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Diamagnetic expansions for perfect
quantum gases II: uniform bounds.

Philippe Briet 1, Horia D. Cornean2, and Delphine Louis.3

Abstract: Consider a charged, perfect quantum gas, in the effective mass approxima-
tion, and in the grand-canonical ensemble. We prove in this paper that the generalized
magnetic susceptibilities admit the thermodynamic limit for all admissible fugacities,
uniformly on compacts included in the analyticity domain of the grand-canonical pres-
sure.

The problem and the proof strategy were outlined in [BCL1]. In [BCL2] we proved

in detail the pointwise thermodynamic limit near z = 0. The present paper is the last

one of this series, and contains the proof of the uniform bounds on compacts needed

in order to apply Vitali’s Convergence Theorem.

1 Introduction and results.

The magnetic properties of a charged perfect quantum gas in the independent
electron approximation and confined to a box Λ have been extensively studied in
the literature. One of the central problems has been to establish the thermody-
namic limit for the magnetization and magnetic susceptibility, see e.g. [ABN],
[AC], [BCL1], [BCL2] ,[C1], [C2], [MMP] and references therein.

Briefly, the technical question is whether the thermodynamic limit (Λ → R3)
commutes with the derivatives of the grand-canonical pressure with respect to
the external constant magnetic field B.

A general way of proving this thermodynamic limit has been already an-
nounced in [BCL1] and [C2], and the main ingredient consisted in applying the
magnetic perturbation theory to a certain Gibbs semigroup. The strategy of the
proof, which works not only for the first two derivatives, but also for derivatives
of all orders, were outlined in [BCL1]. In [BCL2] we proved in detail the point-
wise thermodynamic limit near z = 0. This paper is the last one of the series,
it contains the complete proof of the uniform bounds on compacts needed in
order to apply the Vitali Convergence Theorem (see [T]).

Now let us formulate the mathematical problem. The box which contains
the quantum gas will be the cube Λ ⊂ R3 of side length L > 0 centered at 0.
The constant magnetic field is B = (0, 0, B), with B ≥ 0, oriented parallel to
the third component of the canonical basis in R3.

We associate to B the magnetic vector potential Ba(x) = B
2 (−x2, x1, 0) and

the cyclotronic frequency ω = e
cB. In the rest of the paper, ω will be a real

parameter. The one particle Hamiltonian we consider is the self-adjoint operator
densely defined in L2(Λ):

HL(ω) :=
1
2

(−i∇− ωa)2, (1.1)

corresponding to Dirichlet boundary conditions.
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One denotes by B1(L2(Λ)) the Banach space of trace class operators. At ω ≥
0 fixed, the magnetic Schrödinger operator HL(ω) generates a Gibbs semigroup
{WL(β, ω)}β≥0 where:

WL(β, ω) := e−βHL(ω), ‖WL(β, ω)‖B1 ≤
L3

(2πβ)
3
2
, β > 0. (1.2)

Let us now introduce the grand-canonical formalism. Let β = 1/(kT ) > 0 be
the inverse temperature, µ ∈ R the chemical potential and z = eβµ the fugacity.
Let K be a compact included in the domain D+ := C\ [e

βω
2 ,∞[ for the Bose

statistics and D− := C\ ]−∞,−e
βω
2 ] for the Fermi case.

Fix ω0 > 0 and a compact real interval Ω containing ω0. For a fixed β > 0,
one can find a simple, positively oriented, closed contour CK ⊂ D± whose
interior does not contain 1 in the Bose case or −1 in the Fermi case, and such
that

sup
L>1

sup
ω∈Ω

sup
ξ∈CK

sup
z∈K

∥∥[ξ − zWL(β, ω)]−1
∥∥ = M < ∞. (1.3)

Details may be found in [C1] for the Bose case, but the main idea is that the
spectrum of WL(β, ω) is always contained in the interval [0, e−βω/2] and one can
apply the spectral theorem.

We then can express the grand canonical pressure at ω0 as follows (see e.g.
[C1] for the Bose case):

PL(β, z, ω0) =
−ε

2iπβL3

∫
CK

dξ
ln(1− εξ)

ξ
Tr
[
(ξ − zWL(β, ω0))−1zWL(β, ω0)

]
.

