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Abstract-- In this paper, a risk-constrained stochastic 

framework is presented for joint energy and reserve scheduling 

of a resilient microgrid considering demand side management. 

The optimization problem is formulated to schedule the system 

operation in both normal and islanding modes by addressing the 

prevailing uncertainties of islanding duration as well as 

prediction errors of loads, renewable power generation and 

electricity price. In normal operation mode, where the grid-

connection is available, the energy and reserve of local resources 

and energy trading with the main grid is scheduled to maximize 

the operator’s profit considering feasible islanding. In resilient 

operating mode, which is triggered by a disturbance in the main 

grid, the local resources should be scheduled to supply loads with 

the lowest emergency load shedding. To balance the economy and 

security requirements under uncertainties, the optimal 

scheduling is done properly through a security-constrained 

power flow method by considering system's objectives and 

constraints. Moreover, to properly handle the uncertainties of the 

problem, conditional value-at-risk (CVaR) metric is incorporated 

with the optimization model to control the risk of profit 

variability. The proposed scheme is implemented on a test 

microgrid and various case studies are presented to verify its 

effectiveness in normal and resiliency operating conditions. 

 

Index Terms—Resilient microgrid, demand response, optimal 

scheduling, stochastic framework, conditional value-at-risk 

(CVaR). 

NOMENCLATURE 

Indices and sets 

(.).,t,s At time t in scenario s. 
min(.)  , max(.)  Minimum and maximum amount of a variable. 

t, TN
 

Index and number of timeslots in the 

scheduling horizon. 

h, HN  Index and number of scenario for islanding 

duration. 
  Timeslot index in island mode scheduling 

problems. 

s, SN
 

Index and number of normal operation 

scenarios. 

i, GN  Index and number of DG units. 

w, WN  Index and number of wind turbines. 

b, n, r Indices of system buses. 

Parameters and constants 

tjP ,  
 

Demand of j-th group of customers (kW). 

tj,Pr
 

Price of selling electricity to j-th group of 

customer ($/kWh). 

),(
,Pr sellbuy
tm  Electricity market price for buying (selling) 

energy from (to) the main grid ($/kWh). 

β Risk-aversion parameter. 
  Per unit confidence level. 

upR
ti
,

, (
dnR

ti
,

, ) Bid of up (down)-spinning reserve submitted 

by DG unit i at time t ($/kWh). 
upR
tj
,
, (

dnR
tj
,
, ) 

Bid of up (down)-spinning reserve submitted 

by loads j at time t ($/kWh). 
upR
tm

,
, (

dnR
tm

,
, ) Up (down)-regulation market prices at time t 

($/kWh). 
nonR

ti
,

,  Bid of non-spinning reserve submitted by DG 

unit i at time t ($/kWh). 

s ( h ) Occurrence probability of scenario s (islanding 

duration scenario h). 

iCU ( iCD )
 

Start-up (shut-down) cost constants of DG unit 

i ($). 

iRU ,( iRD ) Ramp-up/down rates of DG unit i. 

UTi, (DTi) 
Minimum up (down) time of DG unit i. 

lG ,( lB ) Conductance (Susceptance) of line l. 

VOLL
 

Value of lost load. 

EENS
 

Expected energy not served 

Variables 

P ( Q ) Active (reactive) power (kW). 

tmP ,  
Power exchange between the microgrid and 

the main grid (kW). 
),(

,
sellbuy

tmP
 

Active power bought (sold) from (to) the main 

grid at time t (kW). 
)(

),(
QP
rnfl

 
Active (reactive) power flowing between bus n 

and r. 

iSUC ,( iSDC ) Start-up (Shut-down) cost variables of DG unit 

i ($). 
up
tiR , (

up
tjR , ) Up-spinning reserve deployed by DG unit i 

(customers in group j). 
dn
tiR , (

dn
tjR , )

 
Down-spinning reserve deployed by DG unit i 

(customers in group j). 
up

tmR ,  (
dn

tmR , )
 

Up (down)-spinning reserve deployed by main 

grid (kW). 
non
tiR ,  Non-spinning reserve deployed by DG unit i. 

j
htE ,  

Cross elasticity of period t to period h. 

shed
tjP , ,(

shed
tjQ , ) Active and reactive power of emergency load 

shedding (kW).  

stiu ,,  Commitment status of DG unit i, {0, 1}. 

stiy ,, ( stiz ,, ) Start-up (shut-down) indicator of DG i, {0, 1}. 

st ,
 

Auxiliary variables, {0, 1}. 
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Programs 
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I. INTRODUCTION 

icrogrids, as main building blocks of smart grids, can be 

viewed as small-scale power systems with controllable 

loads, distributed energy resources (DERs) and ability of self-

supply and islanding. Utilizing of microgrids, in which DERs are 

located near the end-use customers, can improve the resiliency of 

power systems by lowering the possibility of load shedding [1]. 

Resiliency represents the ability of a power system to withstand 

severe disturbances without experiencing any major disruption, 

and further enabling a quick recovery and restoration to the 

normal operation state [2]- [3]. Moreover, deploying microgrids 

with self-supply and islanding capabilities is considered as one of 

the most effective solutions for supplying local loads when a 

severe weather-related event occurs in the main grid and a power 

interruption is inevitable [4]. On the other hand, to make 

microgrids more flexible, they should be evolved into smart 

active networks by implementing innovative concepts such as 

demand response (DR) actions [5]- [6]. 

