-making of 71 

LSEs is not addressed. A market model has been provided based on game-theoretical implications in 72 

[16] where DR aggregators compete against each other to sell energy stored in consumers’ storage 73 

devices. Therefore, optimal bidding decision for each aggregator to maximize its own payments 74 

despite incomplete information in the game and remarkable changes in market circumstance is 75 

provided. However, in [16], the tendency towards optimal payments for the energy requirement 76 

derived from loads and PEV use for movement is not considered. This matter could highly affect the 77 

customer’s choice to select the fairest aggregator for its energy requirements. In other words, 78 

considering the problem only from LSEs’ perspective implies that the role of customers and their 79 

reaction to the market prices will be ignored. A decision-making framework based on time-of-use 80 

(TOU) price settings and procurement strategies in medium-term planning for a retailer agent with 81 

considering the rational responses of consumers to the TOU prices is investigated in [14]. In that 82 

study, the competitive environment due to existence of rival retailers is taken into account, although 83 

the behavior of PEV owners is neglected in that scheduling problem. A bottom-up model for DR 84 

aggregators in electricity markets proposed in [17] which enables a DR aggregator to consider the 85 

technical constraints of customers in developing an optimal trading strategy in the wholesale 86 

electricity market. Since the DR aggregator needs to be competitive in trading DR on both consumers 87 

and wholesale sides, stepwise functions is provided for load shifting and load curtailment programs. 88 



However, such functions cannot show the competition nature of the problem completely. A decision-89 

making model, based on stochastic programming, for a retailer is proposed in [18] to determine the 90 

sale price of electricity to the customers based on TOU rates. 91 

The authors in [19] have partly addressed the issue by proposing a stochastic bi-level approach for 92 

the EV aggregator in order to participate in short-term electricity market considering the preferences 93 

of EV owners. However, discharge process of EVs and DR participants has not been studied in 94 

decision-making process. Similarly, in [20] the authors have presented a scholastic scheduling model 95 

for EV aggregators in a competitive market with considering both charging and discharging process 96 

of EVs. A cooperation model between a generating company and several marketers is presented in 97 

[21] which considers the optimal decision for the generating company and the group of marketers in 98 

terms of maximization of their profits, based on bi-level optimization. Nevertheless, the works in [20] 99 

and [21] did not address the effect of DR programs.  100 

In this study, an efficient framework is provided for decision making of an LSE in a competitive 101 

energy market under uncertainties. decision-making problem of LSE is modelled as a stochastic bi-102 

level framework, in which the obtained nonlinear problem is converted into an equivalent single-103 

level mixed-integer linear programming problem by applying Karush–Kuhn–Tucker (KKT) 104 

optimality conditions [22] and duality theory. Also, a proper model of responsive loads and PEVs are 105 

developed to analyse the effect of their participation in DR programs on decision making of LSE. 106 

Compared to the previous works in this area, there exist a number of key contributions in this study. 107 

First, a proper bidding strategy for a typical LSE is introduced with considering both PEVs and DR 108 

programs from a joint customers’ and LSE’s points of view. As an extension of the model developed 109 

in prior works, this paper also considers a fully competitive energy market under rival LSEs offering 110 

prices uncertainties to enhance the market share of the under-study LSE and to determine the optimal 111 

level of its participation in DA market, positive and negative balancing markets as well as to derive 112 

optimal selling prices offered to customers and PEV owners. In addition, in the proposed strategy, 113 

both PEVs charging and discharging process is modelled and optimal offering price of the LSE and 114 

its share in discharging process of PEVs is investigated. Table I addresses a systematically 115 

comparison between the contributions of this paper and some of the recent works in the same subject 116 

area. As can be observed, most of the recent works do not consider the PEVs charging and discharging 117 

management in the optimization problems of LSEs, and they mainly investigated impacts of DR 118 

programs based on other types of responsive loads [9]. To the best of our knowledge, there are also 119 

some limited works addressing the decision-making problem of LSE by considering both PEVs’ and 120 

customers’ participation in DR programs, simultaneously. However, they did not consider 121 

competitive trading floor (e.g., [12]). As a whole, the contributions of this paper can be highlighted 122 

as: 123 

 A bi-level decision-making structure for an LSE is proposed to determine the optimal level of 124 

participation in the DA market, positive and negative balancing markets, to derive optimal 125 

