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Abstract—DC-DC switched mode power converter circuits are time varying and non-

linear in nature. This work analyzes the modeling and complex dynamics of voltage mode 

controlled of boost converter in continuous conduction mode (CCM) of operation by using 

continuous-time model. The switching converter is governed by naturally sampled constant 

frequency pulsed signals. Mathematical model of the boost converter numerically 

developed by using differential equations and tested in simulation software. The switching 

converter may exhibit fundamental, quasi-periodic & chaotic oscillations by systematic 

changing of converter’s variables. The stability of the system investigated through the locus 

of the complex eigenvalues, and the characteristic multipliers locating the on-set of Hopf 

bifurcation. The 1-periodic orbit loses its stability via Hopf bifurcation, and the resulting 

attractor is a quasi-periodic orbit. A dSpace controlled boost converter prototype 

hardware fabricated to establish the experimental studies in this work. Both the numerical 

simulation and experimental results have been included to validate the set analysis. It is 

observed, shown that the route to chaos reached by the slow-scale instability in this 

proposed work. 

 

Index Terms—State-space equations, discrete time iterative modeling, phase-plane 

trajectories, dSPACE, chaos.  

I. INTRODUCTION 

The DC-DC switching converters are renowned for their domestic as well as industrial 



 

applications from few hundred watts to several hundreds of kilowatt.  Due the presence of, the 

switches, non-linear elements (like diode) and control strategies (e.g. pulse width modulation), 

the circuits behaves non-linear and time-varying dynamical systems. The converters may show 

complex phenomenon with the variation of circuit parameters and that may cause to unusual 

magnified noise, EMI problem and non-linear oscillation [1]. The exploration and analysis in 

complex dynamics of a system had made phenomenal progression in the late nineteen century. It 

is most striking that simple systems may behave ‘random’ like oscillation by changing their 

parameters and system dynamics may deny ‘long-term predictability’ even the initial conditions 

are known [2]. Such behavior well known as chaos, which may introduce the complexity in real-

world systems. The mathematicians, engineers, and scientists from different disciplines have 

observed similar sort of complex phenomena in their systems. The study of non-linear dynamics 

of power converters are the popular ongoing research area from the last decades [1-10]. 

Investigation of complex dynamics in DC-DC switched mode Boost converter [11-17] carried 

out much attention for their versatile zone of applications. The designers have always tried to 

make the ‘Chaos free’ power supplies for sophisticated applications. Hence, the non-linear 

dynamics in switching converter is important for finding the zones of instability and useful for 

the design of practical power supplies.   

The DC-DC switching converter is externally clock driven system, the frequency of the clock 

pulse is similar to the converter’s switching frequency. Dynamics of the system is fully non-

autonomous and non-linear in nature [18-20]. The non-linear dynamics of the converter system 

depends upon the different circuit parameters of the converter like as input voltage, inductance, 

capacitance, and the switching frequency etc. The periodicity and stability of the periodic orbit 

(limit cycle) has been changed due to the systematic variation of the converter parameters that 

causes sub-harmonic oscillations in the converter [20]. It is normal habit to mention the ranges of 

parameters where the switching converter will reliably operate in steady-state condition by 

avoiding any occurrence of sub-harmonic oscillations. The parameters of the converter chosen 

based on the desired specifications like required power and voltage rating, good transient and the 

steady-state response etc. DC-DC Boost converter has problem of non-minimum phase because 

of a right half plane (RHP) zero in converter’s plant transfer function [21-22]. Therefore, the 

Type-controllers [23-26] are the most efficient to exhibit the good closed-loop response with 

parametric uncertainty, load and line variations. It is important to estimate and check the fast-



 

scale and slow-scale stability [8-0] from simulation and experimental results over a large 

parameter range because these will have an effect on sub-harmonic oscillation. Main reason for 

carrying out this work is to identify and explore the complex phenomena in power electronic 

converters. This investigation, aimed to the non-linear dynamics of power converters under 

certain operating conditions to make them suitable for practical applications. 

Even though considerable amount of work already done by the prior researchers, the presented 

work has added additional contributions, which are indifferent from the recent works [27-30]. 