    Multiple research works are conducted to solve the optimal 

energy management problem of microgrids under uncertainties 

considering DR programs [7]-[9]. Authors in [7] have proposed a 

two-stage real-time demand side management (DSM) method for 

a microgrid including different time scales under different 

uncertainties. The operation cost is minimized by applying a 

model predictive control-based dynamic optimization considering 

the uncertainties imposed by both supply and demand sides in the 

microgrid. In [8] a two-stage stochastic programming model has 

been proposed for optimal scheduling of commercial microgrids 

equipped with 100% renewable energy sources (RESs) to handle 

the existing uncertainties. In that model, the microgrid operator 

maximizes its profit by optimizing bidding strategy in the day-

ahead market, and minimizes the imbalance cost through 

adjusting the DERs in the real-time balancing market. In [9] a 

potential game approach has been presented to distribute 

operational optimization for energy management of microgrid 

with high penetration of RESs and DR resources.  

     In none of the above references, microgrids resilience issues 

have been addressed in energy management models and 

resiliency benefits of microgrids have not been discussed. In [10], 

a stochastic scheduling model has been presented for enhancing 

the resiliency of microgrids considering feasible islanding and 

survivability of critical loads. The optimization problem has been 

formulated for both normal and emergency conditions where the 

normal operation is coordinated with the emergency operation to 

enable a feasible islanding. Moreover, in [11], a two-stage 

adaptive robust formulation has been presented for day-ahead 

scheduling of resilient-microgrid to minimize the damaging 

consequences of islanding events. In both of the two mentioned 

works, the prevailing uncertainties associated with unscheduled 

islanding events after a disturbance, which can significantly affect 

the operation of microgrid, have not been considered.  

    The impact of prevailing uncertainties of islanding duration on 

the scheduling of microgrids is addressed in a number of research 

works [12]-[14]. In [12], an optimal scheduling model has been 

proposed for minimizing the load curtailment of microgrids 

during extended islanded periods considering uncertainties in 

islanding duration, loads and generations. In [13], a two-stage 

stochastic framework has been presented for optimal scheduling 

of resilient microgrids. The framework minimizes the operation 

cost of microgrid while taking into account the prevailing 

uncertainties associated with wind power, electric vehicles and 

electricity prices. Moreover, a two-stage adaptive robust 

optimization model has been presented in [14] for scheduling of 

microgrids in both grid-connected and islanded modes. The 

objective is to minimize operating cost of microgrid under the 

worst-case scenarios associated with RESs and islanding events. 

    The uncertainties associated with islanding duration periods, 

electricity demand and prices as well as output power of RESs 

introduce risk into microgrid operator scheduling problem. 

Therefore, risk measurement plays a significant role in 

optimization under uncertainties and provides valuable 

information to decision makers. In [15] an optimal energy 

management strategy has been proposed for a microgrid equipped 

with battery storage in a way to enhance the resilience of the 

microgrid while maintaining its operational cost at a minimum 

level. Conditional value-at-risk (CVaR) as a risk measurement 

index has been used in the formulation to account for the 

uncertainty of RESs power and the electricity price. Also, in [16], 

a risk-constrained stochastic framework has been proposed for 

optimal scheduling of microgrids over unscheduled islanding 

periods. The objective of that work was to minimize the expected 

value of operation cost, while the risk caused by uncertainties in 

islanding duration, loads and renewable generation was addressed 

via CVaR approach. However, the impact of risk aversion on 

decision-making problem and also the effects of implementing 

DR programs on resilience improvement of microgrids have not 

been analyzed properly.  

    The authors in [17] have proposed a risk-constrained two-stage 

stochastic framework for joint energy and reserve scheduling of 

islanded microgrids where risk on profit variability is considered 

using CVaR. Likewise, in [18] a stochastic risk-constrained 

framework has been presented for optimal scheduling of  

microgrids in islanded mode to evaluate the influence of DR 

programs on security and economic issues, considering risk 

management strategy. In addition, the authors in [19] and [20] 

have proposed stochastic optimization frameworks to maximize 

the expected profit of a microgrid operator under uncertainties, 

where the trade-off between maximising the operator's profit and 

the risk of getting low profits in undesired scenarios has been 

modelled by CVaR method. The main focus of two mentioned 

studies was on investigation of the influence of consumers’ 

participation in DR programs and their emergency load shedding 

for different values of lost load on the expected profit, CVaR, 

expected energy not served and scheduled reserves of the 

microgrid. However, the operation of microgrid in grid-connected 

mode has not been considered in the mentioned works. Moreover, 

there is lack of systematically addressing the effect of 

uncertainties of microgrid islanding events on the economy and 

security constraints. 

     In this paper, a risk-constrained stochastic model is presented 

for optimal scheduling of a resilient-microgrid considering DR 

participants. The problem is formulated as a linear programming 

model incorporated with CVaR to manage the energy and reserve 

capacity in order to maximize expected profit of the operator. The 

presented model addresses the prevailing uncertainties of 

islanding duration after a disturbance as well as prediction errors 

of wind energy, demand and electricity price. Also, by 

incorporating security-constrained power flow in the proposed 

solution method, reliable operating conditions are guaranteed in 

an uncertain environment, especially during an islanded mode. In 

addition, by incorporating CVaR into the model, the impacts of 

risk-aversion on decision-making of the operator are evaluated for 

normal and resilient operations of microgrid. The scope of models 

in technical literature and the contribution of this work is 

M 
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summarized in Table I. Compared to the existing studies, the 

main contributions of this paper can be summarized as follows: 

 A risk-constrained stochastic optimization model is 

presented for joint energy and reserve scheduling of resilient 

microgrids considering DR programs. In the proposed 

model, both normal operation uncertainties (including 

uncertainties associated with output power of RESs, loads 

and electricity prices) and contingency-based uncertainties 

(including uncertainties of islanding duration events) are 

addressed, properly.  

