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Geometry-based MPC Tracking and Modeling

Algorithm for Time-Varying UAV Channels

José Rodrı́guez-Piñeiro, Zeyu Huang, Xuesong Cai, Tomás Domı́nguez-

Bolaño, and Xuefeng Yin, Member, IEEE

Abstract

In parallel with the decrease in cost, size and weight of Unmanned Aerial Vehicles (UAVs) and

the increase of their flight autonomy, many commercial applications are rapidly arising. Most of those

applications rely on a communications system between a terrestrial base station and the UAV. Due to

the UAV movement, time-variant channel models are required. In this paper, we propose a geometrical

model for the channel Multipath Components (MPCs) evolution with the UAV flight that supports

MPCs that are born and die in several occasions due to blockages. Based on this model, the novel

Geometry-Based Spatial-Consistent MPC Tracking Method (GSTM) is proposed and its performance

on channel MPCs tracking was shown both by simulations and by an Air-to-Ground (A2G) low-height

UAV measurement campaign. The GSTM also provides the parameters of a geometrical model of the

evolution of the main MPCs of the channel, which allows to identify the scatterers that lead to the MPCs

and greatly contributes to the understanding of the propagation mechanisms in A2G environments. The
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correctness of the MPC tracking is proven to be higher than 90% and the results show that the model

obtained by the GSTM includes more than 95% of the received power.

Index Terms

UAV; Air-to-Ground; Communications channels; Time-varying channels; MPCs tracking

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have shown to be able to contribute to support a broad

number of applications in modern societies, even in the form of UAV swarms. Some examples

of applications gaining importance are precise land mapping by aerial imagery [1], coordinated

application of chemical substances in agriculture [2], remote sensing, forests inventory and tree

species classification [3], operations in inaccessible areas, or delivery of goods or search and

rescue missions [4]. Provisioning of temporary network access after disasters or in saturated

environments by means of UAVs is also one of the scenarios addressed by the fifth generation

(5G) communication systems [5] due to the ability of the UAVs for fast deployments. For most

of the applications mentioned above, a connection between the UAV and an operator (manual

or automated) is required, which should rely on a wireless connection. A natural choice would

be the use of ground Long Term Evolution (LTE) or 5G deployments. UAV communications in

LTE have attracted and are still attracting a considerable amount of interest in 3rd Generation

Partnership Project (3GPP) standards from the Releases 15-17 [6].

The communications signal at the receiver is commonly expressed as a superposition of

Multipath Components (MPCs), consisting each of them of certain portion of the transmitted

energy that reaches the receiver following a specific physical path. Each MPC can be character-

ized by a set of parameters, such as the transmission delay, the Doppler frequency or the relative

amplitude. In time-variant scenarios, the number of MPCs, as well as the parameters associated

to each MPC will usually vary with the time, resulting in time-evolving MPCs, thus also time-

evolving clusters of MPCs [7]. Due to long periods under blockage, MPCs can disappear at a

specific time instant and reappear much later, as we have shown for the specific case of Air-to-

Ground (A2G) communications for UAVs in our previous work [8]. Although the non-stationary

nature of channels has been considered in Geometry-Based Stochastic Channel Models (GSCMs)

(e.g., see [9]), the complete dynamic behaviors of MPCs need to be addressed, including their

birth/death processes [10]. Tracking of time-varying MPCs that can relate distant MPCs (e.g.,
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due to blockage) as a single time-evolving MPC can avoid the loss of spatial-consistency of the

channel models.

Algorithms of different types have been proposed to track time-variant MPCs. In [11], recur-

sive expectation-maximization (EM) and space-alternating generalized expectation-maximization

(SAGE)-inspired algorithms have been proposed, which provide a quick update on estimates

given augmented data. In [12], an extended Kalman filter was derived to track the delays, angles

and amplitudes of MPCs. The algorithm proposed can track the evolution of “continuous” MPCs,

being unable to deal with blockage scenarios (i.e., if a MPC disappears and later reappears, the

second appearance will be considered as a newly-born MPC). Similarly, a Kalman Enhanced

Super Resolution Tracking (KEST) algorithm has been proposed in [13]. It is noteworthy that

the KEST exploits the output of a maximum likelihood (ML) estimator rather than the received

signals as the measurement model. The time-variant model order (number of MPCs) is also

determined, although the proposal cannot deal with blockage situations (as in the previous work,

non-continuous trajectories of MPCs cannot be associated to a single time-evolving MPC).