selling prices offered to customers and PEV owners as well as to model the corresponding 126 

rational behaviour of those consumers to the offering prices. 127 

 The impacts of PEVs participants in discharge process on decision-making of the LSE are 128 

investigated in a competitive market via the proposed model. Also, efficient load management 129 

is implemented through incorporation of DR programs. 130 

 The reaction of PEV owners and responsive loads to the decisions made by the LSE as well as 131 

their preferences is discussed within a fully competitive market model to enhance the market 132 

share of the LSE. 133 



The rest of the paper is organized as follows: In section 2, the proposed decision-making problem 134 

of the LSE is explained. The problem formulation is given in section 3 and in section 4, the 135 

simulations and numerical results are provided. At last, section 5 draws the conclusions. 136 

 137 

Table I. The contributions of literatures in view of existing state of the art.  138 

Reference 
Bi-level 

modelling 

Competitive 

trading floor 

DR 

participation 

EVs Charging 

management 

EVs Discharging 

management 

[6]       - - 

[8] - -   - - 

[9]   -   - - 

[10]   -   - - 

[11]     - - - 

[12]   -       

[13]   -   - - 

[14]       - - 

[17]       - - 

[15] -     - - 

[16] -     - - 

[19]     -     

[20]     -   - 

This paper           

 139 

2. STOCHASTIC-BASED DECISION-MAKING PROBLEM OF LSE 140 

In a fully competitive electricity market, LSEs play a critical role to fill the gaps between end 141 

customers and wholesale market operators to connect them into an optimal operation framework. As 142 

a profit-seeking organization, the objective of LSEs is to maximize their expected profit considering 143 

the uncertainty from both wholesale market and end-use customers. Naturally, LSEs will have the 144 

motivation to induce the end-use customers' inherent elasticity by offering DR programs, especially 145 

when the system is under stress or close to the next binding constraint, which is termed as a critical 146 

load level. In this paper, a decision-making model is investigated for an LSE that supports some 147 

responsive loads (e.g., controllable residential and industrial loads) and PEVs as depicted in Figure 148 

1. The under-study LSE has a take-or-pay contract [23] to buy energy from DA and balancing markets 149 

while it sells electricity to the customers under real-time pricing scheme in a competitive 150 

environment. Here, it is assumed that the customers have smart energy management devices and can 151 

tune their demand to mitigate their energy consumption costs by responding to the prices offered by 152 

LSEs. Also, they can supply their demand from fair LSE based on the prices offered by each LSE 153 

and can change their LSE in a short-term time span. This is plausible by constructing fast 154 

communication infrastructure with bidirectional data transition among the LSEs and responsive loads 155 

and the PEV parking lots [24]. It should be noted that, responsive loads can take part in price-based 156 

DR programs with common schemes comprising sheddable and shiftable loads [25]. Moreover, PEV 157 

owners can reduce their payments by choosing proper LSE for charging and discharging process. 158 

The proposed decision-making problem of LSE for scheduling of the responsive loads and PEVs 159 

has a two-level structure where in the upper level, the LSE aims at maximizing its expected profit 160 

from taking part in pool-based short-term electricity market comprising of DA and balancing markets. 161 

In this level, scheduled energy exchanges for the next day are specified and then the energy deviations 162 

are obtained and compensated in the balancing market. Also, the LSE suggests optimal bids to the 163 

PEV owners and end-use customers to encourage them making interactive energy trading. Since, the 164 



actions of rival LSEs affect the decision-making of the under-study LSE, the prices offered by rivals 165 

are considered by different scenarios.  166 

 167 
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Figure 1. Schematic of the LSE problem. 169 

 170 

      In the lower level, there are several customers that should adjust their loads based on offered 171 

prices by LSEs and purchase their needed energy through the most appropriate LSE. Moreover, 172 

PEVs’ owners are willing to buy energy from the LSE with the lowest charging costs or to sell energy 173 

through discharging of the batteries, with the highest prices to minimize their total payments. To this 174 

end, by using Karush–Kuhn–Tucker (KKT) optimality conditions, the equivalent single-level form 175 

of the proposed scheme can be obtained. Moreover, the bilinear products are substituted by their 176 

equivalent statements using strong duality theorem. The structure of bi-level decision making for 177 

taking part of the LSE in the DA and balancing trading floor is shown in Figure 2. 178 

Here, the realizations of uncertainties are modeled using the scenario generation process based on 179 