 The sensitivity of the microgrid profit, reliability indices and 

the operator decision making in cases with and without the 

participation of customers to price-based DR programs have 

been studied by implementing a security-constrained power 

flow method in the scheduling process that can guarantee 

reliable operation of the microgrid under uncertainty, 

especially in islanding periods. 

 Comprehensive case studies are presented to analyze the 

impact of islanding durations on decision making of the 

operator and resilient operation of microgrids. Also, the 

effect of standard deviation (SD) of islanding duration events 

on the on decisions is investigated.  

    The rest of this paper is organized as follows. The proposed 

optimal scheduling concept is described in Section II. 

Mathematical formulation of the studied problem is presented in 

Section III. Case studies together with simulation results are 

discussed in section IV. Finally, the major findings of the paper 

are concluded in Section V.  

 
TABLE I 

 SUMMARY OF LITERATURE REVIEW AND SCOPE AND 

CONTRIBUTION OF THIS PAPER 

References 
[7]- 

[9] 

[10] 

[11] 

[12]- 

[14] 

[15]-

[16] 

[17]-

[18] 

[19]-

[20]  

This 

study 

Microgrid 

operation 

mode 

Grid-

connected  
√ √ √ √ - - √ 

Islanded  
- 

 
√ √ √ √ √ 

√ 

 

Resilience issue - √ √ - - - √ 

Risk-measurement - - - √ √ √ √ 

System security - √ - √ √ √ √ 

Reliability issue - - - - - √    √ 

Reserve scheduling - - - √ - √ √ 

Uncertainty of RESs √ √ √ √ √ √ √ 

Uncertainty of prices √ √ √ √ √ √ √ 

Uncertainty of demand √ √ √ √ √ √ √ 
Uncertainty of islanding 

events 
- - √ - - - √ 

 

II. DESCRIPTION OF THE PROPOSED SCHEDULING STRATEGY 

     Fig. 1 shows general structure of the under-study microgrid 

that consists of local units such as wind generation and 

dispatchable units, responsive and non-responsive loads. The 

dispatchable units in the microgrid could be micro-turbines, fuel 

cells, gas engines, etc. The microgrid is equipped with an energy 

management system (EMS) to schedule its local resources and to 

trade energy with the main grid. In this scheme, the customers are 

equipped with house energy management controllers and are able 

to respond to the electricity prices by adjusting their demand to 

reduce their consumption costs. To model the elastic behavior of 

the customers, economic DR model presented in [17] is used in 

this paper.  
     The operation of the microgrid is decomposed into normal and 

resilient operations. At the normal operation, microgrid is 

connected to the main grid, thus the EMS schedules the local 

DERs and energy exchange with the main grid to maximize the 

operator’s profit while considering a possible islanding event. 

However, when a severe disturbance event occurs in the main 

grid, microgrid can switch into resilient operation (i.e., islanded 

mode). In this mode, EMS schedules available local resources to 

supply local loads with the lowest mandatory load shedding. In 

this model, two categories of uncertainties are modeled: normal 

operation uncertainties and contingency-based uncertainties.  

 
 

Static

Switch Power

 Flow

.PCC

Responsive 

Loads

Non-responsive 

Loads
EMS

...

Wind Generation UnitsDispatchable DG Units

...

 
Fig. 1. The considered scheme of the under-study microgrid.  
 

    The uncertainties associated with wind energy, loads and 

electricity prices are considered as normal operation uncertainties 

while the uncertainties of islanding duration events are deemed as 

contingency-based uncertainties. In this study, normal probability 

distribution functions (PDFs) are employed for representing both 

normal and contingency-based uncertainties [13]. Monte-Carlo 

simulation (MCS) is also used for scenario generation based on 

random sampling from related PDFs and then K-means algorithm 

[19], [21] is applied to reduce the number of scenarios into a 

limited set representing well enough the uncertainties. By 

considering number of SN  scenarios for representing normal 

operation uncertainties and HN  scenarios for modelling the 

contingency-based uncertainties, a total number of SN × HN

scenarios will be considered for stochastic scheduling.  Since the 

two groups of uncertainties are independent [22], the occurrence 

probability of a normal scenario s ( s ) and an islanding period 

that lasts for h time intervals ( h ) would be equal to hs   .  

     Fig. 2 depicts an overview of scheduling horizons of EMS in 

the proposed strategy. As shown, the time horizon is assumed to 

be comprised of 24 time periods in which a probabilistic islanding 

event occurs together with related PDF. It should be noted that 

islanding events is considered as a stochastic parameter that its 

probability is presented with related PDF that is calculated based 

on previous records of the islanding durations of the microgrid. 

The forecasted errors of islanding duration events are modeled 

using its associated PDF in which the mean values are equivalent 

to the forecasted values of stochastic variable. Here, the PDFs are 

divided into seven discrete intervals with different probability 

levels in which the mean values of PDFs are equivalent to the 

forecasted values of the islanding durations in each time period. 
The proposed stochastic optimization is solved to determine the 

optimal schedule of the microgrid resources over the estimated 

islanding durations. In the normal operation, unit commitment 

and power trading with the main grid are determined by 

considering responsive loads and their share in allocating reserve 

capacity. In addition, to ensure a feasible islanding following a 

disturbance event, the energy and reserve resources should be 

rescheduled by considering probability of disturbance occurrence 

and other uncertain parameters. In resilient operation mode, by 
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deploying scheduled reserves during islanding mode, the amount 

of load curtailment should be minimized.  
In the proposed model, an economic model is considered for 

participation of end-use customers in DR programs by using load 

curtailment and load shifting options [23]-[24]. In order to 

enhance the model practicality, the mandatory load shedding is 

applied to non-critical loads when sufficient generation is not 

available. Moreover, it is assumed that the responsive loads can 

provide up and down spinning reserve capacity when it is 

required. 
 