A particle filter was also proposed in [14] to overcome the possible inaccurate-linearization

problem as noted in [13] with the drawback of higher complexity. In [15], MPC trajectories are

obtained by maximizing the total moving probability between neighboring snapshots, hence non-

continuous MPCs cannot be tracked. Connection-based or minimum-distance based algorithms

can be found in [16]–[18] where the pairs of MPCs with smallest distance are linked. These

approaches can deal with blockage situations, by connecting tracked MPCs as a single time-

evolving MPC based purely on a metric distance criterion. This means that two tracked MPCs can

be linked as a single time-evolving MPC if the differences between the values of the parameters

of the two tracked MPCs are low enough. In [19], an image-processing technique was proposed

to track MPC trajectories directly using time-variant power delay profiles (PDPs). [20] presents

a clustering and tracking method that includes an iterative process joining long-lifetime clusters

that were broken into smaller lifetime ones. For this, a linear fitting is considered and only

two clusters are joined in each iteration. [21] presents MPC tracking results for a vehicular

communication scenario, exhibiting MPC birth and death processes. A method for long-term

tracking of the MPCs evolution is proposed, which uses the evolution of the MPCs in a time-

window to estimate the delay of the adjacent time-windows and look for candidate MPCs to be

linked together. [22] considers the temporal evolution of the MPCs as a basis for MPC clustering.

The proposal identifies the trajectories of individual MPCs first and then clusters the MPCs based
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on the identified trajectories. Close MPCs between consecutive snapshots can be considered as

a single MPC based on a distance metric. In [23], a MPC tracking algorithm in the delay-angle

space is proposed. Linear polynomials defined piecewise in the multidimensional MPC space

are used for the MPC tracking.

Most of the previously mentioned MPC tracking approaches fail in dealing with blockage

situations. In many cases blockages are just not considered and when a MPC is born it will be

considered as a new MPC (e.g., [11]–[15]). In others, such as [16]–[18], [21], [22], the only

criteria to consider separated MPCs as a single time-evolving MPC is the difference between

the values of the parameters of the MPCs. However, if the time interval between the MPCs

is large, their respective parameters can be quite different. In others, such as [20], [23] only

linear fits are be used to decide whether to join separated MPCs as a single time-evolving

MPC. However, we will see that a linear fitting is not always a good approximation, especially

when the time distance between the MPCs is large. Furthermore, for many of the approaches,

connecting MPC trajectories as a single time-evolving MPC is done in an iterative fashion by

considering only two trajectories at a time, such as in [16]–[18], [20]. In this work, the so-called

Geometry-Based Spatial-Consistent MPC Tracking Method (GSTM) is proposed. The GSTM is

able to track MPCs that disappear for long periods of time due to blockages.. Based on some

realistic assumptions about the typical propagation environments for A2G UAV communications

in urban or suburban scenarios a quadratic fitting is proposed to track the evolution of the delay

of MPC trajectories over time. Different from the previous methods, this enables to predict the

value of delay of the MPCs even though they disappear for long periods of time and solves

the inaccuracies caused by assuming linear fittings. Furthermore, different from other methods,

all the estimated MPCs are considered at a time when fitting MPC trajectories instead of just

iteratively processing pairs of MPCs. This leads to more accurate fits of the MPC trajectories.

What is more, we will show that the evolution of many MPCs can be geometrically modeled

up to some point, including their successive birth/death events due to eventual blockages from

elements of the environment. Under some circumstances, these geometrical models can be

used for identifying the elements of the propagation environment originating the MPCs. The

performance of the method is firstly evaluated by Monte-Carlo simulations using propagation

scenarios randomly generated, showing that the GSTM is capable of tracking the MPCs that

include birth/death events and extract the corresponding geometrical models for their variation.

Secondly, the practical applicability of the algorithm is shown by analyzing the received signals
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for an actual measurement campaign for A2G low-height UAV in suburban environments. The

main contributions of this paper are summarized in the following points:

• As a contribution to the time-variant channel modeling for A2G UAV communications,

a method for tracking the channel MPCs, namely the GSTM, was proposed. By taking

advantage of realistic assumptions about typical propagation environments for this kind of

communications, the GSTM exhibits the following advantages:

1) It can effectively detect the birth/death processes for the different MPCs, even though

eventually the MPCs disappear for long periods of time (e.g., they are temporarily

obstructed by large buildings close to the flight route). In other words, it can detect

the long-term spatial consistency of the MPCs;

2) The GSTM is not only capable of tracking the variation of the MPCs, but also provides

the parametrization of a geometrical model for the main MPCs. This model can be

used the for the channel prediction, channel inference or, in particular, to help to

identify the objects originating the different MPCs. The numerical results show that

in a practical situation the obtained geometrical model for the main MPCs includes

more than 95% of the received power.