(1.4)

where ε = 1 for the Bose gas, and ε = −1 for the Fermi gas.
For ω ∈ R, ξ ∈ CK and z ∈ K, introduce the operator:

gL(β, z, ξ, ω) := [ξ − zWL(β, ω)]−1zWL(β, ω). (1.5)

This is a trace class operator which obeys (use (1.3) and (1.2)):

‖gL(β, ω, ξ, ω‖B1 ≤ (sup
z∈K

|z|) L3M

(2πβ)
3
2
. (1.6)

uniformly in ω ∈ Ω. Because ω → WL(β, ω) is a B1-entire operator valued
function in ω (this result was first obtained in [ABN] and then refined in [BCL2]),
then using (1.3) one easily shows that the map

]0,∞[3 ω 7→ Tr gL(β, z, ξ, ω) ∈ C

is smooth, with derivatives which are uniformly bounded in ξ and z. Thus for
every N ≥ 1 and z ∈ K we can define the generalized susceptibilities at ω0 by

χN
L (β, z, ω0) :=

∂NPL

∂ωN
(β, z, ω0) (1.7)

=
−ε

2iπβL3

∫
CK

dξ
ln(1− εξ)

ξ

∂NTr gL

∂ωN
(β, z, ξ, ω0).
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¿From this discussion one can see that the pressure as well χN
L (β, ·, ω0), N ≥ 1

are analytic functions on D+ (or D−).
Now let us describe the case when L = ∞. The thermodynamic limit of the

pressure exists and is uniform on compacts like K. If ω > 0, its actual value is
(see [AC] ):

P∞(β, z, ω0) := ω0
1

(2πβ)3/2

∞∑
k=0

f ε
3/2

(
ze−(k+1/2)ω0β

)
, (1.8)

where f ε
σ(ζ) are the usual Bose (or Fermi) functions for ε = 1 (or ε = −1):

f ε
σ(ζ) :=

ζ

Γ(σ)

∫ ∞

0

dt
tσ−1e−t

1− ζεe−t
, (1.9)

analytic in C \ [1,∞[ (or C\] −∞,−1] ) if ε = 1 (or ε = −1). If |ζ| < 1, they
are given by the following expansion:

f ε
σ(ζ) =

∞∑
n=1

εn−1ζn

nσ
.

Now it is rather easy to verify that for any N ≥ 0, the multiple derivative
∂N

ω P∞(β, ·, ω0) exists and defines an analytic function on D+ (or D−). The
main result of [BCL1] established the pointwise convergence,

lim
L→∞

∂N
ω PL(β, ·, ω0) = ∂N

ω P∞(β, ·, ω0) := χN
∞(β, ·, ω0); |z| < 1.

Remember that we want to apply the Vitali Convergence Theorem (see [T] or
[BCL1]). Therefore, in order to conclude that χN

L (β, z, ω0) converges uniformly
to χN

∞(β, z, ω0) for all z ∈ K, the only remaining point is to get the uniform
boundedness w.r.t. L. More precisely, we will prove:

Theorem 1.1. For all N ≥ 1, for all β > 0 and for all ω > 0,

sup
L>1

sup
z∈K

∣∣χN
L (β, z, ω)

∣∣ ≤ const(β, K, ω,N). (1.10)

Then putting this together with the pointwise convergence result near z = 0
of [BCL2], the final conclusion would be:

lim
L→∞

sup
z∈K

∣∣χN
L (β, z, ω0)− χN

∞(β, z, ω0)
∣∣ = 0. (1.11)

Remark 1.2. Having uniform convergence (1.11) with respect to z allows us
to prove existence of the thermodynamic limit for canonical susceptibilities (see
[BCL1, C2])

This paper is devoted to the proof of Theorem 1.1. Note that the theorem
is an immediate consequence of the following estimate:

sup
ξ∈CK

sup
z∈K

∣∣∣∣∂NTr gL

∂ωN
(β, ξ, z, ω0)

∣∣∣∣ ≤ L3 const(β, K, N, ω0), (1.12)

which would imply via (1.7) that the generalized susceptibilities are uniformly
bounded in L.

3



1.1 Strategy of the proof

¿From now on, we omit the parameters ξ and z in the definition of gL in order
to simplify notation. Fix β > 0 and ω0 ≥ 0. Let Ω ⊂ R be a compact interval
containing ω0. If ω ∈ Ω, we denote by δω := ω−ω0. The main idea of the proof
is to derive an equality of the following type:

Tr gL(β, ω) = Tr gL(β, ω0) +
N∑

j=1

(δω)jaj(β, ω0) + (δω)N+1RL(β, ω, N), (1.13)

where the coefficients aj(β, ω0) grow at most like L3 uniformly in ξ and z, while
the remainder RL(β, ·, N) is a smooth function near ω0. Then since we know
that Tr gL(β, ·) is smooth, we must have

∂NTr gL

∂ωN
(β, ω0) = N !aN (β, ω0),

and this would finish the proof. In order to achieve this program, we will have
to do two things.