0  2

0.382

0.2420.242

0.0610.061

2  33

0.0060.006

Forecasted error

t+11 t+12 t+13t+10t+9 t+14 t+15
...

t+1 t+2t t+23 t+24t+21
... ...

Scheduling horizon of EMS in normal operation

Scheduling time

Event occurrence time

P
ro

b
a
b
il

it
y
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en

si
ty

   Fig. 2. Scheduling horizons in the proposed scheduling strategy. 
 

The optimal scheduling is done properly through a unit 

commitment algorithm and AC power flow procedure by 

considering system's objectives and constraints. Moreover, CVaR 

at the confidence level α, (α-CVaR), is incorporated with the 

optimization model to evaluate the profit risk associated with the 

operator’s decisions in different conditions. The proposed optimal 

scheduling is formulated as an efficient mixed-integer linear 

programming (MILP) model and solved by using commercially 

available software packages. The Benders decomposition method 

is also employed for promoting the computational tractability of 

the problem. The outcomes of the proposed model provide 

optimal scheduling of DERs and DR, reserves capacity allocated 

by dispatchable units, responsive loads and the main grid, 

expected energy not served (EENS) and also energy trading with 

the main grid while guaranteeing the resiliency of the microgrid. 

III. PROBLEM FORMULATION 

A. Objective Function 

The objective of the proposed stochastic scheduling algorithm is 

to maximize the expected profit of the microgrid in both normal 

operating and islanded modes during the scheduling time horizon. 

As mentioned earlier, the scheduling process is updated several 

times in the study horizon. If the occurrence probability of 

islanding in hour t is considered as h , then the microgrid will be 

operated in normal condition with a probability of (1- h ). The 

objective function of normal mode (OFNORMAL) and islanded 

mode (OFISLAND) over the entire possible realization scenarios of 

different uncertainties can be formulated as below:  

 ISLANDNORMAL OFOFMax   
(1) 

]
)1(

1
[

)()1(

1

1

4

1

321

1

s

N

s

s

N

t

N

s

s

N

h

hNORMAL

S

T SH

FFFFOF










 



 






 (2) 

1

, , , , 2 4

1 1 1 1

,

1 1

[ (Pr . ) ]

1
[ ]

(1 )

S JT H

SH

N NN N t

ISLAND h s j t s j t s

t h t s j

NN

s h s h

h s

OF P F F




 

    


 

    

 

  

 


  



 (3) 

where, functions F1 to F4 are defined as follows: 





JN

j

stjstj
buy

stm
buy

stm
sell

stm
sell

stm PPPF

1

,,,,,,,,,,,,1 .Pr.Pr.Pr

 

(4) 
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])([

,
,

,,
,

,,
,

,

,,,,

1

,,2
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dnR
ti
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ti
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upR
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stisti

N

i

stii

RRR

SDCSUCPCF
G

 


  (5) 

dn
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dnR
tm

up
tm

upR
tm RRF ,

,
,,

,
,3    (6) 

])[(

1

,,,,
,
,,

,
,4 




JN

j

tj
shed

stj
up

tj
upR
tj

dn
tj

dnR
tj VOLLPRRF   (7) 

     Function F1 represents total income from trading energy with 

the main grid and revenue of selling energy to customers. F2 

denotes the costs of energy and reserves provided by dispatchable 

units together with their startup and shutdown costs. Function F3 

represents the cost of reserve capacity provided for the main grid 

and F4 represents the cost of reserve allocated by responsive loads 

and cost of emergency load shedding. Moreover, the second terms 

in (2) and (3) denote CVaR of a candidate solution. Parameter  is 

used to model the tradeoff between the expected profit and the 

risk of profit variability. Also, auxiliary variable   is used to 

compute the value at risk, and s ( hs, ) is the difference between 

microgrid operation cost in scenario s and   [13]. It should be 

noted that the operating cost of RESs is neglected in this study. 

B. Problem Constraints 

     Linearized Power Flow Equations: These equations model the 

real-time operation of microgrid through AC power flow for each 

scenario and at each time interval. Equations (8) and (9) 

respectively represent the active and reactive power balance 

between production and consumption at node n as follows: 





BN

r

P
strn

shedn
stj

n
stj

n
stw

n
sti flPPPP

1

,),,(
,
,,,,,,,, (8) 





BN

r

Q
strn

shedn
stj

n
stj

n
stw

n
sti flQQQQ

1

,),,(
,
,,,,,,,, (9) 

    By considering bus 1 as the slack bus, which is connected to 

the mains, Pm,t,s   and Qm,t,s must be added to the left side of  (9) 

and (10), respectively. Also, P
strnfl ,),,(  and Q

strnfl ,),,(
are the active 

and reactive power flows between bus n and r at time t and 

scenario s, respectively. In this study, linearized form of (10) and 

(11) is used with the following assumptions [26]: (i) over a 

typical range of voltage amplitude )05.195.0( puVpu  , it 

can be assumed 0)( 2
,,,,  strstn VV , and  (ii) over a typical 

range of difference in voltage phase angle across branch n and r, 

i.e.,
10,,,,  strstn  , it is assumed that 

strstnstrstn ,,,,,,,, )sin(   and 1)cos( ,,,,  strstn  .  