The most important aim of this paper is to study, analysis and explore the theoretical and 

practical chaos for Type-III controller controlled VMC boost converter circuit by using dSPACE 

based real time controller. The study of non-linear dynamics in Type-III controller based boost 

converter by using DSP based real time platform and first time reported in this work, the main 

novelty of paper. It is noticeable that the route to chaos reached by the slow-scale instability. 

This approach is conceptually simple to implement, and the designers can easily find out the 

probable operating zone. By identifying the zones of quasi-periodic and chaotic oscillation for 

accurate range of parametric values will assist to design a chaos free power supply. 

II. DC-DC BOOST CONVERTER 

The schematic diagram of Voltage Mode Control (VMC) of Boost converter shown in Fig.1. 

The power circuit consists of a controlled switch SW (MOSFET), diode D, an inductor L, a 

capacitor C, and a load resistance RL. The switching of the MOSFET controlled by the output of 

the comparator through a driver circuit. In this present work, the main objective is to study the 

non-linear dynamics of dSPACE controlled closed-loop converter. 

A. Closed-loop operation of Boost converter in voltage mode control 
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Fig. 1. Schematic diagram of closed-loop operation of Boost converter in voltage mode control. 

 

It can be viewed from the schematic diagram (Fig.1) that the converter’s output voltage (Vo) is 

sensed. Further, scaled load voltage is compared with reference voltage (Vref). The generated 

error signal is proceeding through analog to digital (ADC) converter to the digital controller 

(Type-III controller embedded in dSPACE platform) and a control signal is from the controller. 

Finally, the pulse wide modulating (PWM) signal created after making comparison between 

control signals with high frequency triangular waveform. PWM signal is passing through digital 

to analog (DAC) converter, opto-isolator and astable multi-vibrator circuits before driving the 

gate terminal of the MOSFET switch. 

III. STATE -SPACE EQUATIONS OF DC-DC BOOST CONVERTER 

By the presence of non-linear elements (like MOSFET switch, diode) and controlling signal 

(like PWM) the converter circuits are time varying and non-linear dynamical systems [8]. The 

block diagram of the boost converter shown by the Fig.1. A free running clock is there to control 

the switching of the converter. The switch is turn-on at the beginning of each clock pulse & the 

clock frequency is similar to the switching frequency and operated under the continuous 

conduction mode (CCM). Therefore, exhibits two switching instants i.e. (a) switch on and (b) 

switch off condition. The differential equations of converter’s states derived and elaborated 

below. The output capacitor voltage (vc) and the inductor current (iL) are considered as state 

variables of the converter dynamical system. 
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Fig. 2: (a) switch on and (b) switch off circuits of Boost converter. 

Mode 1: Switch (SW) is ON: 

Applying Kirchhoff's current law (KCL)  
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Applying Kirchhoff's voltage law (KVL) 
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Now, we can write both the state equations in matrix form 
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Mode 2: Switch (SW) is OFF 

Applying Kirchhoff's current law (KCL)  
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Applying Kirchhoff's voltage law (KVL) 
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Now, we can write both the state equations in matrix form 
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The Eqn.5 and Eqn.10 combined in only one expression by neglecting parasitic elements. 
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A. Discrete Time Iterative Mapping for Non-linear Modelling of the Converter 

In the first step of the discrete time iterative mapping, the state-equations of individual 

switching instants written down and finally the difference equation for the overall system 

derived. The converter is operating here in CCM and two switched circuits can be identified, one 

corresponding to the ‘switch on’ interval ( )'
n nt t t£ <  and the other to the ‘switch off’ 

interval( )'
1n nt t t +£ < . The details derivations of the state equations described in the previous 

section. For the sake of simplicity, the parasitic elements such as rL & rc are not considered here. 

In this case, the sparseness of the matrix 1
oA can be derived from the solution of the switch on 

interval easily by taking integration to the right hand side of Eqn.5, i.e., 
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Now, putting '
nt t= to Eqn. 13 and the value of X obtained at the end of the switch-on interval. 
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where, '
n swd t T= is known as duty cycle. 

By applying Laplace Transformation on Eqn.10 in s-domain to get the solution for the switch 

off interval. Note that the Laplace transform of the input voltage is Vin/s. 
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Here, X(s) represents the Laplace transform of X(t). Now, it may be written from the Eqn.16 

that the mathematical expressions for the output capacitor voltage and the inductor current in s-

domain as 
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Now, the inverse Laplace transformation is used for the partial fraction expressions of Vc(s) 

and IL(s), the time-domain equations of vc and iL for the interval '
1n nt t t +< < can be expressed as  
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where, 21
LC

w s= - . 

