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Assessing energy efficiency improvements, energy dependence and CO2 emissions in the 

European Union using a decomposition method 

 

Abstract  

The achievement of the 32.5% energy efficiency target set for 2030 in the Energy Efficiency Directive 

2018/2002 could determine the success of the EU Member States’ actions and policy measures to 

improve energy efficiency. However, the way the target was set presents several limitations, and the 

target is based on a hypothetical percentage of future primary energy use rather than absolute energy 

savings. Thus, the objectives of this study are to provide new insight into (i) the levels of energy 

efficiency improvements achieved by the EU over the period 1995–2015 by employing a decomposition 

analysis approach—Logarithm Mean Divisia Index—and using disaggregated final energy 

consumption data, (ii) the progress of the EU towards the energy efficiency target set for 2030, and (iii) 

the energy security and climate benefits associated with energy efficiency improvements. The results 

show that from 1995 to 2015, efficiency allowed the EU to save approximately 235 Mtoe of final 

energy. Additionally, energy efficiency improvements reduced the EU’s dependence on energy imports 

at the average rate of 1% per year, saved 811 MtCO2, and contributed to achieving 52.5% of the energy 

efficiency target set for 2030.  

 

Keywords: energy efficiency; index decomposition analysis; LMDI; European Union; energy security; 

carbon dioxide emissions.
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1. Introduction 

 

The European Commission’s ‘Clean Energy for All Europeans' package contains several measures 

designed to increase energy efficiency, boost renewable energy, and reform the European energy market 

and, provides a framework for energy policy in the European Union for the next decade (European 

Commission 2016a). ‘Energy efficiency first’ is considered the guiding principle for future energy 

policymaking and a key element to achieving energy transition. To provide a long-term perspective for 

policy plans and investments by Member States and investors, the proposal establishes a 30% energy 

efficiency target for 2030, which is binding at the EU level (European Commission 2016b; 2016c).  

Following the Commission’s proposal, numerous disputes emerged among civil society groups, 

businesses, lobbies, academicians, and policymakers regarding which energy efficiency target the EU 

should adopt for 2030. Some called for a more ambitious target, while others tried to water it down. 

After months of negotiations, the revised Energy Efficiency Directive (EU) 2018/2002 (11th of 

December 2018) established a binding 32.5% energy efficiency target for 2030 with a clause for an 

upward revision by 2023 (The European Parliament and the Council of the European Union 2018).  

The energy efficiency target is set by using the Price-Induced Market Equilibrium System (PRIMES) 

model, which simulates demand and supply behaviour by agent (sector) under different assumptions 

regarding economic development, emissions and other policy constraints, technology changes and other 

drivers (PRIMES MODEL 2013-2014). However, how the target is defined and determined presents 

several limitations. First, the PRIMES model calculates primary and final energy savings rather than 

the reduction in energy use due to energy efficiency improvements. While achieving efficiency typically 

implies saving energy, the opposite is not necessarily true; reductions in energy consumption can be 

driven by several other factors, such as structural changes towards less energy-intensive industries and 

lower economic activity. Second, the energy efficiency target is based on a theoretical percentage of 

future primary energy use rather than absolute energy savings. Given the complexity of the energy 

system, many factors driving future energy supply and demand, such as macroeconomics, oil prices, 

technology improvements, and policies, may follow unexpected trajectories (E3MLab & IIASA 2016). 

Consequently, the actual energy supply and demand can significantly differ from the projections. Third, 
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although the projections of energy demand, supply, and prices have been periodically updated (2009, 

2013, and 2016), the energy savings for 2030 are still calculated using the 2007 PRIMES baseline 

projections. Thus, a portion of the 32.5% target could be achieved because of structural changes to the 

EU economy resulting from the recession of 2008 rather than renewed measures to reduce energy use. 

Additionally, the impact of the latest EU policy measures such as the Energy Performance of Buildings 

Directive (2010/31/EU) and the Energy Efficiency Directive (2012/27/EU), is not considered. 

In contrast to previous acts of energy efficiency, in the revised Energy Efficiency Directive (EU) 

2018/2002, the energy efficiency target (2007 PRIMES baseline projections) has been translated into a 

reduction target compared to the historical 2005 energy consumption levels. In particular, the “primary 

energy consumption in the Union should be reduced by 26%, and final energy consumption should be 

reduced by 20% compared to the 2005 levels” (The European Parliament and the Council of the 

European Union 2018). This comparison facilitates the assessment of the target, improves its 

transparency, and renders it consistent with other climate and energy targets established for 2030 (40% 

decrease in greenhouse gas emissions compared to the 1990 levels and at least 27% share of renewables 

in gross final consumption of energy). 

Against this background, the aims of this study are to provide an indication of the energy savings driven 

by energy efficiency improvements in the European Union during the period 1995–2015 and track the 

progress towards the 2030 energy efficiency target by employing a decomposition analysis approach 

and using disaggregated final energy consumption data. 

The advantage of the decomposition analysis is that it disentangles and separates variations in actual 

energy consumption over time into changes in economic activity, structure, and energy intensity. By 

isolating the changes in energy intensity (at the disaggregated level) from other factors affecting the 

changes in energy consumption, it is possible to estimate the amount of energy saved due to energy 

efficiency improvements. Then, the isolated energy efficiency improvements achieved between 2005 

and 2015 are assessed against the historical 2005 final energy consumption level used as the reference 

year for the energy efficiency target that has been established for 2030. By tracking the energy savings 

due to energy efficiency improvements (alone), it is possible to obtain a clearer understanding of the 
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actual progress of the EU towards the energy efficiency target and the remaining gap to be bridged by 

2030. 

Since the first oil crises of 1973–1974, most policy documents and laws regarding energy efficiency 

adopted by the European Union have been designed under the framework of energy security and the 

fight against climate change. The underlying assumption guiding these policies is that greater energy 

efficiency reduces energy demand and related CO2 emissions, which, in turn, contributes to improved 

energy security by reducing dependence on foreign energy sources. Therefore, in the final part of the 

analysis, simple formulae are used to estimate the extent to which energy efficiency improvements 

between 1995 and 2015 translate into energy security and climate benefits. Although these economy-

wide benefits of energy efficiency have been increasingly acknowledged by the European Union, they 

have rarely been quantified. 