)()1( ,,,,,,,,,,,),,( strstnrnstrstnrn
P

strn BVVGlf   (10) 
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)()1( ,,,,,,,,,,,),,( strstnrnstrstnrn
Q

strn GVVBlf   (11) 

    To satisfy network congestion, the active and reactive line 

flows should be limited as: 
max,
),(,),,(

max,
),(

P
rn

P
strn

P
rn lflflf  (12) 

max,
),(,),,(

max,
),(

Q
rn

Q
strn

Q
rn lflflf  (13) 

      Moreover, to ensure a safe operation in terms of allowed 

voltage magnitude and phase angle, the following constraints 

should be satisfied: 
max
,,,

min
, tnstntn VVV   and,   stn ,,   (14) 

     Additionally, the following exchange power capacity 

constraints must be considered for buying/selling power from/to 

the main grid in each time interval. 

sell
stm

buy
stmstm PPP ,,,,,,   (15) 

st
buy

tm
buy

stm PP ,
max,
,,, .0   (16) 

)1(0 ,
max,
,,, st

sell
tm

sell
stm PP   (17) 

     Demand Response Model and Constraints: Customers 

participate in DR programs with sheddable and shiftable loads by 

using load curtailment and load shifting options [27]. In this 

study, the economic model of responsive loads is extracted from 

[27] where the demand of customers are modeled based on 

elasticity concept which is defined as demand sensitivity with 

respect to the price. Using this concept, the amount of demand 

after participation in DR is obtained as follow: 

j
ht

T
E

N

h
j
hthj

hj
tj

DR
tj

E
PP ,)

)(1

1

Pr

Pr
(.

1
1

,
int
,

,int
,, 




  (18) 

where,
int
,tjP  and 

int
,Pr hj denote the initial value of active power of 

load j and electricity price before applying DR program, 

respectively. When the microgrid faces a capacity shortage in a 

working scenario, the emergency load curtailment can be 

employed to maintain system security. Definitely, the amount of 

curtailed emergency load is less than maximum active power of 

the load [19]. 
max
,,,0 tj

shed
stj PP  (19) 

    Also, by assuming a certain power factor for load j ( jcos ), 

the amount of curtailed reactive power is calculated as follow:  

)tan(cos 1
,,,, j

shed
stj

shed
stj PQ  (20) 

     Dispatchable Distributed Generators Constraints: These 

constraints include power capacity limits of distributed generators 

(DGs) [17], ramping up/down limits (22)-(23), startup/shutdown 

costs limits (24), as well as minimum up/down time limits (25)-

(26). 

stiististii uPPuP ,,
max

,,,,
min ..   (21) 

stiistiististi yPyRUPP ,,
min

,,,1,,, .)1.(    (22) 

stiistiististi zPzRDPP ,,
min

,,,,,1, .)1.(   (23) 

stiististiisti zCDSDCyCUSUC ,,,,,,,, .;.   (24) 

stii

UTt

th

sti yUTu
i

,,

1

,, .




 (25) 

stii

DTt

th

sti zDTu
i

,,

1

,, .)1( 




 (26) 

Wind Power Constraints: the amount of utilized wind power in 

each scenario and at each examined interval is limited to the 

maximum available power. 
max

,,0 wstw PP   (27) 

Reserve Constraints: The limits of reserve services offered by 

dispatchable units and responsive loads determined by constraints 

(28)-(32) 

titii
up
ti PuPR ,,

max
,0   (28) 

tiiti
dn
ti uPPR ,

min
,,0   (29) 

)1(0 ,
max

, tii
non
ti uPR   (30) 

min
,,,0 tjtj

up
tj PPR   (31) 

tjtj
dn

tj PPR ,
max
,,0   (32) 

Moreover, it is assumed that the microgrid can provide reserve 

services to the main grid. The amounts of these reserves are 

limited by:  

tmtm
up

tm PPR ,
max

,0    (33) 

tmtm
dn

tm PPR min
,,0   (34) 

 

C. The Problem Solution Methodology 

    To solve the proposed problem, both normal operation 

uncertainties and contingency-based uncertainties are modelled 

using MCS method according to their probability distributions 

and a set of 100 scenarios is generated for each stochastic 

parameter. Here, uncertainties associated with wind generation, 

market prices, loads and the uncertainties of islanding duration 

events are considered. The sets of generated scenarios of 

stochastic parameters are combined to build a scenario tree with 

108 scenarios. To reduce the computation complexity of the 

optimization problem, K-means algorithm [21] as a proper 

scenario-reduction technique is applied to reduce scenario tree to 

1000 scenarios. In the next step, these reduced scenarios are 

implemented to the stochastic optimization model to maximize 

the expected profit of the microgrid as well as to minimize the 

total customers’ payments with the optimal scheduling of supply 

and demand-side energy and reserve resources and optimal 

trading with the main grid. In this regard, in the first stage, 

decisions are submitted to the day-ahead market for the next day. 

In this stage, the status of unit commitment and outputs of 

committed DERs units as well as the hourly dispatched quantities 

and the hourly energy and reserve prices of the day-ahead market 

are determined. Then, the electricity prices, the demand loads and 

the RESs output power are updated based on their new 

information. In the second stage, new decisions are submitted and 

the real-time market is cleared for an hour. The decision variables 

of this stage are power generations in scenarios, reserves of 

dispatchable units, load demand after implementing DR 

programs, deployed reserves of DR, energy traded between the 

microgrid and the main grid, auxiliary variable used to compute 

the CVaR.  
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IV. SIMULATION AND NUMERICAL RESULTS 

A. Test System and Main Assumptions 

     To demonstrate the effectiveness of the proposed method, it is 

implemented for scheduling of a typical microgrid which includes 

five dispatchable DG units, three wind turbines (WTs) as well as 

eight groups of responsive loads. More details about the test 

system can be found in [19]. The data associated with the 

installed dispatchable DGs are summarized in Table II (MT, FC 

and DE stand for micro-turbine, fuel cell and diesel engine, 

respectively) [18]. The hourly forecasted values of microgrid 

load, WTs output power and the electricity price are depicted in 

Fig. 3. Here, load and wind power data and are extracted from 

[19] and electricity prices are from Nordpool market [28]. 
Also, it is assumed that prediction errors of load, WTs output 

power and electricity price follow normal distributions with SD 

equal to 8%, 5% and 10% of the forecasted values, respectively 

[29], [30]. Moreover, the price elasticity of the responsive loads is 

extracted from [17]. Furthermore, it is assumed that islanding 

duration of the microgrid follows a normal distribution with a 

mean of 12 hours and different values of SDs. The probabilities 

associated with different islanding durations are depicted in Table 

III [30]. 