3) Although our study is mainly focused on A2G UAV communications, the GSTM could

be applied to other scenarios involving relative movement between the transmitter and

receiver with frequent line-of-sight (LoS) conditions between the transmitter and the

main scatterers, as well as between those scatterers and the receiver. This can be,

for example, the case of Vehicle-to-Infrastructure (V2I) communications in urban or

suburban environments.

• The performance of the GSTM is shown by Monte-Carlo simulations using propagation

scenarios randomly generated and by analyzing the received signals from a measurement

campaign for A2G low-height UAV flights in a suburban environment. The simulation results

show that, even in the presence of estimation noise, the the tracking of the evolution of the

MPCs, including their birth/death events, is correct for more than 90% of them.

• The obtained results can explain the propagation mechanisms that lead to non-intuitive

effects in the communications channel characteristics described in our previous publications,

such as [8], [24], stating the basis for new non-stationary channel models.

The structure of the rest of this paper is as follows: Section II presents the basics of the geo-
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metrical approach proposed to model the evolution of the channel MPCs. Section III introduces

the GSTM. Section IV firstly introduces the details of the performed measurement campaign

and secondly presents the results of applying the GSTM to the acquired signals during the

measurements. Finally, Section V contains the main conclusions of the performed study.

II. BASICS OF THE GEOMETRICAL MODEL FOR THE MPCS

In practice, in order to estimate the channel parameters for a specific time instant, a certain

set of signal samples is collected and further processed in some way. This set of samples is

usually denoted as “snapshot”. For the i-th snapshot we can define the noise-free time-varying

channel impulse response by means of

hi(t, τ) =
L∑
l=1

αi,l exp{j2πνi,lt}δ(τ − τi,l), (1)

where t is the time variable, τ is the delay variable, L is the number of waves or paths, αi,l ∈ C

is the l-th path amplitude, νi,l ∈ R and τi,l ∈ R are the respective Doppler frequency and delay

for the l-th path, and δ(·) is the Dirac delta function.

For some sort of environments, the channel MPC estimates for near snapshots will probably

exhibit a clear relationship among them. For example, if the reflection of the signal in a building

leads to a MPC estimate for a specific snapshot, it is expectable that another MPC estimate with

similar values of power, Doppler frequency and delay will be detected in the next snapshot

as well. If the total distance traveled by the signal increases with time (due to the relative

speed between the transmitter and the receiver), the power of the MPC estimates for consecutive

snapshots will decrease in general, whereas the delay will increase. The evolution of the Doppler

frequency over different snapshots can also follow different patterns depending on aspects such

as the relative speed between the transmitter and the receiver.

As an example, consider the simplified case imaged in Fig. 1a1. A Base Station (BS), denoted

by B, is placed at the origin and with height hB, communicates with an UAV, namely U , which

flies at a constant height hU along the X axis with a speed v. We denote the instantaneous position

of the UAV, determined by its horizontal distance2 to the BS (i.e., the distance over the X axis),

1Note that this example is provided for illustrative purposes and does not correspond to an actual propagation environment.

Hence, several simplifications have been considered.
2In the following, we will denote by “horizontal distances” the distances measured on the XY plane, i.e., without taking into

account the height of the elements.
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(a) Flight scenario. (b) Obtained PDP.

Fig. 1: A2G simplified scenario: an UAV flies while communicating with a static terrestrial BS.

The propagation environment includes a single scatterer as well as a non-reflecting wall.

as d. There are two punctual scatterers, respectively denoted by S1 and S2, placed at horizontal

distances from the BS given by dS1 and dS2 , respectively and at horizontal distances from the

flight trajectory (measured over the Y axis) given by dU1 and dU2 , respectively. The heights of

the scatterers are respectively denoted by hS1 and hS2 . Additionally, there is a non-reflecting

(i.e., that does not produce new scattering components) wall, denoted by W , at a horizontal

distance dW from the flight trajectory. We consider that the height of the wall is much larger

than the heights of the other elements of the scenario and its thickness is negligible3. Without

loss of generality, let consider as an example the values dS1 = 300m, dS2 = 100m, dU1 = 200m,

dU2 = 400m, hS1 = hS2 = 60m, dW = 40m, hB = 15m, hU = 15m and v = 5m/s. In this

simplified scenario, we will consider the propagation of the specular components from the BS

to the UAV (marked in Fig. 1a as a dashed blue line) and the scattered components originated

at the BS and reflected in the scatterers. In particular, we consider the scattered components

B → S1 → U , B → S2 → U , B → S1 → S2 → U and B → S2 → S1 → U . The scattered

components are represented in Fig. 1a by solid red lines.