This study is particularly timely given the recent EU energy efficiency policy developments and the 

broader discussion concerning moving towards a secure and low-carbon economy. Without a proper 

measurement of the underlying drivers of energy consumption, it is impossible to evaluate energy 

efficiency improvements and some benefits at the top of the European policy agenda. Distinguishing 

the levels of causation driving the variation in energy consumption and the sectors/sub-sectors driving 

energy efficiency could provide a lever or opportunity for policies to exert influence. The results might 

also influence future discussions regarding the appropriate level of the energy efficiency target that 

should be adopted by the EU in 2030, which could strongly affect future investments and policies at the 

EU and national level and the achievement of the energy security and climate change goals. 

The remainder of this paper is organised as follows: Section 2 provides an overview of the literature 

analysing energy efficiency using decomposition methods; Section 3 describes the data and empirical 

strategies used in this study; Section 4 illustrates the empirical results concerning energy efficiency 

improvements and related climate and energy security benefits; and Section 5 presents the conclusions 

and discusses implications for energy policies. 
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2. Literature review 

 

The oil crises of 1973–1974 and the growing awareness of environmental issues have introduced energy 

conservation to the policy agenda. Consequently, Index Decomposition Analysis (IDA) has been 

developed to analyse the factors driving the changes in energy consumption and related CO2 emissions 

over time to inform policy makers about trends and where to prioritise efforts. 

Based on IDA, several decomposition methods including the Laspeyres method, the Paasche index, the 

Fischer Ideal, the Logarithmic Mean Divisia Index I (LMDI-I), and the Logarithmic Mean Divisia Index 

II (LMDI-II), have been developed and used in energy-related and environmental analyses over the last 

40 years. Ang (2004; 2005; 2015), Ang et al. (2009), and Ang and Wang (2015) compared the different 

approaches to establish a broad consensus regarding the preferred method and concluded that the 

Logarithmic Mean Divisia Index (LMDI), especially the LMDI in the additive form (LMDI-I), is the 

‘best’ decomposition method due to its theoretical foundation, adaptability, easy usage and result 

interpretation. In particular, the LMDI-I (i) passes several basic tests with good index number, (ii) 

provides ‘perfect’ decomposition, i.e. no residuals, and (iii) is easy to use as the formulae assume the 

same form regardless of the number of explanatory factors. 

The LMDI method has gained prominence over the last several years not only among researchers (e.g., 

Sheinbaum et al. 2010; Shahiduzzaman and Alam, 2013; Ang 2015; Reuter et al. 2017; 2019) but also 

in the policy community (Braungardt et al. 2014; IEA 2015; IEA 2016a; IEA 2016b; Economidou 2017) 

as an effective tool for estimating energy efficiency improvements and supporting the design of energy 

policies.  

Most academic studies employing LMDI to investigate energy-related issues are country-specific, 

especially in China (Ma and Stern 2008; Wu 2012; Wang et al. 2014; Xu et al. 2014; Liu et al. 2015; 

Carmona and Collado 2016; Xu et al. 2016; 2016; 2017), and often focus on a single sector (Mairet and 

Decellas 2009; Zhao et al. 2012; Nie and Kemp 2013; Achour and Belloumi 2016) with a special 

emphasis on the manufacturing industries (Hammond and Norman 2012; Xu et al. 2012; Ang and Xu 

2013; Kim 2017; Wang and Feng 2017), but a few other studies use cross-sectoral analyses to 

investigate the EU overall. For example, Marrero and Ramos-Real (2013) decomposed and analysed 
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the evolution of energy intensity in the main economic sectors in a set of EU15 countries during the 

1991–2005 period. On average, the energy intensity improved in agriculture and industry but worsened 

in construction and services. The shift towards a service-oriented economy did not result in a more 

efficient use of final energy in the service sector. The authors concluded by emphasising the importance 

of distinguishing the components influencing global energy intensity to avoid forming misleading 

conclusions and improperly establishing energy policies. 

Gonzalez et al. (2014) investigated the variation in the aggregate energy consumption in the EU-27 

Member States during the 2001–2008 period using LMDI. The results showed that in most countries, 

especially the socialist states, the growing overall economic activity and the changes from less to more 

energy-intensive sectors were strong enough to offset the energy efficiency gains. In a subsequent study, 

Gonzalez (2015) applied an LMDI to explore the influence of the changes in the sectoral composition 

in 20 EU Member States on the aggregate energy intensity between 1995 and 2010. The results indicated 

that the reduction in the aggregate energy intensity was mainly driven by energy efficiency 

improvements (‘intensity effect’) and only partially by changes in the production structure (‘structural 

effect’). Particularly in Western countries, the industrial sector has been a major contributor to reducing 

the aggregate energy intensity; however, the service sector caused an increase in the aggregate energy 

intensity in most countries. 

Obadi and Korček (2015) analysed the drivers of energy consumption in the EU during the pre-crisis 

period (2004-2008) and crisis period (2008-2012) using LMDI. By challenging the view that the decline 

in energy consumption was caused by the economic slowdown after 2008, the authors found that energy 

intensity improvements have been the most salient determining factor reducing energy consumption 

throughout the EU during both the pre-crisis and crisis periods. 

Reuter et al. (2017) used LMDI to show the effects of both policies and autonomous developments 

driving the changes in primary energy consumption in some EU Member States between 2000 and 

2014. The results showed that primary energy consumption decreased by 110 Mtoe from 2000 to 2014; 

most of this reduction was attributed to lower final energy consumption and improved efficiency in the 

conversion sector in a few EU Member States (UK, Germany, and Italy). More recently, Reuter et al. 

(2019) employed LMDI to investigate the drivers of the changes in the final energy consumption in the 
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European Union (complemented with an in-depth analysis of Germany and Poland) over the period 

from 2000-2015. Overall, efficiency improvements contributed to saving 210 Mtoe of final energy; the 

largest share of these efficiency gains was realised in industry, followed by the residential sector.  

The contribution of this article to the previous literature is threefold. First, this study investigates the 

causes of the variation in the final energy consumption of the EU over a long period (1995–2015) by 

using disaggregated data at the sub-sector/end-use level. The disaggregation of different sectors and 

sub-sectors driving energy demand over a long period in this study allows for the impact of the most 

important acts, which have mainly been implemented during the decade 2005–2015, on energy 

efficiency to be better captured and provides targeted policy recommendations. 

Second, in contrast to previous studies, which employed decomposition analysis to assess energy 

efficiency trends, in this study, the energy savings calculated with LMDI-I are used to provide a more 

accurate indication of the actual progress of the EU towards the energy efficiency target established for 

2030. 