First step: with the help of magnetic perturbation theory we will find a
regularized expansion in δω for gL of the form

gL(β, ω) =
N∑

n=0

(δω)ngL,n(β, ω) + RL,N (β, ω, N), (1.14)

which holds in the sense of trace class operators, and the remainder has the
property that 1

(δω)N+1 RL,N (β, ω) is smooth near ω0 in the trace class topol-
ogy. The operator-coefficients gL,n(β, ω) will still depend on ω, but in a more
convenient way. That is, they are sums, products, or integrals of products of
regularized operators, see (2.2). This result is precisely stated in Theorem 3.5.

Second step: show that for each 0 ≤ n ≤ N we can write

Tr gL,n(β, ω) =
N∑

j=0

(δω)jsL,j,n(β, ω0) + (δω)N+1RL,N (β, ω, N), (1.15)

where the remainderRL,n(β, ·) is smooth near ω0. Now the coefficients sL,j,n(β, ω0)
are finally independent of ω, and grow at most like L3. This is done in the last
section.

Finally, if we combine (1.15) with (1.14), we immediately obtain (1.13).
Now let us discuss why a more direct approach only based on trace norm

estimates cannot work. Recall that the map ω → WL(β, ω) ∈ B1 is real analytic,
hence ∂N WL

∂ωN is well defined in B1(L2(Λ)), and we have the estimate (see [ABN]
and [BCL2]) : ∥∥∥∥ 1

N !
∂NWL

∂ωN
(β, ω0)

∥∥∥∥
B1

≤ cN
L3+N (1 + β)sN

β
3
2
[

N−1
4

]
!

, (1.16)

where cN is a positive constant which depends on N , ω and s. Now if we use
the Leibniz rule of differentiation for the product which defines the operator
gL(β, ω) (see (1.5)), and estimate traces by trace norms we obtain:∣∣∣∣∂NTr gL

∂ωN
(β, ω0)

∣∣∣∣ ≤ ∥∥∥∥∂NgL

∂ωN
(β, ω0)

∥∥∥∥
B1

≤ L3+Nconst (β, K, ω0, N). (1.17)
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Now this is definitely not good enough, and we have to find a more convenient
expansion, as described in (1.15). This will be done in the next sections.

2 Regularized expansion of WL

It has been shown in [BCL1] and [BCL2] that by using gauge invariance one can
control the linear growth of the magnetic vector potential a. The price one pays
is the introduction of an antisymmetric phase factor, which disappears though
when one takes the trace. Let us now show how this works for the operatorWL.

Fix ω0 ≥ 0 and β > 0. Let ω ∈ C and δω as above. Let us define the
magnetic phase:

φ(x,x′) := x · a(x′) =
1
2
(x2x

′
1 − x1x

′
2) = −φ(x′,x); (x,x′) ∈ Λ2. (2.1)

If T (ω0) is a bounded operator with an integral kernel t(·, ·, ω0), then the nota-
tion T̃ (ω) will refer to the regularized operator associated to T (ω0) which has
the kernel:

t̃(x,x′, ω) := eiδωφ(x,x′)t(x,x′, ω0); (x,x′) ∈ Λ2. (2.2)

We will very often use the Schur-Holmgren criterion of boundedness for integral
operators, which states that if T has an integral kernel t(x,x′), then:

||T || ≤
{

sup
x′∈Λ

∫
Λ

|t(x,x′)|dx · sup
x∈Λ

∫
Λ

|t(x,x′)|dx′
}1/2

. (2.3)

We denote by GL(·, ·, β, ω) the kernel of WL(β, ω). We define two other
bounded operators R1,L and R2,L by their kernels,

R1,L(x,x′, β) := a(x− x′) · [i∇x + ω0a (x)]GL(x,x′, β, ω0),

R2,L(x,x′, β) :=
a2(x− x′)

2
GL(x,x′, β, ω0); (x,x′) ∈ Λ2. (2.4)

Then consider the corresponding regularized operators W̃L, R̃1,L, R̃2,L. Let
us state here two important estimates, the first one is just the diamagnetic
inequality, while the second one was obtained in [C1],

|GL(x,x′, β, ω0)| ≤ G∞(x,x′, β, 0) =
1

(2πβ)3/2
exp

(
|x− x′|2

2β

)
, (2.5)

|[i∇x + ω0a(x)]GL(x,x′, β, ω0)| ≤ C(1 + ω0)3
(1 + β)5√

β
G∞(x,x′, 8β, 0), (2.6)

on Λ2, where C > 0 is a numerical constant. A straightforward application of
the Schur-Holmgren criterion gives us the following operator norm estimates

‖W̃L(β, ω)‖ ≤ 1, ‖R̃i,L(β, ω)‖ ≤ C0 (1 + ω0)3(1 + β)5, (2.7)

where i = 1, 2 and C0 > 0 is a numerical constant.
For i1, ..., in ∈ {1, 2}, define