3In this simplified model, the wall will not allow the penetration of the signals and no reflection or diffraction effects are

produced.
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The propagation distance for any specular component can be described as

dp (d) = dpFH + dpLH (d) , (2)

where d is the position of the UAV (see Fig. 1a). The term depeding on d in (2) will be given by

the “last hop” of the signal, i.e., the transmission of the signal from the last scatterer (or from the

BS, for the case of the LoS component), whereas the constant term will be given by the distance

traveled by the signal before the “last hop” (if any). Hence, if we take the case of the specular

component B → S1 → S2 → U as an example, we would have dpFH = ‖B − S1‖2+‖S1 − S2‖2,

where ‖ · ‖2 denotes the Euclidean distance. The term corresponding to the last hop can be

written as

dpLH = ‖S − U‖2 =
√
(dS − d)2 + d2U + (hS − hU)2, (3)

where ‖ · ‖2 denotes the Euclidean distance, S is the last scatterer (the BS in the case of the

LoS component), dS the horizontal distance between the scatterer and the BS, dU the distance

between the scatterer and the flight trajectory and hS the height of the scatterer.
(
dpLH

)2, as given

in (3), can be written as a hyperbolic curve with respect to the horizontal distance between the

transmitter and the receiver, d, as

Ad2 − C
(
dpLH

)2
+Dd+ EdpLH + F = 0, (4)

with A = 1, C = 1, D = −2dS, E = 0 and F = d2S + d2U + (hS − hU)
2. This way, dp (d) can be

obtained in general as the square root of an hyperbolic curve plus a constant term.

A graphical representation of the expected MPCs approaching the receiver can be obtained by

means of the PDP, which exhibits how much power arrives at the receiver with a certain delay

τ . In practice, the PDP is obtained as the power for a certain timespan over which the channel

is quasi-stationary [25]. Following the same approach as in our previous works [8], [26], we can

calculate the PDP for the i-th snapshot (see (1)), namely the “instantaneous” PDP, as [27]:

Pi(τ) =
L∑
l=1

|αi,l|2δ(τ − τi,l). (5)

It is straightforward to obtain the PDP for the simplified scenario provided if we consider

space-free conditions for the power attenuation and no power loss in the reflections, hence just

applying the well-known Friis transmission equation [28] for each signal component4 and using

4For convenience we have just assumed that both components (the direct one and the scattered one) have equivalent initial

power and that the operating frequency is 2.5GHz.
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(2). The obtained PDP is shown in Fig. 1b, where the snapshots are acquired with a period of

5 s. Each dot in Fig. 1b represents the estimate of a MPC for a specific snapshot. The relative

received power is represented by the dot color, whereas the X axis represents the horizontal

distance between the BS and the UAV (for the time instant corresponding to the MPC estimate)

and the Y axis the delay of the MPC estimates. The straight line corresponds to the LoS

component and the curved ones to the scattered ones. Parallel curves correspond to components

with a common “last hop” (see (2)). Additionally, Fig. 1b gives some insights on the basic

properties of the proposed geometrical model. This way, for the curves defined by the MPCs of

the scattered components, we can observe that (1) the vertex of the curve (i.e., the point for which

the delay is minimum) is related with the horizontal distance between the “last hop” scatterer

and the BS; (2) the eccentricity of the curve (i.e., the measure of how small the maximum slope

is) is related with the horizontal distance between the “last hop” scatterer and the UAV flight

trajectory; and (3) the absolute delay values will increase –hence the curve will be shifted along

the Y axis– with the scattering order5. In order to study the time-variant behavior of the MPCs,

we define the following concepts, which are illustrated in Fig. 1b:

• Instantaneous MPC estimate (IMPC): estimated channel MPC for a specific snapshot,

represented as dots in Fig. 1b.

• Short-term Time-Variant MPC (SMPC): “continuous” set of IMPCs that correspond

to a single actual MPC that evolves in time. “Continuous” in this context means that

if we consider the IMPCs ordered by their snapshot index, the difference between the

snapshot indexes of two consecutive IMPCs is below a certain threshold. The SMPCs

show the evolution of a MPC during a period in which no birth/death processes occur. By

considering a threshold of a single snapshot, two sample SMPCs are labeled in Fig. 1b,

both corresponding to the scattered component.