Third, the disentangled energy savings due to energy efficiency improvements are translated into energy 

security and climate benefits. These results could inform policy makers regarding the wider contribution 

of energy efficiency to reducing CO2 emissions and energy dependence, which is often mentioned but 

rarely quantified. 

 

3. Data and methods 

 

The dataset is composed of the final energy consumption by sector (industry, transport, residential, 

services, and agricultural) and sub-sector/end-use (e.g., chemical industry, cars, space heating, etc.) of 

the European Union. In addition, data regarding passenger and goods traffic, the number of households, 

the stock of dwellings permanently occupied, the floor area of dwellings, the stock of large appliances, 

and CO2 emissions are collected. The primary data source is the Odyssee database (2017). The Odyssee 

data are complemented with data regarding the value-added and energy dependence of the European 

Union, which are derived from the World Bank (The World Bank, World Development Indicators 
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2017a; 2017b; 2017c; 2017d) and Eurostat (Eurostat 2018a) databases, respectively. The data of the 

European Union cover the period from 1995 to 2015. The descriptive statistics are provided in Table 1. 

 

 Unit1 N 
(years) Mean Std Dev Min Max 

Total gross inland energy consumption Mtoe 21 1738.5 66.4 1607.4 1839.6 
Total final energy consumption Mtoe 21 1063.6 36.9 999.8 1115.8 
Final consumption industry Mtoe 21 309.7 26.7 263.8 334.4 

Chemical Mtoe 21 56.6 3.4 50.5 60.8 
Primary metals Mtoe 21 70.3 9.8 50.8 83 
Non-metallic minerals Mtoe 21 40.3 5.1 31.5 45.7 
Wood Mtoe 21 6.8 0.7 5.4 7.9 
Paper, pulp and printing Mtoe 21 34 2.1 30.6 38.4 
Food Mtoe 21 30.2 1.7 27.6 32.8 
Textile and leather Mtoe 21 7.9 2.6 4.4 10.8 
Machinery Mtoe 21 20.4 1 18.4 22 
Transport equipment Mtoe 21 8.7 0.8 7.4 10 
Mining Mtoe 21 24.4 4.4 17.4 30.8 
Construction Mtoe 21 3.3 0.3 2.7 3.9 
Other industries Mtoe 21 6.6 0.3 6.1 7.3 

Final consumption transport Mtoe 21 304.2 14.1 272 328.1 
Passenger transport Mtoe 21 183.9 4.9 173.4 192.2 

Cars Mtoe 21 165.9 4.1 157.5 172.6 
Buses Mtoe 21 9 0.7 7.9 10 
Rail passenger transport Mtoe 21 3.3 0.2 2.9 3.5 
Domestic air transport Mtoe 21 5.8 0.6 4.5 6.9 

Passenger traffic Gpkm 21 5519.4 289.5 4895.1 5888.6 
Car traffic Gpkm 21 4430.8 237.2 3904.4 4719.4 
Road traffic via public modes  Gpkm 21 541 13.4 514.7 569.2 
Rail passenger traffic  Gpkm 21 474.3 39.5 423.7 544.3 
Domestic air traffic  Gpkm 21 73.3 10.2 52 88.6 

Transport of goods  Mtoe 21 120.2 9.7 98.6 135.9 
Trucks and light vehicles Mtoe 21 110.0 9.8 87.7 124.6 
Rail goods transport Mtoe 21 4.1 0.5 3.3 4.9 
Inland waterways transport Mtoe 21 6 0.9 4.2 7.4 

Traffic of goods Gtkm 21 2183.3 211.8 1798.9 2522.5 
Road goods traffic Gtkm 21 1639.2 189.8 1288.7 1925 
Rail goods traffic Gtkm 21 406.5 21.3 363.5 452 
Inland waterways goods traffic Gtkm 21 137.7 10.5 119.8 155.5 

Final consumption residential  Mtoe 21 285.4 11.3 263.7 298.3 
Space heating climate corrected Mtoe 21 209.6 10.1 188.5 221.0 
Water heating Mtoe 21 38.9 0.9 36.7 40.2 
Cooking Mtoe 21 15.1 0.9 13.4 16.3 
Lighting Mtoe 21 5.6 0.6 4.6 6.2 
Large appliances  Mtoe 21 16.1 0.3 15.3 16.6 

Number of households k 21 201284.1 10896 183899 216757.9 
Floor area of dwellings (average) m2 21 88 2.3 84.2 91.4 
Stock of dwellings permanently occupied k 21 197089.4 12442.8 177121.1 214597.5 
Stock of large appliances  k 21 537224.9 52505.2 450047.7 614989.6 
Final consumption services Mtoe 21 137.6 13.1 114.3 157.9 
Final consumption agriculture Mtoe 21 26.7 2.5 23.4 31.6 

                                                            
1 ‘Mtoe’ - Million tons of oil equivalent; ‘Gpkm’ - Gigapassenger-kilometre or 109 passenger-kilometre; ‘Gtkm’ 

- Gigatonne-kilometre or 109 tonne-kilometre; ‘k’ - Thousand; ‘m2’ - Square meters; ‘KD’ - Constant 2010 US$; 

‘MtCO2’ - Million tonnes of carbon dioxide. 
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Gross value added KD 21 1.42E+13 1.47E+12 1.14E+13 1.61E+13 
Services value added  KD 21 1.03E+13 1.22E+12 8.01E+12 1.19E+13 
Agriculture value added  KD 21 2.45E+11 96814975 2.23E+11 2.62E+11 
Industry value added  KD 21 3.68E+12 2.54E+11 3.22E+12 4.10E+12 

Total CO2 emissions MtCO2 21 3550.8 230.3 3043.6 3772.5 
Industry  MtCO2 21 1123 143.2 879.3 1297.2 
Transport  MtCO2 21 941.4 40.6 859.0 1007.6 
Residential MtCO2 21 855.3 70.3 685.0 966.2 
Services  MtCO2 21 528.3 33.1 479.5 580.3 
Agriculture  MtCO2 21 102.8 6.6 91.9 116 

Energy dependence  % 21 50 3.9 43.1 54.5 
 

Table 1. Descriptive statistics. 

 

The Logarithmic Mean Divisia Index I (LMDI-I) decomposition approach is employed to estimate the 

level of energy efficiency improvements in the European Union. 