Since K1, K2, K3, and K4 are the term of ( )'
nX t and that ( )'

nX t  is also the function of ( )nX t . 

The d, difference equation is involving with X(tn+1), X(tn) and d found after putting t = tn+1 and 

( )'
1 1n n swt t d T+ - = - into Eqn.19 & Eqn.20. The general form of discrete-time iterative mapping of 

the converter expressed as below: 
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IV. TYPE-III CONTROLLER DYNAMICS 

Generally, many different classical controllers like PI, PID, lead-lag etc., used to achieve 

preferred closed-loop response of the converter [21]. In case of CCM of operation of the boost 

converter a Right Half Plane (RHP), the zero is observed in control-to-output transfer function of 

converter plant. Hence, the converter shows the poor dynamic response for the occurrence of 

non-minimum phase problem [22]. This RHP zero restricts the closed-loop bandwidth of the 

switching converter and that may reason for slower response [23]. It is challenging for PID 

controller to show fast closed-loop response with parametric uncertainty, load and line changes 

[24]. Whereas, the Type controllers [21-26] reported to show better dynamic response for this 

class of switching converter. 
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Fig. 3. (a) Basic structure, and (b) Bode diagram of Type-III controller. 

 

“Type-III” controller is a lead-lead controller with a pole at origin. The origin pole is 

responsible for providing extremely high gain at low frequencies. The other pole-zero pairs may 

decrease the phase shift between the frequency of the two zeros and the frequency of two poles 

as lead controller [25]. That is why this controller delivers the phase boost of 0° to 180° with 

zero steady-state error. However, converter as a problem of non-minimum but this controller 

may provide better closed-loop dynamics. The basic structure of a Type-III controller is given in 

Fig.3(a). It can be noticed from frequency domain diagram (Fig.3(b)) that changing the locations 

of controller’s pole-zero combinations maximum 180° phase boost can be achieved. The Type-



 

III controller plant transfer function can be written from the controller’s basic structure of 

Fig.3(a). 
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It is notable, one pole (fp0_III) at origin and the other two poles are at fp1_T-III = 1/2πR3C3 and 

fp2_T-III = (C1 + C2)/2πR3C3 respectively. The zeros are presented at fz1_T-III = 1/2πR2C1 and fz2_T-III 

= 1/2π(R1 + R3)C3. The two controller gains are (i) K1_T-III = R2/R1 and (ii) K2_T-III = R2(R1 + 

R3)/R1R3. Now, the two zeros are assumed at same point and likely the two poles are considered 

same point. Thus, the double pole and double zero are placed at ωz1_T-III = ωz2_T-III = ωz1,2_T-III and 

ωp1_T-III = ωp2_T-III = ωp1,2_T-III. 
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The transfer-function for the designed classical Type-III controller of boost DC-DC converter 

given by the function as ( )
( )
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V. RESULTS AND DISCUSSION 

The non-linear phenomena in DC-DC boost converter, investigated by the simulation and 

experimental test in this section. The non-linear dynamics examined by time domain waveforms 

and phase portraits. Due to the fact that these are popular laboratory techniques to study the 

theoretical and practical chaos. 

A. Numerical Simulation Results 

The VMC Boost converter numerical developed in MATLAB/SIMULINK platform. The 

simulations test carried out cycle-by-cycle by solving the differential equations of switching 

states. The circuit parameters of converter given in Table I. To study and analysis the non-linear 

phenomena of the converter, the basic circuit parameters i.e. bifurcation parameters (like load 

resistance, input voltage etc.) of the converter has been varied by keeping other parameters fixed 

and observed the converter’s dynamics in phase plane. In this study, the load resistance (RL) 

considered as a primary bifurcation parameter. RL varied from a certain range keeping the other 



 

parameters fixed and observed the different periodicities of the limit cycles in phase plane. 