• Long-term Time-Variant MPC (LMPC): defined to account for the case in which an

MPC dies and is reborn. A LMPC is formed by a set of SMPCs that correspond to a single

actual MPC that dies and is re-born (probably more than once). Additionally, it is said

that an LMPC is active for a specific snapshot (or time instant) if it contains an IMPC for

5In the general case it is not possible to unambiguously obtain the position of a scatterer from the geometrical model, especially

for scattering orders higher than 1. However, with the help of the geometrical model, we can find a plane in which the scatterer

should be (the degrees of freedom defining the exact position of the scatterer are the height of the scatterer and the constant

term in (2) when the scattering order is higher than 1).
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that snapshot, and inactive otherwise. An example of LMPC, comprised by two SMPCs, is

shown in Fig. 1b. It is clear that the MPC caused by the scattering component dies when

the wall obstructs the propagation between the scatterer and the UAV and it is re-born when

the obstruction disappears. It can be seen that the LMPC is inactive during the period of

obstruction by the wall and active for any other snapshot. The LMPCs show the potentially

non-continuous evolution of a MPC during a period in which birth/death processes can

occur.

In practice, reflections are not caused by a single point of the nearby objects. Indeed, as firstly

proposed by Saleh-Valenzuela in 1987 [7], in most of the cases clusters of MPCs can be observed

instead of individual MPCs. However, in many cases, the resolution of the measurements or the

estimation techniques used is not high enough to distinguish the actual MPCs of the clusters,

and a single MPC is detected instead for each cluster, which is assumed to correspond to the

centroid or nominal of the cluster [29], [30]. This way, tracking the individual MPCs is still

interesting, rather than considering only the tracking of MPC clusters. Indeed, in Section IV-B

we will show that the evolution of the main MPCs can still be accurately described by means

of curves in the PDP in practical cases. Additionally, many other not so regular elements can

cause multiple random scattering components not exhibiting a clear trend over snapshots (e.g.,

reflections in the structure of the UAV itself, that could exhibit fast changing behaviors with

the inevitable variations of the orientation of the UAV due to the wind). In this work we will

mainly focus on the study of the MPCs that exhibit a regular trend over time with the flight

of the UAV. The empirical results in Section IV-B will show that in a realistic case more than

95% of the received power will be concentrated in such MPCs.

III. GEOMETRY-BASED SPATIAL-CONSISTENT MPC TRACKING METHOD (GSTM)

In this paper a method for detecting and characterizing the time-variant behavior of the channel

MPCs, namely the GSTM, is proposed. The GSTM comprises two steps, described as follows:

1) Detection of SMPCs: A metric distance based on the differences of delay, Doppler, power

and BS-UAV horizontal distance is proposed to group IMPCs meeting certain metric

distance criteria into SMPCs. In particular, this step will exploit the short-term spatial

consistency of the delay, Doppler frequency and power of the IMPCs.

2) Detection of LMPCs: The geometrical properties of the SMPCs are exploited to identify

which ones are more likely to define a LMPC. In particular, this step will take advantage
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of the long-term spatial consistency of the delay of the IMPCs. This will be also the basis

for the establishment of an analytical geometrical model for the LMPCs.

The two aforementioned steps are described in detail in Sections III-A and III-B, respectively.

Finally, Section III-C will present some insights in the analysis of the performance of the

proposed method.

A. Detection of Short-term Time-Variant MPCs

The method for detecting SMPCs is detailed in Algorithm 1. The algorithm will group

IMPCs expected to represent a unique MPC evolving over time (or, equivalently, over different

snapshots). At the output of the algorithm, each IMPC must belong to one (and only one) SMPC.

In order to select eligible IMPCs to belong to a common SMPC, a multi-dimensional metric

distance between different IMPCs is defined. Two IMPCs are qualified to belong to a common

SMPC if the metric distance between them does not exceed a predefined multi-dimensional

threshold.