Dn(β) = {(τ1, ..., τn) ∈ Rn : 0 < τn < ... < τ1 < β}. (2.8)
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Introduce the operator norm convergent Bochner integrals:

In,L(i1, ..., in)(β, ω) :=
∫

Dn(β)

dτ W̃L(β − τ1, ω)R̃i1,L(τ1 − τ2, ω)

· R̃i2,L(τ2 − τ3, ω)...R̃in−1,L(τn−1 − τn, ω)R̃in,L(τn, ω), (2.9)

and

Jn,L(β, ω) :=
∫

Dn(β)

dτ WL(β − τ1, ω)R̃L(τ1 − τ2, ω)

· R̃L(τ2 − τ3, ω)...R̃L(τn−1 − τn, ω)R̃L(τn, ω). (2.10)

Here we used the notation:

R̃L(β, ω) = (δω)R̃1,L(β, ω) + (δω)2R̃2,L(β, ω). (2.11)

By (2.7) the operators In,L(i1, ..., in) and Jn,L belong to B(L2(Λ)). We will
show below that in fact their belong to B1(L2(Λ)) and their trace norm is of
order L3. Denote by χj

n(i1, ..., in) the characteristic function of the set

{(i1, ..., in) ∈ {1, 2}n :
n∑

k=1

ik = j}.

Proposition 2.1. Fix ω0 > 0, and N ≥ 1. Set δω = ω − ω0, ω ∈ C. Then we
have the following identity in B1(L2(Λ)):

WL(β, ω) = W̃L(β, ω) +
N∑

n=1

(δω)n WL,n(β, ω) + R
(1)
L,N (β, ω), (2.12)

where ω → 1
(δω)N+1 R

(1)
L,N (β, ω) is a smooth B1 operator valued function in ω.

The coefficients of the above expansion are given by:

WL,n(β, ω) :=
n∑

k=1

(−1)k
∑

ij∈{1,2}

χn
k (i1, ..., ik)Ik,L(i1, ..., ik)(β, ω), (2.13)

and the reminder reads as:

R
(1)
L,N (β, ω) :=

2N∑
n=N+1

(δω)n
N∑

k=1

(−1)k
∑

ij∈{1,2}

χn
k (i1, ..., ik) (2.14)

· Ik,L(i1, ..., ik)(β, ω) + (−1)N+1JN+1,L(β, ω).

Proof. This proposition was proved in [BCL2] in the sense of bounded
operators. Again by using Remark 3.4 in [BCL2], the operator W̃L(β, ω) as
well as WL,n(β, ω) belong to B1(L2(Λ)). The same argument holds for the
remainder R

(1)
L,N (β, ω). The fact that the operator ω → 1

(δω)N+1 R
(1)
L,N (β, ω) is

a smooth B1 operator valued function near ω0 follows from definitions (2.14),
(2.9) and (2.10).
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Remark 2.2. It is important to note that the coefficients WL,N in (2.13) still
depend on ω, but only through the magnetic phases. ¿From the estimates (2.7)
and the definitions in (2.9) and (2.10), and after integration over the τ variables,
clearly we get as bounded operators:

||R(1)
L,N (β, ω)|| ≤ const |δω|N+1, (2.15)

where the constant is uniform in L > 1.

3 Regularized expansion of gL

We will now try to get a similar expansion for gL, aiming to obtain (1.14). Fix
β > 0 and ω0 > 0. The parameters z and ξ which enter the definition of gL are
fixed as in (1.5), and the estimates we make must be uniform w.r.t. them. Here
ω is real and δω is as above. It was shown in [C1] that:

Lemma 3.1. Let ω ∈ R. The trace class operator gL admits a continuous
integral kernel. Moreover, there exist two positive constants C and α, both
independent of L, such that the integral kernel satisfies

|gL(x,x′;ω)| ≤ C e−α|x−x′|. (3.1)

Looking at (1.5), we see that we need a regularized expansion for the operator
(ξ − zWL(β, ω))−1.

Using (2.15) with N = 1 we get for ω ∈ R,

‖WL(β, ω)− W̃L(β, ω)‖ ≤ C1 |δω|, (3.2)

where C1 is a L independent constant . Hence choose |δω| is small enough such
that

C1M |δω| (sup
z∈K

|z|) < 1/2, (3.3)

C1 and M being respectively defined in (3.3) and (1.3). Then the operator
1− z(W̃L −WL)(ξ − zWL)−1 is invertible and its inverse has a norm less than
2. Hence by choosing Ω to be a small enough interval around ω0 we get

sup
L>1

sup
ω∈Ω

sup
ξ∈CK

sup
z∈K

∥∥∥[ξ − zW̃L(β, ω)]−1
∥∥∥ ≤ 2M. (3.4)