Monte-Carlo simulations (MCS) and roulette wheel mechanism (RWM). At first the distribution 180 

function is separated into different intervals with different standard deviations [19]. Then, each 181 

interval is related to a certain probability that is obtained by the probability density functions (PDF) 182 

[19]. Each scenario vector includes the information of electricity market, loads of customers, PEVs 183 

charging and discharging power and the prices offered by the rivals. Then a specified number of the 184 

probable scenarios are chosen precisely using K-means algorithm [26]. Finally, the achieved 185 

equivalent single-level stochastic problem is considered as a mixed-integer linear problem (MILP). 186 

3. THE PROPOSED DECISION MAKING FORMULATION 187 

 The proposed decision-making problem of LSE is formulated as a stochastic bi-level 188 

programming problem and presented in this section. 189 

 190 

3.1 Upper-level Viewpoint 191 

In the upper-level, the LSE bids to the electricity market while competing against rival LSEs to 192 

offer optimal prices to customers and PEV owners to maximize its expected profit. Therefore, the 193 

expected profit includes the income from selling energy to both customers and PEVs and participating 194 



in negative balancing market minus the costs due to purchasing energy from DA and positive 195 

balancing markets and buying energy from PEVs in discharging mode. Hence, in the upper-level, the 196 

decision-making of the LSE can be formulated as bellow: 197 
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Figure 2. The bi-level framework of decision-making of LSE. 199 
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Equation (1) indicates the objective function from the under-study LSE perspective. Constraint (2) 202 

investigates the energy balance. The under-study LSE contributes to provide the required energy of 203 

customers and PEVs based on Constraints (3)-(5). That is the estimated energy supplied by the under 204 

study LSE that is equal to the expected value of the demand of the responsive loads and 205 

charge/discharge of EVs supplied by the LSE over all rival-LSEs price scenarios. The non-206 



anticipativity is demonstrated in (6) and confirms similar DA bids for equal DA prices at each hour t 207 

and scenario ω [27]. The energy transaction in both balancing markets is limited based on constraints 208 

(7) and (8), respectively.  209 

 210 

3.2 Lower-level Viewpoint 211 

The objective in the lower-level consists of the objectives of customers and PEV owners to minimize 212 

the costs of their energy exchange that is explained as bellow: 213 
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 215 

where, s and sꞌ mention the transfer of customers and PEV owners among the LSEs, and index s=0 216 

shows the under-study LSE. The payment made by the customers and EV owners to the under-study 217 

and rival LSEs is characterized through the first two lines in (9), respectively. The unwillingness of 218 

both customers and PEV owners to alter their LSE is determined in the third line. In other words, the 219 

last line states the reluctance of customers to switch among LSEs. Since, the prices offered by the 220 

rivals are uncertain to the under-study LSE, it approximates prices offered by the rivals through a set 221 

of scenarios to adjust its selling price to the customers. In this regard, at first, the prices of rivals are 222 

forecasted based on historical data and then the uncertainties of prices offered by all rivals are 223 

extracted based on their corresponding errors, and then normal probability density functions (PDFs) 224 

are calculated based on previous records of the rivals’ prices. In this study, PDFs of rivals’ prices are 225 

divided into three discrete intervals with different probability levels. Here, the scenarios are generated 226 

based on the hourly price forecasts with a uniform random error of ±10% for hourly rivals’ prices 227 

[29]. Then, the selling price of the LSE is computed based on a bi-level stochastic program in which 228 

different uncertainties are investigated via stochastic programming. The obtained price of the LSE is 229 

considered to enable consumers and PEVs’ owners to track the price changes and manage their 230 

consumption accordingly. The load management process could be an automatic procedure 231 

implemented through an energy management and automation system. In other words, the proposed 232 

automated DR consists of fully automated signaling from a utility (which is the LSE in our case) to 233 

provide automated connectivity to customer end-use control systems and strategies. It should be noted 234 

that from the practical point of view, a main concern lies on the technological side which reflects 235 

barriers that are related to the advanced systems implementations and associated interfaces between 236 

users and operator. However, with the growth of smart technology these barriers are deemed to be 237 

overcome. Generally, the equations represented LSEs competition in the proposed decision making 238 

framework can be modeled as bellow: 239 

 240 
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 241 

In order to abbreviate the equations, symbol   is used which refers to the charge/discharge process 242 

of PEVs and demand loads. In other words, in the above formulations, for simplicity of derivation, 243 

index   is used instead of Ch, Dis and D indices. Constraint (10) discusses the contribution of LSEs 244 

to provide energy for both customers and PEVs. It shows the increment and decrement from base 245 

demand in scenario ζ at period t for each LSE. All of the LSEs should supply all the required energy 246 

of loads and PEVs in their jurisdiction based on constraint (11). Constraint (12) represents that the 247 

amount of demand that is provided by each LSE is not negative. Also, technical constraints of PEVs' 248 

batteries are provided as bellow: 249 
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 250 