TABLE I: LIST OF CIRCUIT PARAMETERS 
Circuit Components Values 
Input Voltage Vin 5 V 
Output Voltage Vo 12 V 
Inductance L  20 mH 
Output Capacitance C 220 µF 
Load Resistance RL 25 Ω 
Switching Frequency fsw 25 kHz 
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Fig. 4. Complex dynamics of DC-DC boost converter in voltage mode control:  

(a) Period-I orbit at RL = 25.2 Ω & respective time-domain waveform of inductor current,  



 

(b) Quasi-period orbit at RL = 35.5 Ω & respective time-domain waveform of inductor current, 

(c) Chaotic operation at RL = 50.8 Ω & respective time-domain waveform of inductor current,  

(d) Period-I orbit in discontinuous conduction mode at RL = 55 Ω, & respective time-domain 

waveform of inductor current in Period-I operation,  

(e) Chaotic operation in discontinuous mode at RL = 70 Ω & respective time-domain waveform 

of inductor current in Chaotic operation. 

 

In condition, when load resistance (RL) equals to 25.2 Ω the converter works in stable (Period-

I) operation. To see the converter dynamics clearly, the sampled values of state variables like 

inductor current (iL) and output capacitor voltage (vc) fetched at the starting of each switching 

cycle in steady-state. The phase portrait and time-domain waveform of inductor current of 

fundamental periodicity (Period-I) are illustrated in Fig. 4(a). The two state variables likes vc and 

iL have taken the axis of the phase portrait. It has been observed from the phase portrait that the 

periodicity of the limit cycle is one in phase plane and this kind of dynamics technically known 

as fundamental periodic operation i.e. Period-I operation.  

In condition, where RL is gradually increased to 35.5 Ω, the converter lose the stable operation, 

and leads to slow scale instability as given by Fig. 4(b. The quasi-periodic orbit observed in this 

situation, the trajectory moves on the surface of a torus. The motion is associated with a finite 

number of frequencies, related to one another by irrational ratios and the motion appears ‘almost 

periodic’ but is not exactly periodic. This kind of instability manifests itself as Hopf bifurcation, 

whereby a stable fixed-point change to a limit cycle as a certain parameter (e.g. load resistance) 

is changed. As the bifurcation parameter remains to change, the system admits another 

periodicity not in a rational ratio to that of the first limit cycle, and the resulting system dynamics 

is quasi-periodic by nature. This slow-scale instability causes low frequency oscillation in 

practical power supply. It is important to note that the chaotic dynamics observed at RL equals to 

50.8 Ω (Fig.4(c)). At RL = 50.8 Ω, the periodicities of the phase portrait (limit cycle) turned into 

infinite (practically periodicity is more than ten), so that the chaotic dynamics observed in phase 

portrait. The chaotic orbits of the converter are attained a bounded aperiodic oscillation within a 

definite zone in the phase-plane (i.e. phase portrait). In chaotic dynamics, the same state never 

repeats, in every loop of phase-plane the state traverses through a new trajectory and the resultant 

attractor known as strange attractor [10] and the periodicity of the chaotic limit cycle is infinite. 



 

The converter dynamics observed here almost on the verge of discontinuous conduction mode 

(DCM) i.e. the lower threshold of the inductor current is almost zero. 

In the condition, RL is increased further to 55 Ω, the converter enters into DCM of operation. 

The phase portrait, respective time domain waveform shown by Fig. 4(d). Similarly, the chaotic 

operation in DCM observed at RL equals to 70 Ω (Fig. 4(e)). These slow-scale instabilities and 

chaotic behavior may deteriorate the dynamic performance of the closed-loop converter. It can 

concluded that, the fundamental periodic operation of the converter dynamics is preferred as 

operating zone for designing practical power supplies. 

B. Bifurcation Diagrams and Discussion 

Bifurcation is a mathematical study and the system dynamics is observed by qualitative 

variation of system parameters. A small smooth change made to the values of bifurcation 

parameters (i.e. load resistance, inductance, output capacitance etc.) that may cause qualitative 

changes (bifurcation) of the system. The converter driven by external clock pulse so the system 

works like a non-autonomous system and the clock frequency dictates the switching frequency. 

Noted, the time-period of clock pulse must be lesser than the load time constant RLC and the 

state variables sampled here at the clock frequency. Numerical simulation of current mode boost 

converter circuit carried out by using FORTRAN programming (Microsoft developer studio 

Fortran PowerStation 4.0) and bifurcation diagrams plotted by using Origin software (Fig.5).  