The decomposition analysis separates and quantifies the impacts of individual factors (‘effects’) 

associated with the changes in economic activity, structure, and energy intensities on the final energy 

consumption (Ang 2005; 2015) in each sector of the European Union from 1995 to 2015. The following 

three main factors were identified in decomposition analysis: (i) activity, which represents basic human 

or economic actions that drive energy use in a particular sector (e.g., the value-added output in the 

industrial or service sectors); (ii) structure, which reflects the mixture of activities within a sector that 

can affect how energy is used (e.g., the share of production represented by each sub-sector of industry); 

and (iii) intensity, which represents the energy use per unit of activity, such as the ratio between energy 

consumption and the gross value added in the industrial sector or the ratio between energy consumption 

and the floor area for space heating in the residential sector. 

Table 2 illustrates the data employed in the decomposition analysis. For each sector and/or sub-

sector/end-use, an indicator of ‘activity’, ‘structure’, and ‘intensity’ is constructed2.  

 

 

 

                                                            
2 Motorcycles and small appliances are excluded from the analysis due to the lack of data reagrding the passenger 

kilometre for motorcycles and the stock of small appliances. 
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Sector Sub-sector/End-use Activity 
 
 

Structure Intensity 

Industry 
 

Chemical 

Gross value added Share of value added Energy/value added 

Primary metals 
Non-metallic minerals 
Wood 
Paper, pulp and printing 
Food 
Textile and leather 
Machinery 
Transport equipment 
Mining 
Construction 
Other industries 

Transport 

 

Passenger transport 
 

Cars  
 
 

Passenger 
kilometre 

 

Share of passenger-
kilometres 

Energy/passenger-
kilometre 

Buses Share of passenger-
kilometres 

Energy/passenger-
kilometre 

Rail passenger transport Share of passenger-
kilometres 

Energy/passenger-
kilometre 

Domestic air transport Share of passenger-
kilometres 

Energy/passenger-
kilometre 

 

Freight transport 
 

Trucks and light vehicles  
Tonne kilometre 

 

Share of tonne-kilometres Energy/tonne-kilometre 
Rail goods transport Share of tonne-kilometres Energy/tonne-kilometre 
Waterways goods transport Share of tonne-kilometres Energy/tonne-kilometre 

Residential 
 

Space heating climate corrected  
 
 

Households 
 

Floor area/households Energy/floor area 

Water heating Occupied 
dwellings/households 

Energy/occupied 
dwelling 

Cooking Occupied 
dwellings/households 

Energy/occupied 
dwelling 

Lighting Floor area/households Energy/floor area 

Large appliances Appliance 
stock/households 

Energy/appliance unit 

 
Services 

 
Services 

 
Gross value added 

 
Share of value added 

 
Energy/value added 

 
Agriculture 

 
Agriculture 

 
Gross value added 

 
Share of value added 

 
Energy/value added 

 

Table 2. Data and indicators included in the LMDI-I analysis. 

 

Among the recently developed decomposition methods, the Logarithmic Mean Divisia Index in the 

additive form (LMDI-I) had several advantages (Ang 2004; 2005; 2015; Ang et al. 2009; Ang and Wang 

2015) and is, therefore, used in this study (for further discussion regarding these advantages, please see 

Section 2). 

Assuming that V is an aggregate composed of n factors (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) and that from period 0 to T the 

aggregate changes from 𝑉𝑉0 to 𝑉𝑉𝑇𝑇 , the objective is to derive the contributions of n factors to the change 

in the aggregate, which can be expressed as follows: 
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∆Vtot=Vt-V0= ∆Vx1+ ∆Vx2+...+∆Vxn 

∆Vxk= �L (Vi
t , Vi

0) ln (
xk,i

T

xk,i
0 ) 

(1) 

 

where i indicates the five sectors (industry, transport, residential, services, and agriculture), k indicates 

the explanatory factors (activity, structure, and intensity) and L(a, b) = (a − b)/(ln a − ln b) is the 

logarithmic mean of two positive numbers, i.e., a and b, which in this case, are the aggregates of the 

final energy consumption during years 0 and T that are used as the weighting function in LMDI-I 

(additive form). 

The IDA identity can be expressed as follows: 

 

E=� Ei
i

=�Q
i

 
Qi
Q

 
Ei

Qi
=�Q

i
SiIi 

 

(2) 

where E is the total energy consumption, Q is the overall activity level, 𝐸𝐸𝑖𝑖 is the energy consumption in 

sector i, 𝑄𝑄𝑖𝑖 is the activity level in sector i, 𝑆𝑆𝑖𝑖 is the structure (activity share) of sector i, and 𝐼𝐼𝑖𝑖 is the 

energy intensity in sector i. 

The three explanatory effects in the additive form are calculated as follows: 

 

 

Activity effect: ∆Eact=� L(Ei
T,Ei

0)
i

ln(
Qt

Q0 ) 

 

 

(3) 

 

Structure effect: ∆Estr=� L(Ei
T,Ei

0)
i

ln(
Si

t

Si
0 ) 

 

 

(4) 
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Intensity effect: ∆Eint=� L(Ei
T,Ei

0)
i

ln(
Ii
t

I0
t ) 

 

 

(5) 

 

To analyse the drivers of the energy consumption changes in more detail, for the industrial, freight 

transport, passenger transport, and residential sectors, the LMDI-I analysis is conducted at the sub-

sector/end-use level. The aggregate industrial, freight transport, passenger transport, and residential 

final energy consumption changes are given by the sum of the changes in their sub-sectors or end-uses3 

as follows: 

 

�∆Etot
 j

j

= �∆Eact
 j

j

+�∆Estr
 j

j

+�∆Eint
 j

j

 (6) 

where j indicates the twelve sub-sectors of the industrial sector (chemical, primary metals, non-metallic 

minerals, wood, paper, pulp and printing, food, textile and leather, machinery, transport equipment, 

mining, construction, and other industries), the four sub-sectors of the passenger transport sector (cars, 

buses, rail passenger transport, and domestic air transport), the three sub-sectors of the freight transport 

sector (trucks and light vehicles, rail goods transport, and waterway goods traffic), and the five end-

uses of the residential sector (space heating, water heating, cooking, lighting, and large appliances).  

Then, the isolated energy intensity changes in each sector (e.g., industry, or residential) and sub-

sector/end-use (e.g., chemical industry, or space heating) can be used as a proxy of energy efficiency 

improvements. Although it is impossible to observe the physical quantities that define 'efficiency' in the 

engineering sense, by building from the disaggregated data and incorporating the changes in other 

explanatory factors, the measures of intensity more closely approximate the changes in the underlying 

efficiency of energy use (Xu and Ang 2014; Goh and Ang 2018). Differing from ex ante engineering 

                                                            
3 The decomposition is perfect and there is no residual at the aggregate (single-step procedure) and subcategory 

(step-by-step procedure) levels. 
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estimates, these ex post estimates of energy savings account for potential rebound effects and other 

behavioural responses or implementation challenges that typically reduce the expected energy savings 

from energy efficiency improvements (Sorrell 2007; Fowlie et al. 2018; Gillingham et al. 2018; 

Valentová et al. 2018). 