For convenience, let denote each IMPC as a four-dimensional vector u = (u1, u2, u3, u4)
T,

where u1 denotes the horizontal distance between the UAV and the BS for the snapshot corre-

sponding to the IMPC, and u2, u3, and u4 denote the IMPC power, delay and Doppler frequency,

respectively; whereas (·)T is the transpose operator. Then, the metric distance between the IMPCs

u1 = (u11, u
1
2, u

1
3, u

1
4)

T and u2 = (u21, u
2
2, u

2
3, u

2
4)

T, namely DPr(u1,u2), is the four-dimensional

vector

DPr(u1,u2) =


(
|u1

1−u2
1|

r1
, . . . ,

|u1
4−u2

4|
r4

)T

, if u11 6= u12(
∞, |u

1
2−u2

2|
r2

, . . . ,
|u1

4−u2
4|

r4

)T

, if u11 = u21,

(6)

where r = (r1, r2, r3, r4)
T is a vector with some predefined values. More specifically, r1, r2, r3

and r4 are thresholds corresponding to the maximum allowed differences in terms of horizontal

distance6, power, delay and Doppler frequency, respectively, so that two IMPCs can be assumed

to belong to a common SMPC. In other words, the IMPCs u1 and u2 are qualified to belong

to a common SMPC if none of the four components of DPr(u1,u2) exceeds 1. By adjusting

6In the actual implementation, the distance threshold is specified as a number of consecutive snapshots. This way, if for some

time instant the estimates are not available (i.e., one snapshot is not available due to some problem with the reception of the

signal, for example), the actual distance threshold will not take the missing snapshot into account.
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the values of the different components of r it is possible to increase or decrease the sensitivity

of the comparison of different IMPCs. For example, if the flight speed of the UAV is increased,

probably r2 should be increased since more power difference between IMPCs of consecutive

snapshots can be expected; the same would probably hold to r3. Currently there is not an

automatic way for adjusting the threshold values and in our tests we have done it manually (see

Table IV in Section IV-B). Note that, according to (6), two IMPCs corresponding to a common

snapshot cannot be included in the same SMPC. This is due to the algorithm selects IMPCs from

different snapshots, so that they can actually represent the evolution of a single MPC over time

(or, equivalently, over different snapshots). Finally, it is worth noting that a weighting vector

w = (w1, w2, w3, w4)
T is used in the Algorithm 1 in order to give more weight to some of the

components of the distance metric. This way, if for example the Doppler frequency estimates were

very noisy, the value of w4 can be reduced to minimize their impact in the results. Setting w4 = 0

would simply not consider the Doppler frequency for the evaluations. The relative difference

between the values of the different components of w will determine which components have

more importance when comparing two IMPCs.

The Algorithm 1 groups the IMPCs into SMPCs based on the exposed metric distance. The

method starts with all the IMPCs ordered by decreasing power7. The algorithm starts with a

SMPC in which only the maximum power IMPC is included and, in each iteration, finds all the

IMPCs that can be integrated in the SMPC based on the presented metric distance. Only a single

IMPC, the one at minimum distance to any of the IMPCs already in the SMPC, is added to the

SMPC. Once this is done, the search of all the IMPCs that can be integrated in the SMPC starts

again. If no IMPC meets the metric distance criterion, a new SMPC is created, comprising only

by the IMPC whose power is the highest among those that do not belong to any SMPC yet. The

process continues until all the IMPCs are integrated in a SMPC.

Fig. 2a shows the results of applying the Algorithm 1 to the case shown in Fig. 1b. The

IMPCs belonging to a common SMPC are joined with a line, hence being each line comprised

by the set of all segments joining pairs of consecutive IMPCs in the SMPC. The color of the

line is defined by the average power of all the IMPCs in the SMPC.

7The algorithm starts creating SMPCs from the IMPCs whose power is the highest since in general those can be regarded as

the most reliable (less noisy) estimates.
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Algorithm 1 Detection of SMPCs

Let denote by u = (u1, u2, u3, u4)
T each IMPC,

where u1 denotes the horizontal distance between the

UAV and the BS, and u2, u3 and u4 denote the IMPC

power, delay and Doppler frequency, respectively.

Finally, (·)T is the transpose operator.

Let U = {u1,u2, . . . ,u|U|} be defined as the set

of ungrouped IMPCs (IMPCs not belonging to any

SMPC, initially all of them) where u12 ≥ u22 ≥ · · · ≥

u
|U|
2 (i.e., IMPCs are ordered by descending power

value) and the operator | · | denotes the number of

elements of a set.