1. Characteristic Multipliers 

In ordinary differential equations, a characteristic multiplier is an eigenvalue of a mono-dromy 

matrix and the logarithm of a characteristic multiplier as characteristic exponent. They appear in 

Floquet theory of periodic differential operators and in the Frobenius method. The characteristic 

multipliers of an iterative function f(.) are the roots, λ, of the characteristic equation: 

( )( )det 0F QI J Xλ − =                                                     (25) 

where, JF(XQ) is the Jacobian matrix of f(.) calculated at the fixed point XQ and I is the identity 

matrix. In case Boost converter, the function f(.) can be written in the following form: 
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From Eqn.22, the expression written as: 



 

( ) ( ) ( ) ( )1 11 , 12 , 1. n c n n L n n inf d v d i d Vα α β= + +                           (27) 
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where, dn is a function of bifurcation parameter (κ).  

Now, the Jacobian matrix JF(XQ) is  
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Now, the characteristic multipliers calculated at the fixed point for any bifurcation parameter 

(by keeping other parameter fixed) by the above-described equations. 

 
                                         (a)                                                                          (b) 



 

 
          (c)                                                                         (d) 

Fig. 5 Bifurcation diagrams of VMC Boost converter for (a) load resistance, (b) inductance, (c) 

output capacitance, and (d) Type-III controller gain. 

I. Load Resistance as Bifurcation Parameter 

Fig.5(a) shows the bifurcation diagram for taking load resistance as a bifurcation parameter in 

VMC of boost converter. In the diagram, change of load resistance considered in X-axis and 

inductor current sampled at clock frequency (stroboscopic sampling) taken in Y-axis. The load 

resistance is varied from 1 Ω to 50 Ω with a step of 0.1 Ω while other parameters are kept fixed.  

Stable Period-I operation: The values of the characteristic multipliers are less than unity for 

RL < 25.2 Ω. So, stable fundamental periodicity or Period-I orbit is observed at 25.2 Ω. 

Stable Period-II operation: The iterative function f(.) is unstable for RL > 25.3 Ω. But the 

function f (f(.)) may be considered stable. So, the period has been doubled. Here, the fixed point 

of f (f(.)) actually contains of two alternate fixed points of f(.), and exhibits up to RL ≈ 25.7 Ω.  

Hopf bifurcation: When RL ≈ 25.8 Ω the iterative function f (f(.)) is become unstable and the 

stable iterative function is f (f (f (f(.)))). This type of bifurcation characterized by a sudden 

expansion of a stable fixed point to a stable limit cycle [10]. Systems that exhibit this bifurcation 

normalized to second-order equation, where the system has a stable fixed point, which is 

associated with a pair of complex eigen values which having negative real parts. By varying the 

parameter, the real parts become positive and the complex eigen values move across the 

imaginary axis. Thus, the fixed point loses stability and the system has followed a stable limit 

cycle.  

Routes to chaos via Hopf bifurcation: By gradually increasing the value of RL, the system 

enters in chaotic region i.e. Period-infinity and chaotic behavior is observed in the entire 



 

remaining zone. One can be noted that the system is undergone Period-I to Period-infinity 

through Hopf bifurcation. 

 

II. Inductance as Bifurcation Parameter 

The bifurcation diagram with inductance as parameter is shown in Fig.5(b). The inductance (L) 

is varied from 1 mH to 200 mH with step of 0.1 mH by keeping other parameters fixed. The 

system dynamics started with Period-I, the behavior is observed from 1 mH to 19.74 mH and 

Period-II started at 19.75 mH from two distinguished zones. The Period-II, behavior last up to 

29.24 mH bifurcates to Period-IV at 29.25 mH, than enters into chaos at 31.5 mH. This chaotic 

zone observed up to 49 mH and after that, the Period-III behavior sustains up to 58 mH. Then 

Period-III has bifurcated to Period-VI, and finally entered to chaotic zone at 71.25 mH and 

continues up to 200 mH.     

 

III. Output Capacitance as Bifurcation Parameter 

The capacitance varied for 1 µF to 500 µF with a step of 0.1 µF by keeping the other 

parameter fixed (Fig.5(c)).  Initially Period-I dynamics observed and Period-I bifurcated to 

Period-II at output capacitance (C) equals to 28 µF sustains up to the 152 µF and bifurcates to 

Period-IV. Period-III observed at 188 µF after the Period-IV and this Period-III bifurcated to 

Period-VI at 416 µF and entered to chaos at 469 µF. 