Constraints (13)-(15) provide the technical constraints of the PEV battery. Dual variables of each 251 

constraint in the lower-level problem are shown right after their corresponding constraints following 252 

a colon that will be used to transform lower-level problem into its dual problem. Moreover, the 253 

responsive loads participate in DR programs and change their energy usage based on the price 254 

suggested by LSEs and the defined elasticity. Demand elasticity is indicated as demand reaction to 255 

the price signal [29]. The customers’ energy consumption behavior can be adjusted in response to the 256 

incentives received based on the load level changes and the electricity prices. To achieve maximum 257 

benefit, end-use consumers manage their energy usage pattern in period t from an initial value, int,D
tE  258 

to DD
tE , as below: 259 

 260 
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The benefit of customers can be obtained as: 262 
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where, )( ,
DD

tES  and )( ,
DD

tEB  represent the benefit and income of customers after performing DR 265 

program. The following statement should be met to obtain maximum benefit for customers. 266 
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In this study, a quadratic utility function, is used to incentivize the participation of responsive loads 268 

in DR programs [30]. Based on the model, the utility of customers is obtained as: 269 
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Differentiating (20) with respect to DD
tE , gives: 270 
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Substituting (21) into (19) yields: 271 
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 272 

Therefore, the consumption of customers at time t is obtained as follows: 273 
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Additionally, based on cross-elasticity coefficients [30], which are defined as demand sensitivity of 274 

the tth period with respect to the price elasticity at hth period, the amount of demand after the DR can 275 

be obtained as: 276 
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By combining (17), (24) and (25) the economic model of load at time t is obtained as: 277 
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 278 

The uncertainties on DA price, positive and negative balancing market prices as well as demand of 279 

customers and PEVs are modeled via random variables that are represented using a finite set of 280 

scenarios Ω. The vector including market prices and demand is provided as follows: 281 
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Each scenario  has the probability of occurrence )( , in such a way that the sum of the 282 

probabilities over all scenarios is equal to 1. Therefore, the uncertainty associated with the offering 283 

prices of rival LSEs, a set of  scenarios are generated and the vector of each scenario   is as 284 

bellow: 285 
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The sum of the probabilities over all scenarios of set of  is also 1. Since the first set of scenarios is 286 

considered independent of the scenarios associated with the prices offered by the LSEs, the authors 287 

distinguish two sets of scenarios to better undersetting problem formulations. However, all 288 

scenarios should be combined in problem solving process. 289 

 290 

3.3 Combination of Upper and Lower Levels 291 

The above mentioned model consists of nonlinear terms including D

ts

D

tE ,, 0
Pr
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Pr and Dis
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Pr  in 292 

(1). Here, the KKT conditions are applied and to the lower-level problem in (9)–(18) and are merged 293 

to the upper-level. Also, by using duality theorem [19], the bilinear terms are substituted with their 294 

equivalent statements as bellow: 295 
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 297 

Afterwards, the single-level MILP problem is obtained which includes the objective function of the 298 

upper-level, the constraints and limitations of both upper- and lower-levels and the statement which 299 

equals to the objective function of the lower-level indicated as bellow: 300 
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 302 

Also, this objective function is limited with the constraints (2)-(8), (10)-(15), (25) and the constraints 303 

that achieved from applying KKT and duality theory. It should be noted that after obtaining the upper-304 

level and lower-level problem formulation independently, Lagrange function of the lower-level is 305 

achieved. The KKT optimality condition of the lower-level problem is obtained by partial derivatives 306 

of the Lagrange function. Accordingly, the lower-level problem is incorporated to the upper-level 307 

and the bi-level problem is formed.  Finally, a conversion to the equivalent single-level linear 308 

optimization form is applied. Also, the bilinear products of continuous variables are replaced by their 309 

equivalent linear expressions. Bellow, only the abbreviation form of the constraints are represented. 310 