Then we can write:

(ξ − zWL(β, ω))−1 (3.5)

= (ξ − zW̃L(β, ω))−1
∞∑

n=0

zn{[WL(β, ω)− W̃L(β, ω)](ξ − zW̃L(β, ω))−1}n,

and thus we reduced the problem to the study of (ξ − zW̃L(β, ω))−1.
In order to get a convenient expansion for this inverse, we need to introduce

some new notation. Let x,x′ ∈ Λ. Define for N ≥ 1:

rL,N (x,x′;β) := −z

∫
Λ

[ifl(x,y,x′)]N

N !
GL(x,y;ω0)gL(y,x′;ω0)dy, (3.6)

7



where

fl(x,y,x′) := φ(x,y) + φ(y,x′) + φ(x′,x) =
1
2
e3 · [(y − x) ∧ (y − x′)]; (3.7)

with e3 = (0, 0, 1), denotes the magnetic flux through the triangle defined by x,
y, and x′. Similarly let ω ∈ R and define the bounded operator rL(β, ω) and
r̂L(β, ω) whose kernel is given by:

rL(x,x′;β, ω) = −z

∫
Λ

(
eiδωfl(x,y,x′) − 1

)
GL(x,y;β, ω0)gL(y,x′;β, ω0)dy,

r̂L(x,x′;β, ω) = eiδωφ(x,x′)rL(x,x′;β, ω) (3.8)

Notice that r̂L does not coincide with the regularization of rL given by (2.2).
The operators rL and r̂L are related to the operators rL,N and r̃L,N respectively
by

rL(β, ω) =
∞∑

k=1

(δω)krL,k(β); r̂L(β, ω) =
∞∑

k=1

(δω)kr̃L,k(β. (3.9)

Note that by using the Schur Holmgren criterion, the Lemma 3.1, (2.5) and the
fact that fl(x,y,x′) is bounded from above by L2 on Λ, we have the estimate:∥∥∥∥∥rL −

N∑
k=1

(δω)krL,k =
∞∑

k=N+1

(δω)krL,k

∥∥∥∥∥ ≤ const eL2
|δω|N+1, (3.10)

for some numerical positive constant. The same estimate again holds true for
r̂L(β, ω) and the corresponding series given in (3.9).

Let us now give some more precise estimates on the norms of these operators.

Proposition 3.2. Fix N ≥ 1. There exist a positive constants C2 independent
of L > 1 such that for all ω ∈ R,

max
{

N
max
k=1

||rL,k(β)||, |δω|−1||rL(β, ω)||
}
≤ C2, (3.11)

and

max
{

N
max
k=1

||rL,k(β)||B2 , |δω|−1||rL(β, ω)||B2

}
= C2 · L3/2. (3.12)

These estimates also hold true for the regularized operators in the sense of (2.2)
and r̂L(β, ω).

Proof. First, note that |fl(x,y,x′)| ≤ |x − y| |y − x′|, see (3.7). The kernels
present in the y integral are localized near their diagonal, see (2.5) and (3.1).
By extending the integral with respect to y over the whole R3, then using a
fraction of the exponential decay in order to bound the polynomial growth from
the flux, we obtain a constant independent of L such that

|rL,k(x,x′;β)| ≤ C3 · e−
α
4 |x−x′|; (x,x′) ∈ Λ2, 1 ≤ k ≤ N. (3.13)

The same estimate holds for rL. Now we can apply the Schur-Holmgren criterion
(2.3) and get (3.11). The Hilbert-Schmidt estimates is also straightforward.

The next proposition gives the necessary expansion of (ξ − zW̃L(β, ω))−1.
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Proposition 3.3. Fix N ≥ 1 and ω0 > 0. Then if |δω| is small enough, the
following identity holds in B(L2(Λ)):

(ξ − zW̃L(β, ω))−1 = ξ−1 (1 + g̃L(β, ω)) [1 + ξ−1r̂L(β, ω)]−1 (3.14)

= ξ−1 (1 + g̃L(β, ω)) +
N∑

n=1

(δω)n SL,n(β, ω) + R
(2)
L,N (β, ω),

where SL,N is given by

SL,N (β, ω) := ξ−1
N∑

n=1

(−ξ−1)n
∑

(i1,...,in)∈(N∗)n

χN
n (i1, ..., in) (1 + g̃L(β, ω))

· r̃L,i1(β, ω)...r̃L,in(β, ω) (3.15)

where the remainder R
(2)
L,N (β, ω) has the property that the bounded operator val-

ued function ω → (δω)−NR
(2)
L,N (β, ω) is smooth around ω0 and moreover, there

exists a constant (possibly) depending on L such that

‖R(2)
L,N (β, ω)‖ ≤ const |δω|N+1. (3.16)