 

IV. Type-III Controller Gain as Bifurcation Parameter 

In the control circuit of CMC boost converter, a Type-III controller implemented after the 

differential amplifier. The purpose of this controller is to control the height of the control voltage 

and maintain to comparable condition with inductor current. The main objective of this section is 

to study the non-linear dynamics by varying the Type-III controller gain by keeping other 

converter parameter fixed.  

From the Fig. 5(d), observed that converter dynamics changed from fundamental periodicity to 

chaotic periodicities through Hopf bifurcation by gradually increasing the gain values of the 

Type-III controller. Here controller gain varied from 0.1×107 to 2.6×107 with a step of 0.001×107 

by keeping other converter parameters fixed. Initially, the converter dynamics is started with 

Period-I operation and this Period-I behavior is observed up to 0.35×107. After the slow-scale, 



 

instabilities noticed and these Periodicities are bifurcated by gradually increasing the controller 

gain. Finally, the converter dynamics has shown chaotic dynamics at = 0.6×107. 

 

TABLE II: THE NATURE OF CHARACTERISTIC MULTIPLIERS 
Sl. No. Controller Gain Characteristics Multipliers (Eigen Values) Remarks 

1. 0.1×107 -0.0137, -0.0159±j0.2318 Stable 
2. 0.6×107 -0.0199, -0.0097±j0.2313 Stable 
3. 1.1×107 -0.0221, -0.0054±j0.2310 Stable 
4. 1.6×107 -0.0233, -0.0020±j0.2306 Stable 
5. 2.1×107 -0.0240, 0.0008±j0.2303 Unstable 
6. 2.6×107 -0.0246, 0.0034±j0.2301 Unstable 
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Fig. 6. Locus of the complex eigenvalue pair for different gains of Type-III controller. 

 

Fig. 6, the stability of the system studied by deriving the eigenvalues of the system at the 

equilibrium point. The system has one negative real eigenvalue and a pair of complex poles. The 

real part of the complex pole may be either positive or negative real, depending upon the values 

of Type-III controller’s gain. Table II shows the variation of the eigenvalues for various values 

of controller gain and the locus of the complex eigenvalues and shown in Fig. 6. From the nature 



 

of the characteristics multipliers (i.e. eigen values) Hopf bifurcation confirmed. The movement 

of the locus from the left plane to the right plane shows that the system losses its stability when 

gain of controller is increased. 

C. Experimental Implementation VMC Boost Converter 

In order to study the practical non-linear phenomena, VMC boost converter designed and 

fabricated in the laboratory prototype scale. The circuit parameters of the converter given in 

Table I for investigation. Overall experimental setup and schematic circuit diagram are given in 

Fig.7(a) and Fig.7(b) respectively. 
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Fig. 7. (a) Experimental setup, (b) Schematic circuit diagram for closed-loop Boost converter in 

voltage mode control. 

 



 

The experimental implementation of the closed-loop converter by using dSPACE controller in 

real-time platform fabricated. The dSPACE DS1104 is a controller board installed in the PCI slot 

of the PC. It contains two processors. The main processor is a MPC8240 PowerPC with a clock 

speed of 250 MHz and 32 kB internal cache memory. It acts as the master processor with 

TMS320F240 DSP as the slave containing 4 K Word of the dual port RAM. The LEM make 

Hall-effect voltage transducer (LV-25P) is used to sense the output voltage of the converter. 

Then the scaled and filtered signal fed to the ADC port of dSPACE controller. The output of 

voltage sensor is noisy and filtered by a low pass filter with a cut-off frequency of 5 kHz. This 

filter cut-off frequency is less than the switching frequency (25 kHz) of converter. The filtered 

output voltage is limited to a maximum of 4.7 V by placing two zener diodes in back to back 

fashion. The complete control system performed in dSPACE based real time interface platform. 

The reference input compared with conditioned digital voltage output coming from ADC port of 

dSPACE. After comparing two signals, an error signal generated and this error signal passed 

through the Type-III controller and control signal obtained. Now, this control signal is 

comparing with a high frequency (similar to switching frequency) triangular waveform for 

generating a PWM signal with in dSPACE environment. PWM output from dSPACE is passed 

through DAC, Opto-isolator (MCT2E) and Astable mutivibrator (NE555) circuit before inputting 

to the gate of MOSFET (STB55N) switch of the converter. The output of the opto-isolator is not 

sufficient to drive the gate of the MOSFET switch and fed to an inverting buffer circuit using 

555-IC. The output of 555 inverting buffer connected to the gate of the MOSFET through 100 Ω 

resistance. 