The constraints that are introduced in the form of 00  ba  denote the nonlinear form of311 

0; 0; 0a b ab    . 312 
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 314 

where, 
1K and 

2K are selected such that the problem remains optimal. DisCh

t

/

,
 ,

DisCh

t

/

, , s

t 


,
and

s

t  , are 315 

auxiliary variables in obtaining KKT optimality conditions.  316 

4. SIMULATIONS AND NUMERICAL RESULTS 317 



4.1 Case Study 318 

The obtained program is implemented on a test system with four LSEs (i.e., LSE0, LSE1, LSE2 319 

and LSE3) that supply a number of PEVs and smart responsive loads. LSE0 is the under-study LSE 320 

and the others are considered as rivals. The time horizon for scheduling of LSE is one day with 24 321 

equal hours. Figure 3 illustrates the forecasted demand of both customers and PEVs. The pattern of 322 

PEVs demand is obtained based on [14], which represents how demand of PEVs changes during a 323 

day. It should be noted that in each time period of the scheduling horizon, only a number of PEVs 324 

are connected to the network and can participate in DR program. All the PEVs are supposed to have 325 

the same battery capacity of 16kWh and only 20% of them desire to take part in discharge process. 326 

The initial SoC of PEVs at each scenario as well as the initial hourly demands supplied by each LSE 327 

are randomized. Moreover, Figure 4 illustrates the forecasted prices of electricity market that are 328 

extracted from Nordpool market [30]. The forecasted errors of each stochastic variable are generated 329 

using associated PDF in which the forecasted values are considered as mean values. Here, the PDFs 330 

are separated into five discrete intervals with related probabilities. Standard deviation of the 331 

responsive loads, PEVs demand, DA and negative balancing market prices forecast errors are 332 

considered ±15% [31]. Also, standard deviation of positive balancing prices forecast errors is 333 

considered ±5% [32]. In addition, the forecasted prices offered by rival LSEs are extracted from [19] 334 

by some modifications. The associated scenarios of rival prices are generated with three segment 335 

normal PDF and their forecasted errors are considered ±20% [29]. Finally, the price elasticity of loads 336 

is extracted from [33]. The forecasted errors are generated based on 1000 scenarios by using MCS 337 

and RWM. After generation of 1000 initial scenarios, K-means algorithm is used to reduce the 338 

number of scenarios into 45. Afterwards, the selected scenarios are used in the proposed problem and 339 

the optimization is executed by CPLEX solver using GAMS software [34] on a PC with 4 GB of 340 

RAM and Intel Core i7 @ 2.60 GHz processor. 341 

 342 

 343 
Figure 3. The hourly forecasted loads of customers and charging demand of PEVs. 344 

 345 

 346 
Figure 4. Hourly forecasted electricity price of DA, positive and negative balancing markets. 347 
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4.2 Numerical Results 349 

The profiles of the expected energy procured by the under-study LSE from DA, positive and 350 

negative balancing markets, following the proposed optimization strategy, are obtained and shown in 351 

Figure 5. As it is observed, the LSE purchases a major part of the needed energy from DA market 352 

and mitigates the outcomes of different uncertain resources by trading energy in balancing market. 353 

In some periods, especially at peak hours when the prices of positive balancing market are very high, 354 

the LSE purchases most of the required energy from DA market. Therefore, its contribution in 355 

positive balancing market is very low (even zero in some time slots) as observed from Fig. 5 (b). 356 

Moreover, when the prices of negative balancing market are relatively high (e.g., 14:00-16:00 based 357 

on Figure 4), the LSE bids for load reduction in negative balancing market to achieve more profit. 358 

Figure 6 depicts the prices suggested by the under study LSE and the forecasted offering prices of 359 

rival LSEs during the scheduling horizon. Here, it is assumed that similar price offering scheme is 360 

applied to responsive loads as well as charging PEVs. As can be seen, LSE0 offers competitive 361 

charging prices at all hours to attract more customers. In fact, in a competitive market, a decrease in 362 

offered price can be a way of increasing the amount of responsive loads and PEVs that are supplied. 363 

Moreover, the bid prices offered by LSE0 in most hours are high enough to attract more PEV owners 364 

for discharging process. To get better insight into this bidding strategy, the charge price signal offered 365 

by the under-study LSE is evaluated in some hours. For example, from 1:00 to 6:00 when the market 366 

prices and demand loads are low, LSE0 offers moderate prices to remain in the game. Moreover, from 367 