     It should be mentioned that all required data has been gathered 

from appropriate resources  to keep the consistency throughout 

the study and draw reliable conclusion while clearly justifying the 

contributions of this work compared to previous studies 

considering similar set of input information namely load and 

generation profiles. Also real energy market information (i.e., 

electricity prices are from Nordpool market) has been used to 

make fair cost/benefit analysis.  

 

 
Fig. 3. The hourly forecasted values of microgrid load, WTs output power and 
electricity price. 
 

TABLE II 

TECHNICAL DATA OF DISPATCHABLE DG UNITS 
 

Shut-down 

cost ($) 

Start-up 

cost ($) 

Operation 

cost ($/kWh) 

Pmax
 

(kW) 

Pmin 

(kW) 

DGs 

Type  

0.08 0.09 0.9 150 25 MT1 

0.08 0.09 1 150 25 MT2 

0.09 0.16 2.4 100 20 FC1 

0.09 0.16 2.6 100 20 FC2 

0.08 0.12 3.1 150 35 GE 

 
TABLE III 

DIFFERENT ISLANDING DURATION SCENARIOS 
 

Hours 9 10 11 12 13 14 15 

h  0.006 0.061 0.242 0.382 0.242 0.061 0.006 

 

    The simulation process is presented as follows. At first, Monte-

Carlo simulation method is used to generate 2000 scenarios for 

stochastic parameters which are then reduced to 27 final scenarios 

using K-means algorithm [21]. Accordingly, the reduced scenario 

set is applied to the proposed optimization problem to maximize 

the expected profit of the microgrid operator. The required coding 

and optimization algorithm is carried out on a PC with 4 GB of 

RAM and Intel Core i7 @ 2.60 GHz processor with GAMS 

software and CPLEX solver considering an optimality gap of 0.0 

[31]. The computation time in different cases is less than two 

minutes which further illustrates the practical merits of the 

proposed strategy. 

B. Numerical Results  

     To investigate the performance of the proposed method, the 

following four cases are defined. In all cases, the scheduling 

horizon is considered one day which is divided into 24 time 

intervals. Moreover, the values of lost load (VOLL) and 

confidence level, , are set to 1 $/kWh and 0.95, respectively.  

Case 1: Optimal scheduling of microgrid in normal condition 

without considering DR actions. In this case, the microgrid 

operator maximizes its expected profit while only normal 

operation uncertainties are taken into account. 

Case 2: Similar to Case 1 while DR programs are also included in 

the scheduling process.  

Case 3: The microgrid operator determines the optimal resilient 

scheduling considering the islanding duration scenarios specified 

in Table III. In this case, DR actions are not considered.  

Case 4: Similar to Case 3 but with participation of customers in 

DR programs. 

     Fig. 4 depicts the efficient frontiers for different cases. Here, 

the optimal solution is obtained only for 10 values of risk-

aversion parameter β by modifying this parameter from 0 (risk-

natural case) to 50 (risk-averse case). This figure shows that how 

the expected profit decreases as risk aversion increases, i.e., as the 

microgrid operator adopts increasingly risk-averse positions. 

Moreover, it shows that how CVaR, which represents the average 

expected profit of the worst-case scenarios, increases at the same 

time, i.e., the microgrid operator reduces its expected profit but 

also its profit volatility. Also, CVaR is negative in all cases that is 

due to profit in some scenarios is negative and there is a 

probability of experiencing financial losses. Therefore, based on 

the obtained efficient frontiers and negative values for CVaR, it 

can be deduced that achieving profit with an expected value 

acceptable for the operator could also show a non-negligible 

probability of experiencing negative profits or losses. 

      By comparing the results in different cases it is understood 

that when customers participate in DR program, the expected 

profit and CVaR increase. Since, in case of with DR, the 

operating cost of DG units decreases and hence the operator 

imports less energy from the main grid and therefore the rate of 

decrement in the expected profit is lower than that in the case 

without DR. Also, in cases with DR, the uncertainty in the system 

environment increases but the undesired scenarios are reduced 

and consequently the values of CVaR increases. Moreover, 

comparison of results in different cases in the same figure shows 

when a resilient scheduling according to the credible islanding 

contingencies is considered (i.e. cases 3 and 4), the expected 

profit decreases and CVaR increases in comparison with the 

normal operations (i.e. cases 1 and 2).  In fact, the operator loses a 

part of its profit during islanded mode, due to increasing 

microgrid operation costs and/or increasing cost of mandatory 

load shedding in islanding durations. Therefore, the consideration 

of islanding event scenarios causes a relatively strong profit 

reduction in some unfavorable scenarios. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Operator’s expected profit versus CVaR for different values of β, (a) 
case 1, (b) case 2, (c) case 3, and (d) case 4. 
   Since, the SD of energy price forecasts are considered higher 