D. Experimental Results and Discussion 

The phase portraits are useful method to identify the different periodic orbit to chaotic 

behavior. A DSO (Agilent Technologies DSO5014A) used in X-Y mode to capture the phase 

portraits at certain instants to study the different periodic and chaotic orbits. In this study, the 

output capacitor voltage is captured in Ch-1 (X-axis) and inductor current in Ch-2 (Y-axis) and 

measured by a FLUKE made current probe. 

 

1. Phase Portraits of Fundamental Orbit and Limit Cycle 

The experimental result of fundamental periodicity (Period-I) for the converter is observed in 

Fig.8(a) and the respective time domain wave form of inductor current is observed in Fig.8(a). 



 

Noted, the fundamental periodic operation observed for load resistance (RL) equal to 21.7 Ω. 

From the time domain waveform, observed that the waveforms repeat after one clock cycle with 

time and the Period-I operation is known as fundamental periodic operation. RL increased, the 

many other possible limit cycles observed due to the occurrence of slow-scale instabilities. At RL 

= 32.3 Ω, the limit cycle of Period-III observed in phase portrait by keeping other parameters 

remain same (Fig.8(b)). The respective time domain waveform of this limit cycle has also been 

illustrated in Fig.8(b). 

 
(a) 

 
(b) 

Fig. 8. (a) Phase portrait of Period-I operation at RL = 21.7 Ω and respective time-domain 

waveform & FFT analysis of inductor current (Ch-2), and (b) Phase portrait of limit cycle at RL = 



 

32.3 Ω, and respective time-domain waveform & FFT analysis of inductor current (Ch-2). 

 

2. Phase Portrait of Chaotic Orbit 

In chaotic mode operation, the system dynamics is attained a bounded aperiodic oscillation 

within a definite zone in phase-portrait. In chaotic dynamics, the same state never repeats, in 

every loop of phase-plane the state traverses through a new trajectory. Periodicities of limit cycle 

are infinite and in time domain the waveform of the state variables repeat after time-domain  

 
Fig. 9. Phase portraits of chaotic operation at RL = 43.6 Ω, and respective waveform & FFT 

analysis of inductor current (Ch-2). 

 

infinite clock cycle (practically above 10 clock cycles). Such situation occurs in an electronic 

circuit, the system undergoes apparently random oscillations. In this work for the value of load 

resistance of 43.6 Ω (keeping other variables remains constant) the above-mentioned 

phenomenon occurs. Fig. 9 illustrated the phase portrait of experimental chaotic orbits and the 

respective time domain waveform of VMC of the converter. Observed that the periodicities of 

the converter dynamics are high and the converter works almost on the verge of DCM operation.  

Henceforth, the sequel of this study concluded that the choice of parameters and their values 

play a key role to determine the dynamics of the DC-DC boost converter, useful for designing 

the practical power supply. 

VI. CONCLUSION 

The analysis of discrete modeling and complex dynamics of Type-III controller based switched 



 

mode boost converter with the voltage mode control studied in this work. The computational 

results observed by solving the differential equations of the switching converter and finally the 

nature of the converter’s complex dynamics verified by experimental results. The slow-scale 

instability observed throughout the study by parametric variation of the converter. Also, shown 

that as the control parameters varied, the nominal periodic orbit undergoes a Hopf bifurcation, 

quasi-periodicity, and finally enters into chaotic regime. Zones of the practical chaos, quasi-

periodic oscillation easily identified from the experimental results. It is to be noted that chaotic 

operations should not be accepted in the practical design of power supplies due to non-linear 

oscillation, EMI problem etc. For designing of the power supply one should avoid these types of 

complexities in their final products and the fundamental periodic behavior of system dynamics 

should desired for better stability in practical applications. The study of complex dynamics in 

VMC Type-III controller based DC-DC boost converter circuit observed by using dSPACE real 

time controller and firstly reported in this manuscript. Presented results suit the designers easily 

find out the probable operating zone and route to design a chaos free power supply.  
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