Proof. We start with the following resolvent equation,

(ξ − zW̃L(β, ω))−1 = ξ−1 + (ξ − zW̃L(β, ω))−1zW̃L(β, ω)ξ−1. (3.17)

Now the next identity is very important, and it is obtained by a straightforward
calculation from (3.7) and the definition of gL (see also Proposition 13 in [C1])

[ξ − zW̃L(β, ω)]g̃L(β, ω) = zW̃L(β, ω) + r̂L(β, ω). (3.18)

If one multiplies with an inverse both sides of the above equality we get:

(ξ − zW̃L(β, ω))−1zW̃L(β, ω) = g̃L(β, ω)− (ξ − zW̃L(β, ω))−1r̂L(β, ω). (3.19)

We know from Proposition 3.2 that we can find a constant C2 independent of
L such that

‖r̂L(β, ω)‖ ≤ C2 |δω|. (3.20)

Let us use (3.19) in (3.17), and isolate the inverse we are interested in

[ξ − zW̃L(β, ω)]−1[1 + ξ−1r̂L(β, ω)] = ξ−1[1 + g̃L(β, ω)]. (3.21)

Now if |δω| is small enough, 1+ ξ−1r̂L(ω) is invertible and (3.14) follows. More-
over, expressing the inverse by a finite Neumann-type expansion,

[1 + ξ−1r̂L]−1 =
N∑

k=0

(−ξ)−kr̂k
L + [1 + ξ−1r̂L]−1(−ξ)−(N+1)r̂

(N+1)
L ,

and using (3.9) we can identify the operators SL,N (β, ω) as given in (3.15), while
the reminder reads as

R
(2)
L,N (β, ω) := (−ξ)−(N+1)[ξ − zW̃L(β, ω)]−1r̂N+1

L (β, ω) + ξ−1[1 + g̃L(β, ω)]

·
∞∑

k=N+1

(δω)k
N∑

n=1

(−ξ−1)n
∑

(i1,...,in)∈(N∗)n

χk
n(i1, ..., in)r̃L,i1(β, ω)...r̃L,in(β, ω).

(3.22)
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Let us now identify the term in (δω)N+1 which appears in the estimate (3.16).
For the first term of the remainder it comes from (3.20), while for the second one
it comes from the fact that the series begin with the index N +1 (see (3.10)).

We are now ready to give a convenient expansion for the operator [ξ −
zWL(β, ω)]−1. First we need some new notation. We introduce the following
operators,

SL,0(β, ω) := ξ−1[1 + g̃L(β, ω)], (3.23)

TL,N (β, ω) :=
N∑

n=1

zn
∑

0≤ik≤N,1≤jk≤N

χN
2n+1(i0, j1, i1, ..., jn, in)SL,i0(β, ω)

·WL,j1(β, ω)SL,i1(β, ω) ...WL,jn(β, ω)SL,in(β, ω), N ≥ 1. (3.24)

Since the operators WL,j and SL,i defined in Propositions 2.1 and 3.3 are uni-
formly bounded in L, this is also true for TL,N .

Corollary 3.4. Fix N ≥ 1 and ω0 ≥ 0. If |δω| is small enough, then the
following identity holds in B(L2(Λ)):

[ξ − zWL(β, ω)]−1 = [ξ − zW̃L(β, ω)]−1 +
N∑

n=1

(δω)n TL,n(β, ω) + R
(3)
L,N (β, ω),

(3.25)

where the remainder R
(3)
L,N (β, ω) has the property that the bounded operator val-

ued function ω → 1
(δω)N R

(3)
L,N (β, ω) is smooth near ω0, and there exists a con-

stant (possibly) depending on L such that:

‖R(3)
L,N (β, ω)‖ ≤ const |δω|N+1. (3.26)

Proof. The result follows after inserting the estimates from the previous propo-
sition into formula (3.5), having used the notation introduced in (3.23), (3.24),
(2.12) and (2.13). The rest is just a tedious bookkeeping of various terms.

We finally are in the position of writing ”the right” expansion for the oper-
ator gL(β, ω) as announced in (1.14).