than that of for responsive loads, trading energy with upstream 

network might cause the occurrence of more undesirable 

scenarios. Therefore, when customers participate in DR, the 

number of scenarios with negative profits decreases and 

consequently the values of CVaR in cases 2 and 4 are higher than 

those in cases 1 and 3, respectively. Additionally, by increasing 

the values of parameter β from 0 to 50, the expected profit of 

cases 1, 2, 3 and 4 are reduced by 39%, 18%, 19% and 16% but 

their associated CVaR are increased by 32%, 88%, 18% and 71%, 

respectively. These results show that by implementing DR, the 

dependency between profit and risk aversion of the operator 

reduces in both normal and resilient microgrid. Moreover, the 

impact of risk averse on the CVaR in the cases with DR is 

significantly higher than that of in other cases. The values of 

CVaR in cases 3 and 4, where microgrid resiliency is considered, 

have increased compared to cases 1 and 2 where microgrid is 

operated in normal condition. This happens due to the fact that 

ensuring a feasible islanding after a disturbance event, 

necessitates rescheduling of the energy and reserve resources 

according to the worst possible scenarios of islanding mode. Fig. 

5 depicts the total operation cost of dispatchable units in different 

cases versus risk aversion during scheduling horizon. As can be 

seen, in lower risk aversion (i.e. β< 0.25), the operation cost of 

DGs in cases with DR actions is lower than those in cases without 

DR, while in higher values of risk aversion the opposite trend 

happens. As mentioned before, in lower values of β, the operator 

tries to supply more loads through the main grid to maximize its 

expected profit. Moreover, in cases with DR in which the 

customers shift their demands to off-peak hours, the provided 

power from DGs reduces at peak periods and as the result, the 

operation cost of DGs decreases. However, in higher degrees of 

risk aversion, the cost of DGs in cases with DR is more than those 

in other cases. The total cost of EENS and scheduled reserve 

versus risk aversion are illustrated in Fig. 6. As can be seen from 

Fig. 6 (a), when customers participate in DR programs, the total 

cost of scheduled reserve decreases. In fact, by implementing DR 

actions, three resources including DR, DGs and the main grid 

provide required reserve for the microgrid, competitively; which 

results to reserve cost decrement. Moreover, reserve cost in cases 

3 and 4 are higher than those of in cases 1 and 2, respectively due 

the presence of uncertainties. Additionally, it is observed that the 

supplement of scheduled reserves depends on the microgrid 

operator's risk attitude. A higher risk aversion yields a lower 

probability of mismatch between supply and demand and thus 

entails less required reserve. That is because when considering a 

higher risk aversion, DG units are scheduled in order to mitigate 

the probability of mismatch between supply and demand. 

Therefore, the number of worst scenarios reduces and as a result, 

a lower reserve is required to be scheduled to accommodate the 

uncertainties of the microgrid. In addition, Fig. 6 (b) shows that 

by increasing risk aversion, the cost of EENS increases in all 

cases non-monotonically. Moreover, in cases 2 and 4, due to 

allocating more reserve capacity through incorporating responsive 

loads, the amount of load shedding decreases which ultimately 

ends in lower EENS cost compared to the other two cases. 

Moreover, cost of EENS decreases during unscheduled islanding 

periods, due to higher reserve capacities allocated in these cases 

in comparison with normal operation cases. Also, Fig. 6 shows in 
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TABLE IV 

 EFFECTS OF RISK AVERSION ON THE COST OF SCHEDULED RESERVE IN DIFFERENT CASES 
 

  
Case1 Case2 Case3 Case4 

DGs
RC  

m
RC  

DR
RC  

DGs
RC  

m
RC  

DR
RC  

DGs
RC  

m
RC  

DR
RC  

DGs
RC  

m
RC  

DR
RC  

0 176 49 0 127 38 24 191 40 0 118 29 20 

0.5 176 34 0 107 3 24 190 32 0 113 4 20 
1 176 30 0 95 0 23 189 30 0 103 2 19 

5 171 23 0 82 0 22 188 23 0 92 2 19 

10 168 20 0 76 0 21 184 12 0 88 0 18 
20 164 16 0 75 0 21 182 11 0 86 0 18 

50 161 12 0 75 0 20 172 8 0 85 0 17 
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lower values of parameter β that the microgrid reserve providers 

allocate more scheduled reserve, the amount of mandatory load 

shedding reduces, and so, the cost of EENS decreases. 

    Table IV illustrates more details about the impact of risk 

aversion on the costs of scheduled reserves provided by 

dispatchable DGs (
DGs
RC ), DR (

DR
RC ) and the main grid (

m
RC ). 

As observed, in higher values of risk aversion, the available 

resources are scheduled such a way that the probability of 

mismatch between supply and demand mitigates and as a result 

the required reserve decreases. In fact, when the operator 

becomes more risk-averse, it is willing to sacrifice high profits in 

the best scenarios in the hope of avoiding low profits or even 

losses in the worst scenarios. Therefore, by decreasing the 

number of worst scenarios, the cost of scheduled reserves of all 

resources decreases.  

 

 
Fig. 5. Total cost of DG units in different cases versus risk aversion. 

    

 
(a)  

 
(b) 

Fig. 6. Costs of different cases versus risk aversion, (a) cost of EENS, and (b) 

cost of scheduled reserves 
 

 In fact, when islanding period lasts longer, the operator tends to 

schedule local resources instead of the main grid, and as the 

result, the purchasing energy from the main grid decreases. In 

order to investigate the impact of SD associated with islanding 

duration on the expected profit and CVaR, the proposed problem 

is solved for two values of SD, i.e, SD=1 hour and SD=2 hours, 

and the results are illustrated in Fig. 7. 