The difference between the total energy consumption in T and the total energy consumption in 0 is equal 

to the sum of the three effects (no residual) as follows: 

 

Et-E0= ∆Etot= ∆Eact+∆Estr+∆Eint (7) 

 

Given the availability of balanced time-series data, chaining decomposition is preferred over non-

chaining decomposition. The advantage of a chaining analysis is that the results reflect year-to-year 

changes. This analysis also fully uses the data and is more flexible in terms of application.  

To track the progress towards the efficiency target established for 2030, the estimated energy efficiency 

improvements from 2005 to 2015 are compared to the historical 2005 final energy consumption levels. 

Consistent with other climate and energy targets, the European Commission, the European Parliament 

and the Council of the European Union translated the PRIMES projected energy reduction target into a 

reduction target compared to 2005 as the reference year for energy efficiency. Specifically, to achieve 

the energy efficiency target established for 2030 the final energy consumption needs to be 

approximately 20% lower than the historical final energy consumption in 2005 (The European 

Parliament and the Council of the European Union 2018, Directive (EU) 2018/2002).  

Finally, to better understand the role played by energy efficiency in increasing the levels of energy 

security, a gross inland energy consumption4 coefficient is constructed. This coefficient is the result of 

                                                            
4 ‘Gross inland energy consumption’ (GIC) is the total energy demand in a country or region. GIC represents the 

quantity of energy necessary to satisfy the inland consumption of the geographical entity under consideration. 

GIC covers consumption by the energy sector (primary energy), the final energy consumption by end users, 

distribution and transformation losses, and the energy consumed for purposes other than producing useful energy. 
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the ratio of the total gross inland energy consumption to the final energy consumption of the EU during 

the period 1995–2015 as follows: 

 

βt=
Eg,t

Ef,t
 

(8) 

 

where βt is the yearly gross inland energy coefficient, and Eg,t and Ef,t are the gross inland and final 

energy consumption levels of the EU on a yearly basis (t=1996, 1997…2015), respectively. 

Then, the yearly gross inland energy coefficient is multiplied by the annual amount (Mtoe) of energy 

saved due to energy efficiency improvements (𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡������) to obtain an estimate of the yearly average gross 

inland energy saved (Egsav,t�������) as follows: 

 

Egsav,t�������= βt* Efft����� (9) 

 

 

Then, the notional percentage variation in energy dependence from 1995 to 2015 in the absence of 

energy efficiency improvements %Ed,t�������, is estimated as follows: 

 

 

%Ed,t�������=
(MtEd,t- Egsav,t�������)

Eg,t
*(100) 

(10) 

 

where MtEd,t is the amount of Mtoe imported each year, Egsav,t������� is the yearly average gross inland energy 

(Mtoe) saved due to energy efficiency improvements, and Eg,t is the total (yearly) gross inland energy 

consumption.  

As many European energy importing countries do not have the resource capacity to expand domestic 

production to meet the increased demand, for simplicity, it is assumed that all gross inland energy that 

is not saved due to energy efficiency improvements is imported. The results provide an estimate of the 
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hypothetical variation in the EU's energy dependency in case there were no energy efficiency 

improvements - ceteris paribus. 

To evaluate the impact of energy efficiency improvements on the emissions of the European Union, a 

yearly CO2 emissions coefficient is constructed for each sector. The CO2 emissions coefficient is 

multiplied by the amount of energy saved due to energy efficiency improvements (each year) to provide 

an estimate of the yearly average CO2 emissions saved. Therefore, λi,t, which is the average CO2 

coefficient in sector i (industry, transport, services, residential, or agriculture) on a yearly basis t, is 

calculated as follows: 

 

λi,t=
ECO2,i,t����������

Ei,t����  
(11) 

 

where ECO2,i,t���������� represents the average CO2 emissions in sector i and year t, and Ei,t���� is the energy 

consumption in sector i and year t. Then, the yearly average CO2 emissions coefficient in each sector 

λi,t is used to estimate the total (yearly) CO2 emissions saved as follows: 

 

CO2savt=� (λi,t* Effi,t������)
n

i=1

  

 

(12) 

where Effi,t������ is the amount of energy saved due to energy efficiency improvements (each year) in sector 

i, and CO2savt is the total amount of CO2 not emitted on a yearly basis in all the sectors (n =5) due to 

energy efficiency improvements. 

Figure 1 provides a simplified graphical representation of the data and methods. 
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Figure 1. Simplified graphical representation of the data and methods5. 

          

          

          

          

          

          

          

          

          

          

          

          

          

 

 

 

4. Results and discussions 

4.1 Variation in final energy consumption 

 

Figure 2 shows the contribution of the ‘activity effect’, ‘structure effect’, and ‘intensity effect’ to the 

variation in the final energy consumption by all types of end-users and each end-use sector in the 

European Union over the period 1995–2015 using the LMDI-I decomposition approach. 

 

                                                            
5 ‘FEC’ - Final energy consumption; ‘GIC’- Gross inland energy consumption; ‘Ed’- Energy dependence; ‘CO2’- 

Carbon dioxide. 
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Figure 2. Variation in the final energy consumption in the European Union from 1995 to 2015. 

 

The year-to-year variations in the final energy consumption (Mtoe) by sector and sub-sectors/end-use 

from 1995 to 2015 due to the ‘activity effect’, ‘structure effect’, and ‘intensity effect’ are shown in the 

Appendix (Table 3, Table 4, and Table 5).  
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From 1995 to 2015, the EU final energy consumption decreased by 12 Mtoe, corresponding to a 

decrease of 1.2%. The decomposition results show that the increase of 275 Mtoe in the final energy 

consumption caused by activity effects was counterbalanced by intensity (-235 Mtoe) and structural 

changes (-52 Mtoe). In contrast to the study conducted by Reuter et al. (2019), who investigated the 

drivers of changes in final energy consumption in the European Union over a shorter period (2000-

2015)6, the energy intensity improvements (alone) have largely (but not completely) offset the increase 

in the final energy consumption caused by activity effects. 