Theorem 3.5. Fix N ≥ 1 and ω0 ≥ 0. If |δω| is small enough, then the
following equality takes place in B1(L2(Λ)):

gL(β, ω) = gL,0(β, ω) +
N∑

n=1

(δω)n gL,n(β, ω) + R
(4)
L,N (β, ω), (3.27)

where
gL,0(β, ω) := [ξ − zW̃L(β, ω)]−1zW̃L(β, ω). (3.28)

and gL,n are given by (N ≥ 1),

gL,N (β, ω) :=
N∑

n=1

[SL,N−n(β, ω)zWL,n(β, ω) +TL,n(β, ω)zWL,N−n(β, ω)] ,

(3.29)
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where WL,0 := W̃L and the remainder 1
(δω)N R

(4)
L,N (β, ω) has the property that

the B1 operator valued function ω → 1
(δω)N R

(4)
L,N (β, ω) is smooth near ω0 and

there exists a positive constant (possibly) depending on L such that:

‖R(4)
L,N (β, ω)‖B1 ≤ const |δω|N+1L3. (3.30)

Proof. First we multiply the B1(L2(Λ)) expansion (2.12) of the semigroup with
the expansion (3.25) of the resolvent valid in B(L2(Λ)). Thus one obtains in
B1(L2(Λ)),

gL(β, ω) = [ξ − zW̃L(β, ω)]−1z

(
W̃L(β, ω) +

N∑
n=1

(δω)nWL,n(β, ω)

)

+
N∑

n=1

(δω)n TL,n(β, ω)zW̃L(β, ω) +
N∑

n=1

N∑
k=1

(δω)n+k TL,n(β, ω)zWL,k(β, ω)

+ [ξ − zWL(β, ω)]−1zR
(1)
L,N (β, ω) + R

(3)
L,N (β, ω)z

(
N∑

n=1

(δω)n WL,n(β, ω)

)
+ R

(3)
L,N (β, ω)zW̃L(β, ω). (3.31)

The last two lines will give a remainder R
(4a)
L,N (β, ω), whose properties can be read

out of those of the previous ones. This remainder has the same properties as
R

(4)
L,N (β, ω), and in fact it is a part of it. The rest of the proof is just algebra, and

amounts to identify the right factors which enter the definition of gL,n(β, ω) and
the expression of the full remainder. Here one must use (3.14) and the notation
introduced in (3.15), (3.23) and (3.24). The proof is over.

4 Expansion of the trace of gL. The uniform
bound.

We have almost all ingredients needed for proving (1.15). Let β > 0, ω0 > 0
and ω ∈ Ω as in the Section 1.1. We now need to take the trace in (3.27). Let
us begin with the trace of the operator gL,0(β, ω) (see (3.28)). If we use (3.19),
and then (3.14) , (3.17) and (3.23), we can write:

gL,0(β, ω) = g̃L(β, ω)− ξ−1r̂L(β, ω)− ξ−1[ξ − zW̃L(β, ω)]−1zW̃L(β, ω)r̂L(β, ω)

= {g̃L(β, ω)− ξ−1r̂L(β, ω)} − ξ−1z
N∑

k=0

(δω)kSL,k(β, ω)W̃L(β, ω)r̂L(β, ω)

− ξ−1zR
(2)
L,N (β, ω)W̃L(β, ω)r̂L(β, ω). (4.1)

Apriori, this identity only holds in the bounded operators sense. But we know
that W̃L(β, ω) is a trace class operator. It means that the operator

M(β, ω) := g̃L(β, ω)− ξ−1r̂L(β, ω) (4.2)

is a trace class operator, since all other operators in (4.1) are trace class. Note
that the two individual terms in M(β, ω) might not be trace class. Now since
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M(β, ω) has a continuous integral kernel M(·, ·;β, ω), its trace will be given by:

Tr M(β, ω) =
∫

Λ

M(x,x;β, ω)dx (4.3)

=
∫

Λ

g̃L(x,x;β, ω)dx− ξ−1

∫
Λ

r̂L(x,x;β;ω)dx

=
∫

Λ

gL(x,x;β, ω0)dx− ξ−1

∫
Λ

rL(x,x;β, ω)dx.

The last line is very important, since it shows that the ”tilde” disappears when
we take the trace. This is because the magnetic phase φ(x,x) = 0 for all x. But
now

∫
Λ

gL(x,x;β, ω0)dx = Tr gL(β, ω0), and we here recognize the very first
term on the right hand side of (1.13). Now if we use (3.6) (3.8) and (3.9) we
can write:

Tr M(β, ω) = Tr gL(β, ω0)− ξ−1
N∑

n=1

(δω)n

∫
Λ

rL,n(x,x;β, ω0)dx

+ (δω)N+1R(1)
L (β, ω, N), (4.4)

where ω → R(1)
L (β, ω, N) is a smooth function in ω near ω0. Moreover, due to

(3.13) we obtain that the above integrals grow at most like L3, as required.
But there are several other terms which remain to be considered in (4.1) and

(3.27). They are respectively Tr {SL,k(β, ω)W̃L(β, ω)r̃L(ω)} and Tr gL,n(β, ω).
These traces have two important things in common. First, we always take

the trace of a product of integral operators with continuous kernels. Second,
they all still depend on δω, but only through the magnetic phases; all factors
are regularized operators, as defined in (2.2). We will now try to discuss all
these different terms in a unified manner.