     The total amount of energy traded between the microgrid and 

the main grid over the 24-hour period is compared in Table IV. In 

this table, E1 (E2) represents the amount of energy bought (sold) 

from (to) the main grid. Also, Enet represents the net energy 

provided from the main grid (i.e., E1--E2). As observed, by 

increasing risk aversion parameter, E1 declines in all cases. At 

this time, unlike cases 1 and 3, the amount of E2 increases. In the 

normal operating mode, DR utilization would reduce hourly peak 

loads and/or fill the valley periods when energy supplement from 

the main grid is cheaper. Therefore, in a risk-neutral case (β = 0), 

the operator tends to buy more energy blocks from the main grid 

in case 2 compared to case 1 (see row 1). In contrast, by 

increasing the risk aversion level, the operator tends to supply 

microgrid loads from more reliable DG units rather than the main 

grid, and as the result it buys few energy blocks from the main 

grid while exporting energy most of the times to make more profit 

(see rows 2, 3 and 4). In addition, to investigate the impact of 

islanding duration on the microgrid resiliency operation, two 

values of SD of islanding durations is considered to be 1 to 2 

hours. In case 1, in which uncertainties of islanding duration 

events are not considered, the microgrid has more exchange 

power with the main grid and as the result the amount of Enet is 

higher than that in the other two cases. However, by increasing 

SD from 1 to 2 hours, the amount of energy provision from the 

main grid decreases, especially in lower risk aversion. Since, 

when the scheduling is run for more SD, the microgrid operates in 

islanded mode in more hours and the as result, the trading power 

with the main grid decrease. These comparisons show that risk-

aversion of the operator has a high effect on his decision 

making, especially when he considered uncertainties of the 

microgrid islanding events.  
  The results in Fig. 7 (a) show that in higher SD, due to the 

increased operation cost in longer islanding duration, the expected 

profit decreases. Moreover, as can be observed from Fig. 7 (b), 

varying SD parameter does not have substantial effect on the 

CVaR in most values of β. However, in low risk aversion, when 

SD of islanding duration is considered higher, the local resources 

are scheduled in the optimization process such a way to decrease 

demand-supply mismatch. In this condition, a part of profit 

associated with the undesired scenarios is reduced and therefore 

the CVaR index increases.  

 
TABLE IV 

EXCHANGED ENERGY (KWH) BETWEEN THE MICROGRID AND 
THE MAIN GRID VERSUS RISK AVERSION IN DIFFERENT CASES. 

 

Operation 
state 

 
Case1 Case2 

E1 E2 Enet E1 E2 Enet 

Normal 

operation 

0
 

1281 120 1161 1485 87 1308 

1
 

781 110 661 100 302 -202 

10 487 107 380 0 365 -365 

50
 

296 98 198 0 366 -366 

Operation 
with 

Resiliency 

(SD=1 h) 

 Case3 Case4 

0
 

991 82 909 791 152 639 

1
 

791 82 709 100 311 -211 

10 391 82 309 0 355 -355 

50
 

192 79 113 0 357 -357 

Operation 

with 

Resiliency 
(SD=2 h) 

0
 

891 82 809 491 152 339 

1
 

691 82 609 100 310 -210 

10 390 82 308 0 353 -353 

50
 

190 78 112 0 355 -355 

 

C. Discussion  

     As clearly observed from the numerical results, it is deemed 

that consideration of uncertainties of islanding duration events 

has a significant effect on the decision-making problem of the 

microgrid operator. The obtained results confirmed that the 

expected profit of the operator decreases but load curtailment and 
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EENS indices increase when islanding events is considered. Also, 

when islanding events of the microgrid is considered, relatively 

more reserve should be allocated by DG and DR resources in 

order to hedge against the volatility of this uncertain parameter, 

especially in lower risk aversion. Moreover, the supplement of 

scheduled reserves depends on the operator's risk perspective 

meaning that a higher risk-aversion operator yields a lower 

required reserve capacity. Also, by increasing SD of islanding 

duration events, the operator tries to schedule based on local DG 

and DR resources and so the amount of energy provision from the 

main grid decreases.  

 

 
(a)  

 
(b)  

Fig. 7. The effect of standard deviation (SD) on the expected profit and CVaR 

in different risk aversion, (a) expected profit, (b) CVaR. 
 

V. CONCLUSIONS 

This paper presented a stochastic framework for optimal 

scheduling of a resilient microgrid with considering DR 

participation. Expected profit of the microgrid operator was 

maximized through a risk-constrained stochastic optimization 

model where the risk imposed by uncertainties related to 

islanding duration, WTs output power, electricity prices and loads 

was addressed via CVaR method. The proposed strategy was 

applied to a test microgrid and several case studies were 

presented. The results confirmed that the proposed strategy could 

enable the microgrid operator to determine the risk aversion and 

balance its profit according to risk factor in both normal and 

emergency-triggered operation modes. Moreover, the impact of 

implementing DR actions in normal and resiliency conditions 

were investigated. The main conclusions drawn out of this study 

can be highlighted as below: 

 When islanding contingencies are considered in the 

microgrid scheduling, the expected profit decreases 

significantly compared to a normal operating condition. 

Moreover, by implementing DR actions, the dependency 

between profit and risk aversion of the operator reduces in 

both normal and resilient conditions. 

 In a resilience microgrid, the value of CVaR in a certain risk 

aversion is higher than the one in normal condition. 

 In a risk-neutral case the operator tends to buy more energy 

from the main grid. However, by increasing risk aversion, 

the operator tends to supply microgrid loads from more 

reliable dispatchable units rather than the main grid.  

     Future works mainly include extending the proposed model to 

a multi-microgrid systems and co-optimizing the customer’s 

revenue stream from their flexibility options and the energy 

procurement cost via a two- stage bi-level programming problem. 
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