Without the energy intensity improvements that occurred between 1995 and 2015 (while the other 

factors remained constant), the final energy consumption in 2015 could have been 23.2% higher. The 

235 Mtoe saved due to energy intensity improvements corresponds to the final energy consumption in 

the United Kingdom, Spain, and Austria combined in 2015.  

The highest energy reductions due to energy intensity improvements were achieved during the years 

after the implementation of the following most important pieces of legislation in the energy efficiency 

domain (Appendix, Table 5): 2007 (Directive 2006/32/EC), 2011 (Directive 2010/30/EU and Directive 

2010/31/EU), and 2014 (Directive 2012/27/EU that entered into force on 4 December 2012). In 

addition, 62% of the total energy intensity improvements between 1995 and 2015 were achieved during 

the decade 2005–2015. Although it is impossible to show a causal relationship between energy intensity 

trends and the implemented energy efficiency policies, these results may reflect the growing influence 

and ambition of the EU action on national energy efficiency strategies.  

Consistently with Reuter et al. (2019), more than half of the final energy intensity improvements were 

driven by the industrial sector. More specifically, the primary metal manufacturing sub-sector was 

responsible for 32.5% of the energy saved in the industrial sector between 1995 and 2015, followed by 

the chemical (16.9%), non-metallic minerals (15.1%), other/miscellaneous (12.2%), textile and leather 

(6.4%), food (6.1%), machinery (5.2%), paper, pulp and printing (3.4%), transport equipment (1.3%), 

mining (1.1%), and construction (0.9%) industries. The wood industry was the only industrial sub-

                                                            
6 According to Reuter et al. (2019), from 2000 to 2015 the intensity effect contributed to a reduction of 210 Mtoe 

in the EU final energy, counteracting the increase in final energy due to activity effects (125 Mtoe). 
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sector that did not decrease its final energy intensity. A structural shift towards less intensive industrial 

sub-sectors and more service-based economies resulted in a decrease of 45 Mtoe. Energy-intensive 

industries such as the chemical and primary metal industries, decreased their final energy consumption 

by 15% and 30%, respectively, and the contribution of the industry value added to the economy 

decreased by 3.8%. Overall, economic activity increased energy consumption by 109 Mtoe; however, 

the impact of the economic recession in 2008–2009 was captured by the negative activity effect of 12.9 

Mtoe in 2009 (Appendix, Table 3). 

Regarding the transport sector (both passenger and freight transport), the final energy consumption 

increased by 11.4%. The increase of 64 Mtoe and 5 Mtoe, which was attributed to activity and structural 

effects, respectively, was only partially offset by intensity improvements (-38 Mtoe). Overall, 63.5% of 

the final energy intensity improvements were driven by passenger transport, while the remaining 

improvements were driven by freight transport. From 1995 to 2015, cars accounted for 90% of the 

intensity improvements in the passenger transport sector, whereas trucks and light vehicles represented 

66.2% of the intensity improvements in freight transport, followed by waterways goods traffic (21.4%), 

and rail goods transport (12.4%). However, from 1995 to 2015 the final energy consumption of heavy-

duty and light vehicles and the road traffic of goods increased by 27.3% and 37.3%, respectively. 

Differently from new passenger cars and light commercial vehicles, which are subject to emission 

performance standards (Regulation (EC) No. 443/2009; Regulation (EU) No. 510/2011), the emissions 

of new heavy-duty vehicles in the European Union have not been regulated7 so far, making Europe the 

largest market without mandatory limits for such vehicles (Delgado and Gonzalez 2018). This lack of 

regulation, combined with the possibility of the EU Member States to exclude the energy consumption 

of the transport sector from the baseline used for setting the mandatory energy-saving target (Article 7 

of the Energy Efficiency Directive 2012/27/EU and the revised Energy Efficiency Directive 

                                                            
7 In May 2018, the European Commission presented a legislative proposal setting the first-ever CO2 emission 

standards for heavy-duty vehicles in the EU. The proposal establishes an indicative reduction target of 15% in 

2025 and at least of 30% in 2030 compared to 2019 average CO2 emission levels (European Commission 2018). 
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2018/2002), may contribute to explain the relative small energy efficiency gains obtained in the 

transport sector (especially freight transport). 

The final residential energy consumption decreased by 3.2% over the period 1995–2015. An increase 

in the number of households (17.9%) and, consequently, in the household equipment ownership resulted 

in an increase of 47 Mtoe (activity effect). However, energy intensity improvements and structural 

effects contributed to a reduction of 43 and 14 Mtoe, respectively. Space heating was the end-use sector 

that registered the largest energy intensity improvements, leading to a reduction of 25 Mtoe, followed 

by water heating (-9.2 Mtoe), large appliances (-6 Mtoe), lighting (-1.46 Mtoe), and cooking (-1.43 

Mtoe). In addition to more efficient heating systems, the improvements in space heating consumption 

can be ascribed to the renovation and construction of new buildings and tighter building codes (Trotta 

et al. 2018).  

Concerning the service sector, the final energy consumption increased by 29% from 1995 to 2015. The 

moderate positive effects of energy intensity improvements (-19 Mtoe) were counteracted by a 45 and 

7 Mtoe increase due to activity and structural effects, respectively. Consistent with Marrero and Ramos-

Real (2013) and Obadi and Korček (2015), the growth and importance of the service sector in the EU 

economy8 did not lead to corresponding energy efficiency improvements. 

Finally, the reduction in the final energy consumption in agriculture by 25.8% was mainly driven by 

energy intensity improvements (-11 Mtoe) and, to a lesser extent, structural effects (-6 Mtoe), while 

activity effects led to an increase of 9 Mtoe. 

 

4.2 Energy efficiency improvements 

 

Figure 3 illustrates (i) the actual variation in the final energy consumption in the European Union from 

2005 to 2015; (ii) the hypothetical variation in the final energy consumption due to energy intensity 

                                                            
8 From 1995 to 2015, the contribution of the services valued added to the economy increased by 3.8%. 
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(hereafter referred to as ‘energy efficiency’) improvements alone; and (iii) the energy efficiency target 

for 2030 compared to the historical 2005 final energy consumption levels (-20%). 

 

Figure 3. Energy efficiency target for 2030 compared to energy efficiency improvements using 
LMDI-I (2005-2015). 