Initialize N := 0 (index of the current SMPC)

while U 6= {∅} (still ungrouped IMPCs) do

Create a new SMPC including the first ungrouped

IMPC (the one with the largest power):

N ← N + 1

U ← U − {um},m = argmini=1,2,...,|U|u
i ∈ U

GN := {um}

Look for IMPCs that can be integrated in the

current SMPC:

Candidate IMPCs not evaluated yet← YES

while Candidate IMPCs not evaluated yet = YES

do

Create an empty set and fill it with the un-

grouped IMPCs that meet the metric distance

criterion to be included in the current SMPC:

V := {∅}

for i = 1, 2, . . . , |U| do

if DPt(g,ui) 5 (1, 1, 1, 1)T,∀g ∈ GN (∗)

then

V ← V ∪ ui

end if

end for

if V 6= {∅} then

If there are candidate IMPCs to be included

in the SMPC, select the best one based on

the metric distance and update the SMPC:

GN ← GN ∪ v′

U ← U − {v′}, with

v′ = argminv∈V{‖DPr(g,v) ◦w‖1},∀g ∈

GN , being ◦ the Hadamard product operator

and ‖ · ‖1 the norm-1 operator.

else

No more candidate IMPCs to be added in the

current SMPC:

Candidate IMPCs not evaluated yet← NO

end if

end while

end while
(∗) Here “5” is defined as a multi-dimensional in-

equality operator, i.e., given z1, z2 ∈ RM such that

z1 = (z11 , z
1
2 , . . . , z

1
M )T and z2 = (z21 , z

2
2 , . . . , z

2
M )T,

then z1 5 z2 ⇔ z1i ≤ z2i ,∀i = 1, 2, . . . ,M .

B. Detection of Long-term Time-Variant MPCs

In Section II, we have showed that the evolution of the delay of the MPCs can be modeled

as the square root of a hyperbolic curve plus a constant (see (2)). In this section we will detect

the LMPCs by trying to find groups of SMPC whose evolution in delay can be fitted by such

an expression, potentially non-continuous due to blockage effects. The parameters of the fit for
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(a) Detected SMPCs.

50 100 150 200 250 300 350 400
distance [m]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

de
la

y 
[u

s]

SMPCs (original)
SMPCs (quadratic fit)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
rel. power [dB]

(b) Quadratic fittings for the detected SMPCs.

Fig. 2: SMPCs detected by the Algorithm 1 for the IMPCs shown in Fig. 1b.

each LMPC will lead also to the analytical geometrical model for the evolution of each MPC.

The delay was considered as the key property of the IMPCs in this step since it was found to

be more stable than the others (horizontal distance, relative power and Doppler frequency) in

the long term. For example, the variation of the Doppler frequency of a MPC over time exhibits

much more variance due to aspects such as slight variations of the UAV orientation due to the

wind. Moreover, this does not mean that the other MPC properties such as the relative receive

power or the Doppler frequency were not considered: (1) on the one side, they were considered

in Algorithm 1 for the detection of the SMPCs, since they are stable in the short term; and, (2)

on the other side, they will be examined in Section IV-C to prove that the results obtained by

the GSTM are reasonable.

In order to make the algorithm more mathematically tractable, we will approximate the

hyperbolic term in (2) by a quadratic curve. As an example, consider the SMPCs previously

obtained (see Fig. 2a). Fig. 2b shows the SMPCs as dotted lines together with their associated

quadratic fits8 (as solid lines). Note that it is almost impossible to distinguish the original SMPCs

from their corresponding quadratic fits.

Algorithm 2 tries to group SMPCs (from those identified by the Algorithm 1) such that

8In this paper we use a least squares (LS) approach to perform the fits by quadratic curves. However, other fitting options

would be also possible.
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Fig. 3: Example of evaluation of the distance metrics DH(·) and DS(·).

the delays of their corresponding IMPCs define geometric patterns similar to quadratic curves

over time (or, equivalently, UAV position). The approach starts ordering the SMPCs based on

the number of IMPCs they include (from the highest to the lowest9). Note that, in principle,

SMPCs that belong to a common LMPC should not overlap in horizontal distance. Hence, in

each iteration, non-overlapping (in horizontal distance) SMPCs are firstly looked for. For this,

we define the overlapping metric between two SMPCs, A and B, as the number of snapshots

for which both A and B include an IMPC. Mathematically, the overlapping metric between the

SMPCs A and B, namely OV(A,B), is defined as

OV(A,B) =
|A|∑
i=1

OVI(ai,B), OVI(x,Y) =

1, if ∃y ∈ Y | y1 = x1,

0, otherwise.
(7)

Two SMPCs A and B are defined as non-overlapping if OV(A,B) ≤ dOV, for a certain threshold

dOV. In most of the cases we may set dOV = 0. However, in some cases in which the MPCs

estimates are noisy and the detection of the SMPCs cannot be perfect a moderate value of dOV

could eventually improve the obtained results.