9:00 to 12:00, or at 18:00 and 19:00, although the market prices are high (Figure 4), LSE0 offers 368 

lower charging prices to keep more customers interested in energy purchases. Moreover, the prices 369 

offered by the under-study LSE for discharging of PEVs are shown in Figure 6 (b). During these 370 

hours LSE0 tries to purchase energy from the PEVs’ owners, and not from the market, with high 371 

prices. However, it proposes the lowest discharging rates at 14:00-16:00, in which the DA and 372 

positive balancing prices are also relatively low.  373 
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(c)  

Figure 5. Behavior of the under-study LSE in different markets, (a) DA market, (b) positive 376 

balancing market, and (c) negative balancing market. 377 

 378 
 379 

 
(a)  

 
(b)  

Figure 6. The prices proposed by all LSEs, (a) charging prices, (b) discharging prices. 380 
 381 

The percentages of demand loads together with charging and discharging energies of PEVs 382 

supplied by all LSEs are shown in Figure 7. It can be clearly understood that in a competitive 383 

environment when the selling price offered by a given LSE is the lowest, its related market share is 384 

the highest. To this end, comparing Figure 6 (a) and Figure 7 (a) shows that the under-study LSE is 385 

the dominant player of market at 7:00, 9:00-11:00, 14:00-19:00, 21:00 and 22:00 due to its most 386 

competitive bids. The same procedure happens during 1:00-6:00 when LSE2 takes the market power. 387 

Similar analysis can be made for supplying PEVs’ demand by LSEs. However, it is observed from 388 

Figure 7 (c), the share of LSE0 in buying discharge energy from PEVs is high most of the times due 389 

to its higher price offers (Figure 6 (b)).  390 

In order to assess the behavior of customers and PEV owners in choosing the LSEs, Table II shows 391 

the transferred demand, charge and discharge of PEVs among the LSEs at different sample times. As 392 

mentioned before, the loads can be transferred from one LSE to another one based on the offered 393 

prices (see equation (10)). Noted that the minus sign indicates a demand transferred in the opposite 394 

orientation. As can be seen from the same table, at 4:00 for example, 17.46% of the responsive loads 395 

transferred from LSE0 to LSE2. Instead, 2.57% and 7.95% of responsive loads will be shifted from 396 

LSE1 and LSE3 to LSE0, respectively. Moreover, 20.03% of responsive loads will be transferred from 397 

LSE1 with the highest price to LSE0 that has the lowest price offers. The results also show that PEVs’ 398 
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owners have the same behavior in choosing their LSE for charging process. However, it should be 399 

noted that LSEs which offer the highest discharge incentives are selected by the PEVs owners. Such 400 

conditions can be seen at 8:00 when LSE0 offers the highest discharge incentives which in turn 401 

increases its share in negative balancing market. These behaviors simply show that the customers 402 

usually track the price signals to choose the most competitive LSE for satisfying both the energy 403 

needs and economic objectives. Therefore, in a competitive market, optimal offering strategy of the 404 

LSE has a substantial effect on the behavior of customers and PEVs owners in choosing a proper 405 

LSE.  406 

 407 

 
(a) 

 

 
(b) 

 
(c) 

Figure 7. Share of LSEs in supplying (a) customers, (b) charging of PEVs, and (b) discharging of 408 

PEVs.  409 

 410 

Table II. Transferred percentage of demand, charge and discharge of PEVs among the LSEs. 411 
 412 

Options 

From LSE0 

to LSE1 

From LSE0 

to LSE2 

From LSE0 

to LSE3 

From LSE1 

to LSE2 

From LSE1 

to LSE3 

From 

LSE2 to 

LSE3 
 At 4:00  

Responsive loads -2.57 17.46 -7.95 20.03 -5.38 -25.41 

Charge of PEVs -0.27 22.06 -5.65 22.33 -5.38 -27.71 

Discharge of PEVs -0.31 16.94 -11.78 17.25 -11.47 -28.72 
  At 8:00  
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Responsive loads 18.73 2.11 -9.06 -16.62 -27.79 11.17 