 

Although the 32.5% energy efficiency target for 2030 is commonly discussed in terms of the change in 

primary energy consumption in 2030 compared to the 2007 PRIMES baseline projections (percentage 

of target to be achieved), in the revised Energy Efficiency Directive (EU) 2018/2002, the European 

Commission, the European Parliament and the Council of the European Union translated this target into 

a reduction target compared to the historical 2005 energy consumption levels. This comparison 

facilitates the assessment of the target, improves its transparency, and makes it consistent with other 

climate and energy targets. This target corresponds to a 26% reduction in primary energy consumption 

compared to the historical 2005 primary energy consumption levels, and a 20% reduction in final energy 

consumption (compared to the historical 2005 final energy consumption levels). The contribution of 

each sector to the reduction of 20% in the final energy consumption (compared to the historical 2005 

final energy consumption levels) could be as follows: a 19.9% reduction in the final energy consumption 

of the industrial sector compared to the 2005 levels, a 26.9% reduction in the final energy consumption 
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of the residential sector, a 22.5% reduction in the final energy consumption of the tertiary sector, and a 

12.3% reduction in the final energy consumption of the transport sector9. 

From 2005 to 2015, the final energy consumption decreased by approximately 8.6%. However, when 

energy efficiency improvements are disentangled from the other factors influencing the variation in 

final energy consumption (activity and structural changes), the results show that the final energy 

consumption in 2015 could have been 10.5% lower than the consumption levels in 2005.  

Between 2005 and 2015, energy efficiency improvements alone saved 145 Mtoe and contributed to an 

average annual consumption reduction of 1.05%. In total, 44.2% of the energy savings were driven by 

the industrial sector, followed by the residential sector (27.7%), the transport sector (13.8%), the service 

sector (10.8%), and the agricultural sector (3.5%). These results are lower than the estimates provided 

by a recent JRC report (Economidou 2017) in which energy efficiency in the EU between 2005 and 

2015 contributed the saving of 169.9 Mtoe mainly due to improvements in the commercial (57%) and 

residential (39.5%) sectors and only marginal improvements in the transport sector (3.5%). 

When the energy efficiency target for 2030 is assessed as the variation in final energy consumption due 

to energy efficiency improvements alone (and not other factors, such as economic activity, population, 

and economic structure, i.e., the EU means of assessment), the results indicate that 52.5% of the target 

for 2030 has already been achieved in 2015. Continuing this line of inquiry at the sectoral level, the 

energy saved due to energy efficiency improvements in industry from 2005 to 2015 achieved 98.5% of 

the target for 2030, whereas 51.3% of the target was achieved in the transport sector, 50.6% of the target 

was achieved in the residential sector, and 48.3% of the target was achieved in the service sector. In 

addition, at a constant annual contribution of energy efficiency to the reduction in final energy 

consumption of 1.05%, the remaining gap towards 2030 could be closed by the end of 2024. 

 

                                                            
9 These calculations are based on the methodology used by the EC (European Commission 2016b) to determine 

the contribution of each sector to the final energy consumption reduction (compared to the historical 2005 final 

energy consumption levels) in different scenarios.  
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4.3 Energy security and climate benefits 

 

Figure 4 illustrates (i) the actual energy dependence level (%) of the EU from 1995 to 2015; (ii) the 

notional variation in energy dependence per year in the absence of energy efficiency improvements; 

and (iii) the notional energy dependence level in 2015 without the energy efficiency improvements that 

occurred between 1995 to 2015 (ceteris paribus). The detailed results are provided in the Appendix 

(Table 6). 

 
 

Figure 4. Energy security benefits due to energy efficiency improvements (1995-2015). 

 

In 2015, the EU imported 54% of the energy it consumed; such energy import dependency increased 

by 25.3% over the period 1995–2015. Without the energy efficiency improvements that occurred 

between 1995 and 2015, the EU energy dependence on imports in 2015 could have hypothetically been 

64.6%, corresponding to an increase of 12.6% in the actual levels of energy dependence - ceteris 

paribus. In total, energy efficiency contributed to saving 361 Mtoe of gross inland energy and reduced 

the energy dependency at an average rate of approximately 1% per year. The gross inland energy saved 
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from Russia and Norway, which are among the principal suppliers of the EU energy imports10, and 

22.1% of the total gross inland energy consumption in 2015. 

Figure 5 depicts (i) the EU's total CO2 emissions (MtCO2) from 1995 to 2015; (ii) the notional variation 

in the total CO2 emissions per year in the absence of energy efficiency improvements; and (iii) the 

notional amount of CO2 emissions in 2015 without the energy efficiency improvements that occurred 

between 1995 and 2015 (ceteris paribus). The detailed results are provided in the Appendix (Table 7). 

 

 
 

Figure 5. CO2 emissions reduction due to energy efficiency improvements (1995-2015). 

 

The CO2 emissions resulting from the EU's energy consumption from 1995 to 2015 decreased by 15.4%. 

From 1995 to 2015, energy efficiency contributed to a reduction of 811 MtCO2, corresponding to the 

total CO2 emissions in Germany, Greece, and Finland combined in 2015. Without the energy efficiency 

                                                            
10 In 2015, 29.4% of the EU imports of natural gas, 27.7% of the EU imports of crude oil, and 25.8% of the EU 

imports of solid fuels were obtained from Russia, whereas 25.9% of the EU imports of natural gas and 11.4% of 

the EU imports of crude oil were obtained from Norway (Eurostat 2018b; 2018c; 2018d). The amount of these 

imported sources combined is 360.3 Mtoe. 
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improvements that occurred between 1995 and 2015, the CO2 emissions in 2015 could have been 26.3% 

higher (ceteris paribus). Approximately 55.2% of the total CO2 emissions reduction due to energy 

efficiency was derived from the industrial sector, 15.4% was derived from the residential sector, 14.5% 

was derived from the transport sector, 9.4% was derived from the service sector, and 5.3% was derived 

from the agricultural sector. 

The key role of energy efficiency in reducing CO2 and other greenhouse gas emissions (GHGs)11 

becomes more visible when the results are assessed against the EU climate targets. By 2030, the EU 

aims to reduce its total greenhouse gas emissions (GHGs) by 40% compared to the 1990 levels. In 

absolute terms, to achieve this goal, the total GHGs in 2030 should be 3429.82 MtCO2e12, 

corresponding to a reduction of 2286.54 MtCO2e compared to the GHGs in 1990 (5716.36 MtCO2e). 

In addition, the roadmap for transitioning to a competitive low-carbon economy in 2050 suggests that 

by 2050, the EU should reduce its GHGs to (at least) 80% below the 1990 levels (European Commission 

2011); in absolute terms, this corresponds to a reduction of 4573.088 MtCO2e compared to the 1990 

levels.  