Fix ω0 > 0. Let ω ∈ R and δω as above. Consider a product of operators of
the form

T (ω) := T̃0(ω)T̃1(ω)...T̃n(ω)

where T̃i(ω) are the regularized operators associated to some integral operators
Ti(ω0), i = 0, ..., n (see (2.2)) and assume that this product is of trace class.
Denote by ti(·, ·) the kernel of Ti(ω0), which is supposed to be jointly continuous
in x and x′. We denote by fln the following flux related quantity

fl1(x,y1) = 0, fln(x,y1, ...,yn) =
n−1∑
k=1

fl(x,yk,yk+1)

= φ(x,y1) + φ(y1,y2) + ... + φ(yn−1,yn) + φ(yn,x), n ≥ 2. (4.5)

Another important property of these operators is that their kernels are exponen-
tially localized near the diagonal (see (2.5), (3.1) and (3.13)). Therefore there
exist two positive constants C and α, independent of L, such that:

n
max
i=0

|ti(x,x′)| ≤ C e−α|x−x′|, (x,x′) ∈ Λ2. (4.6)

Then the diagonal value of the kernel of T (ω) reads as

T (x,x, ω) =
∫

Λ

dy1...

∫
Λ

dyn eiδωfln(x,y1,...,yn)t0(x,y1, ω0)t1(y1,y2, ω0)...

tn−1(yn−1,yn, ω0)tn(yn,x, ω0), (4.7)
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where we added together all individual phases from each regularized factor.
Because we assumed that T is a trace class operator, the trace of T is

TrT (ω) =
∫

Λ

T (x,x, ω)dx. (4.8)

For m ≥ 0, n ≥ 1, let us introduce the notation:

dm,n(L) :=
∫

Λ

dx
∫

Λ

dy1...

∫
Λ

dyn[ifln(x,y1, ...,yn)]m t0(x,y1, ω0)

t1(y1,y2, ω0)...tn−1(yn−1,yn, ω0)tn(yn,x, ω0). (4.9)

Lemma 4.1. For every m ≥ 0 and n ≥ 1, there exists a constant independent
of L but depending on m,n such that

|dm,n(L)| ≤ constL3 . (4.10)

Moreover, for a given N ≥ 1 we have

Tr T (ω) =
N∑

m=0

(δω)mdm,n(L) + (δω)N+1RL(ω, N), (4.11)

where ω → RL(ω, N) is a smooth function near ω0.

Proof. The equality (4.11) comes straight out of (4.7) and (4.8).
Now let us prove the estimate (4.10). We recall the following estimate (3.7)

on the magnetic flux,

|fl(x,y, z)| ≤ |x− y||y − z|. (4.12)

Then by induction one has for all n ≥ 1,

|fln(x,y1, ...,yn)| ≤ (|x− y1|+ |y1 − y2|+ ... + |yn−1 − yn|)2 . (4.13)

Therefore the polynomial growth induced by this flux is diagonalized, i.e. it
only depends on differences between the variables yi, yi+1. But due to (4.6), we
can write

|dm,n(L)| ≤ const
∫

Λ

dx
∫

Λ

dy1...

∫
Λ

dyne−
α
2 |x−y1|

e−
α
2 |y1−y2|...e−

α
2 |yn−1−yn|e−

α
2 |yn−x|, (4.14)

for some L independent constant. Here we used the exponential decay to bound
the polynomial factors and then we extend the y integrals to the whole R3. So
the volume growth is only given by the integral over x in the r.h.s of (4.14).
The proof the lemma is over.

4.1 Proof of (1.13) and of Theorem 1.1

We can now put together the results of this section and prove the key estimate
(1.13). In Theorem 3.5 we obtained an expansion for gL(β, ω) as announced in
(1.14). When we take the trace of gL(β, ω), the term R

(4)
L,N (β, ω) will only give

a contribution to the remainder in (1.13), hence we ignore it.
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Then the term gL,0(β, ω) given in (3.28) can be written as a sum between
an operator M(β, ω) from (4.2), and a sum of operators of the type treated in
Lemma 4.1. Then from (4.4) and the above mentioned lemma we can conclude
that (∂N

ω Tr gL,0)(β, ω0) grows at most like L3.
Finally, looking at the contribution coming from gL,n(β, ω), with n ≥ 1.

Using the same lemma, we obtain in a similar way that (∂N
ω Tr gL,n)(β, ω0)

grows at most like the volume. We therefore conclude that (∂N
ω Tr gL)(β, ω0)

behaves like L3, uniformly in ξ and z, and the proof of (1.12) is done.
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