Charge of PEVs 18.5 2.46 19.63 -16.62 -27.75 11.17 

Discharge of PEVs -17.65 -12.63 -30.51 5.02 -12.86 -17.88 
  At 15:00  

Responsive loads -9.82 -6.95 -17.88 2.87 -8.06 10.93 

Charge of PEVs -7.57 -2.46 -15.63 5.11 -8.06 13.17 

Discharge of PEVs 18.3 9.517 -3.14 -8.783 -21.44 -12.657 

 413 

In order to analyze the role of discharge process on the expected profit, revenues and payments of 414 

the under-study LSE, Table III is provided. As observed from the table, by increasing the PEVs’ 415 

participation in the discharging process, revenue of the LSE and its expected profit increases. In other 416 

words, the LSE provides more energy from discharge of PEVs and its purchase from costly DA or 417 

positive market decreases. For more detailed investigation, the hourly profit of the LSE in three 418 

practical levels of PEVs participants in discharge is illustrated in Figure 8. As can be seen, by 419 

increasing the share of PEVs in discharging process, the expected profit of the LSE0 increases usually, 420 

especially when the DA and positive market prices are comparatively high. Moreover, the total 421 

expected profit of the LSE varies from 135.12 € in without discharge of PEVs to 190.06 € (with a 422 

share of 40% in the same market) which denotes an increment of 40.7% in the expected profit. 423 

Therefore, PEVs participation in discharge process has a great impact on the expected profit of the 424 

LSE in a competitive market. 425 

 426 

 427 

 428 

Table III. Expected profit, revenue and payments of LSE0 in different percentage discharge of PEVs. 429 
 430 

Percentage 

discharge of 

PEVs  

Expected 

profit 

Revenue of  

discharge 

Revenue of 

DR 

Payments to the 

network 

Payments 

for 

discharging 

0% 137.55    86.68    1257.49  -1196.02  0.00   

10% 153.57    133.49    1263.92  -1196.42  -47.42   

20% 167.05    187.81   1263.92  -1191.53  -93.15   

30% 179.18    224.45   1263.92  -1179.20  -129.99   

40% 190.06    273.40   1263.92  -1177.82  -169.44   

50% 200.71    306.27   1263.92  -1170.26  -199.21   

60% 209.27    312.74   1263.92   -1159.30  -208.09   

70% 218.42    346.98   1356.90   -1249.94    -235.53    

80% 226.30    371.45   1430.77   -1316.45  -259.47   

90%  232.42     371.45   1430.77   -1311.65   -258.16   

100% 237.00    371.45   1430.77   -1313.38   -251.84   

 431 

 432 

 433 

 434 
Figure 8. Hourly profit of the under-study LSE in different percentage of PEVs’ participation in 435 

discharge process. 436 
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 437 

To further analyze the effectiveness of the proposed approach, other case studies implemented 438 

here. To this end, the proposed strategy is applied in situations where different DA or balancing 439 

market pricing schemes may be realized in a given day (each with 24h) in a year as shown in Figure 440 

9. Figure 10 shows the DA energy bidding profiles. As seen from Figure 10, the LSE tends to supply 441 

loads; i.e., buying low energy bids during off-peak periods (e.g., 1:00–7:00 during midnight to 442 

morning) and high energy bids during peak periods (e.g., 17:00–22:00). The energy imbalances are 443 

compensated in regulating market as shown in Figure 11and Figure 12. As seen, the lack of energy 444 

to supply the loads specifically during peak hours could be compensated easily by buying energy and 445 

the surplus energy generated from discharge process can be sold to obtain some revenues. 446 

Figure 13 shows the offering prices of all LSEs during scheduling horizon for DR, charge and 447 

discharge processes. As can be seen, the pattern of price signal offered by the under-study LSE is 448 

affected by the one offered by competitors. Also, if the rivals' discharge price is assumed to be the 449 

same as the one offered for charge process, the pattern of price signal offered by the under-study LSE 450 

is affected by the one offered by competitors as in Figure 13. It should be noted that the proposed 451 

architecture is valid for different pricing schemes which relates to different internal data.  452 

Figure 14, provides the percentage of loads and EVs to be supplied by all LSEs. As observed, the 453 

customers choose the LSE with the lowest prices for energy purchases while they tend to augment 454 

their revenues by selling energy to the LSE with the highest bids. So, it can be concluded that different 455 

behaviors of rivals (in terms of pricing) could affect the pattern of price offered by the under-study 456 