Thus, the reduction of 811 MtCO2 as a result of the energy efficiency improvements that occurred from 

1995 to 2015 contributed to achieving 35.5% of the climate target established for 2030 and 17.7% of 

the climate target established for 2050. 

 

 

                                                            
11 The ‘Greenhouse gases’ (GHGs) include: CO2 (carbon dioxide), N2O (nitrous oxide) in CO2 equivalent, CH4 

(methane) in CO2 equivalent, HFCs (hydrofluorocarbons) in CO2 equivalent, PFCs (perfluorocarbons) in CO2 

equivalent, SF6 (sulfur hexafluoride) in CO2 equivalent, and NF3 (nitrogen trifluoride) in CO2 equivalent. 

12 ‘CO2e’ or ‘Carbon dioxide equivalent’ is a term used to describe different greenhouse gases in a common unit. 

For any quantity and type of greenhouse gas, CO2e is the amount of CO2 that could have the equivalent global 

warming impact. This term allows “bundles” of greenhouse gases to be expressed as a single number and different 

bundles of GHGs to be easily compared (Brander and Davis 2012). 
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5. Conclusions and implications 

 

On December 11, 2018, the European Parliament and the Council set a binding 32.5% energy efficiency 

target for 2030 (Directive (EU) 2018/2002). The achievement of this target will determine the success 

of EU Member States’ actions and policy measures to improve energy efficiency and contribute to 

reducing energy dependence and CO2 emissions. However, the energy efficiency target is based on a 

hypothetical percentage of future primary energy use based on an outdated projection that does not 

account for the different factors influencing the variation in energy consumption and the recent 

evolution of EU policies. 

This study identifies and quantifies the factors influencing the variation in final energy consumption in 

the EU from 1995 to 2015 by a employing decomposition analysis (LMDI-I) and using disaggregated 

data. Specifically, the decomposition analysis shows the extent to which the reduction in the EU final 

energy consumption was driven by energy efficiency improvements, which would otherwise be masked 

by changes in economic activity and structure. In addition, to track progress towards the 32.5% energy 

efficiency target, the estimated energy efficiency improvements from 2005 to 2015 are compared to the 

2005 historical final energy consumption levels. Finally, to account for economy-wide benefits, the 

calculated amount of energy savings due to energy efficiency improvements is translated into a 

reduction in energy dependence and CO2 emissions. 

The results show that from 1995 to 2015, the increase of 275 Mtoe in final energy consumption caused 

by activity effects was offset by structural changes (-52 Mtoe), especially energy efficiency 

improvements (-235 Mtoe). At the sectoral level, 52.8% of the energy savings due to energy efficiency 

improvements were derived from industry, 18.3% were derived from the residential sector, 16.2% were 

derived from transport, 8% were derived from services, and 4.7% were derived from agriculture. 

Without the energy efficiency improvements that occurred between 1995 and 2015, the final energy 

consumption in 2015 could have been 23.2% higher. In contrast to the industrial and residential sectors, 

the transport and service sectors did not decrease their energy consumption and showed moderate 
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energy efficiency gains from 1995 to 2015. While energy efficiency improvement actions targeting the 

transport sector, such as vehicle efficiency standards, fuel tax, training and information on eco-driving, 

modal shift and mobility reduction measures should be prioritised in future policymaking but, are 

limited by the scope of Article 7 of the revised Energy Efficiency Directive (2018/2002). In fact, under 

(extended) Article 7, which requires Member States to set an energy efficiency target for the period 

2021–2030, the energy consumption of the transport sector can partially or fully be excluded from the 

calculation of energy savings (The European Parliament and the Council of the European Union 2018). 

This exclusion undermines the willingness of policy makers to increase their efforts to improve energy 

efficiency in the transport sector as confirmed by a recent study analysing the implementation of the 

Article 7 in EU Member States (Rosenow and Fawcett, 2016); thus far, the experience has shown that 

all EU Member States, except for Sweden, have excluded the transport sector from the baseline used to 

establish the target. 

Regarding the service sector, its high level of heterogeneity and the lack of disaggregated data at the 

EU level do not support sound conclusions. As noted by Marrero and Ramos-Real (2013), one possible 

explanation for the low-energy efficiency gains in the service sector can be attributed to its low degree 

of competition from abroad, which contrasts the high degree of competition in industry among 

European countries.  

If the energy efficiency target for 2030 is assessed against the variation in final energy consumption 

due to energy efficiency improvements alone (and not other factors), there are considerable 

opportunities for its achievement several years before 2030. In fact, the results indicate that the energy 

savings driven by energy efficiency improvements alone between 2005 and 2015 contributed to 

achieving 52.5% of the target established for 2030. From this perspective, the 32.5% energy efficiency 

target appears to be significantly behind that achievable by the EU.  

The need for a higher target becomes even more crucial when the benefits of energy efficiency are 

measured in terms of the security of supply and emission reductions. Hypothetically, the gross inland 

energy saved (361 Mtoe) due to energy efficiency improvements from 1995 to 2015 could have allowed 

the EU to not rely on imports from Russia and Norway in 2015. In addition, the energy efficiency 
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improvements from 1995 to 2015 lowered CO2 emissions in 2015 by 26.3% and contributed to 

achieving 35.5% of the climate target established for 2030. 

Given the key role of energy efficiency in reducing energy consumption, energy dependence, and CO2 

emissions, the declared intention of energy efficiency ‘first’ as the guiding principle for energy policy 

making should be more consistently aligned with actual policy implementation and strategic direction. 

Although it is the responsibilities of the EU Member States to establish concrete measures to improve 

energy efficiency and achieve the agreed objectives, the crucial role of the EU as stimulus to increase 

energy efficiency and establish a common framework for mutually reinforcing mechanisms is 

confirmed by the empirical results. During the period of investigation (1995–2015), the year after the 

implementation of the most important acts regarding energy efficiency (2007, 2011, and 2014), i.e., 

Directive 2006/32/EC, Directive 2010/30/EU, Directive 2010/31/EU, and Directive 2012/27/EU 

(which entered into force on December 4, 2012), registered the highest energy reductions driven by 

energy efficiency improvements and the highest levels of contribution of energy efficiency in reducing 

energy dependence and CO2 emissions. 

Therefore, the overall level of the target and its evaluation could influence the level of ambition of 

energy efficiency policies at the national level and the achievement of energy security and climate 

change goals. The findings in this study highlight the significant contribution of energy efficiency to 

reducing energy consumption and the importance of redefining the energy efficiency target in a more 

consistent way by reconsidering the level to be achieved and evaluating progress accordingly. 
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