LSE. 457 

 458 

 459 

Figure 9. Electricity market prices 460 

 461 

 462 

Figure 10. DA energy bidding 463 
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 465 

Figure 11. The energy trading in negative balancing market 466 

 467 

 468 

Figure 12. The energy trading in positive balancing market 469 

 470 

 471 

 472 
(a) 473 

 474 

 475 
(b) 476 

Figure 13. The prices proposed by all LSEs, (a) charging prices, (b) discharging prices. 477 
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 478 
(a) 479 

 480 

 481 
(b) 482 

 483 
(c) 484 

Figure 14. Share of LSEs in supplying (a) customers, (b) charging of PEVs, and (b) discharging of 485 

PEVs.  486 

 487 

5. CONCLUSION 488 

This paper investigated a stochastic bi-level scheduling strategy for an LSE in a competitive 489 

environment. The uncertainties related to the market prices, demand loads, charging/discharging 490 

power of PEVs and the prices suggested by rival LSEs were simulated via stochastic programming. 491 

The obtained nonlinear bi-level problem was converted into an equivalent single-level mixed-integer 492 

linear programming problem by applying KKT optimality conditions and duality theory. Finally, the 493 

proposed scheduling framework was applied to a case-study. The numerical outcomes demonstrated 494 

that: 495 

 The LSE participates in DA and balancing markets to procure energy for serving loads in a 496 

competitive market. However, this participation should be complemented by an appropriate 497 

bidding strategy to be profitable. 498 

 When the prices of DA and positive balancing markets are relatively high, an optimal strategy for 499 

the LSE is to motivate PEV owners for discharge process to participate in negative balancing 500 

market. In this way the LSE would feed the loads through PEVs discharging instead of buying 501 

from the expensive DA and positive balancing markets. 502 
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 In a competitive market, the customers usually select the most competitive LSE to trade with. In 503 

other words, they buy energy through the cheapest one and selling energy to the one(s) with the 504 

highest price offers to meet their objectives.  505 

 506 

Nomenclature 507 

Sets and indices 

,)( t  At time t and scenario . 

,)( t  At time t and scenario . 

D/Ch/Dis Index of demand of customers/Charge/Discharge mode. 

)(', SNss  Indices (set) of LSEs. 

t (T) Index (set) of time periods. 

 ω(Ω) Scenario index (set) related to market prices, customers' loads and charge/discharge process. 

  ( ) Index (set) for scenarios of rival LSEs.  

  The sign that shows the index of both responsive loads and EVs charge/discharge process. 

a b Complementarity conditions between a and b. 

Variables 
DisChDE //  Energy supplied by the under-study LSE (MWh). 

)(
 BB EE  Energy exchanged in positive (negative) balancing markets (MWh). 

DAE
 

Energy purchased from day-ahead market (MWh). 

)(wes
 Lagrange coefficient.

 D
tE  Energy deviation from the base case once participating in DR programs (MWh) 


sL  Percentage of loads supplied by rival LSEs (%). 



0s
L  Percentage of loads supplied by the under-study LSE (%). 


ssM ,  Percentage of loads transferred among the LSEs (%). 


ts ,0

Pr  Selling price offered by the under-study LSE to the customers (€/MWh). 

R  The cost models the unwillingness of customers and PEV owners to change their LSE (€). 

vRe  The revenue obtained by the under study LSE (€). 

)( Z

s

X

s SS  Binary variable for complementary slackness conditions. 

S (B) The benefit and income of customers after performing DR program (€). 

SOC  State of charge of PEV (%) . 

/
s

DisCh /
  Auxiliary variables of KKT optimality conditions corresponding with technical constraints of PEVs. 

Parameters 

)( ,, httt ElasElas
 

The self (cross) elasticity of loads. 

CapE  Capacity of PEV battery (MWh). 

int,DE  Initial demand of loads before participating in DR programs (MWh). 

D
E

 
Total demand required (MWh). 

tE


 The expected demand (MWh). 


2,1K  Constants to obtain equivalent linear expressions of lower level problem. 

DisChP /  Charged (discharged) power (MWh). 

)(PrPr
 BB  Prices of positive (negative) balancing market (€/MWh). 

DAPr
 

Day-ahead market prices (€/MWh). 

int,PrDA
t  The expected value of DA prices (€). 

)(PrPr
0


ss

 Price signals offered by rival LSEs (€/MWh). 
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