A quadratic fit of the trajectory defined by the delays of the IMPCs (ordered by increasing

horizontal BS-UAV distance) contained in the non-overlapping SMPCs is obtained. Two distance

metrics are defined to evaluate the fit quality. In order to define the distance metrics consider a

sample case in which the IMPCs contained in the non-overlapping SMPCs, ordered by increasing

horizontal distance, are denoted by S =
{
s1, s2, . . . , s|S|

}
and plotted in Fig. 3. It is possible to

define a line comprised by the segments that join each pair of consecutive IMPCs (represented

as the black line in Fig. 3). Let denote by QF(S) the corresponding quadratic curve, represented

9This way, the search of LMPCs starts with the largest SMPCs (i.e., those with the largest number of IMPCs), which should

be the most reliable ones.
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Algorithm 2 Detection of LMPCs

Let G be defined as the set comprised by the SMPCs

previously created, i.e., G := {G1,G2, . . . ,G|G|}

Let O be defined as the set of all the previously

detected SMPCs whose number of IMPCs exceeds

Ne, ordered by the number of IMPCs:

O := {Gi ∈ G : |Gi| > Ne, i =

1, 2, . . . , |G|}, |O1| ≥ |O2| ≥ · · · ≥ |O|O||.

Initialize M := 0 (index of the current LMPC)

while O 6= {∅} (SMPCs not assigned to any LMPC

still available) do

Update the LMPC index and create a new LMPC,

namely T M , containing only the SMPC with the

largest amount of IMPCs still not assigned to any

LMPC, named Om below:

M ←M + 1

O ← O − {Om},m = argminiOi ∈ O

T M := {Om}

Look for SMPCs matching the current LMPC:

Candidate SMPCs not evaluated yet← YES

while Candidate SMPCs not evaluated yet =

YES do

Create an empty set and fill it with the unas-

signed SMPCs that are non-overlapping with

respect to the current LMPC and meet the two

metric distance criteria to be included in it:

V := {∅}

for i = 1, 2, . . . , |O| do

if OV(Oi,Oj) ≤ dOV,∀Oj ∈ T M and

DH(T M ∪ Oi) < dDH and

DS(T M ∪ Oi, dDS) < pDS then

V ← V ∪Oi

end if

end for

if V 6= {∅} then

If there are candidate SMPCs to be included

in the LMPC, select the best one based on

the metric distance and update the LMPC:

T M ← T M ∪ O′

O ← O − {O′},

being O′ = argminOi∈V DS(TM ∪Oi, dDS)

else

No more candidate SMPCs to be added in

the current LMPC:

Candidate SMPCs not evaluated yet← NO

end if

end while

end while

by the red curve in Fig. 3. Both lines (the black and the red ones) can be sampled with a

certain period TDS, being their respective samples denoted by L = l1, l2, . . . , l|L| and Q =

q1,q2, . . . ,q|Q|, respectively, where |Q| = |L|, li = (li1, l
i
2)

T and qj = (qj1, q
j
2)

T, for i, j =

1, 2, . . . ,L. The distance metrics for the quadratic fit quality assessment are defined as follows:

• DH(S): maximum distance in delay between each pair of samples of L and Q:

DH(S) = max
i=1,2,...,|L|

{|li2 − qi2|} (8)

• DS(S, dDS): proportion of points of the line joining the IMPCs whose distance to their
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corresponding counterparts in the quadratic fit exceed certain value dDS:

DS(S, dDS) =
|Y|
|L|

, Y = {li ∈ L : |li2 − qi2| > dDS, i = 1, 2, . . . , |L|} (9)

In each iteration of the Algorithm 2, a set of SMPCs will be accepted as a LMPC if both

distance metrics, DH(S) and DS(S, dDS), are below certain predefined thresholds, namely dDH

and pDS, respectively. Among the valid fits, the one exhibiting the lowest DS(·, dDS) value will

be selected10. As long as we reduce the values of both of dDH or pDS, the quadratic fit needs to

be more close to the line of segments that join each par of consecutive IMPCs. Decreasing dDH

will reject fits in which any IMPC is far from the fitted curve, however it can make the algorithm

unable to find quadratic fits when there is noise in the MPC estimates. pDS tries to ensure that

the segments that join the IMPCs included in the fit have a similar trend to that of the fitted

curve. Lower values of pDS and dDS ensure that most of the points of the segments joining the

corresponding IMPCs are close to their counterparts in the fitted line. However, too low settings

can make the algorithm unable to find proper fits and hence not being able to track the long-term

stability of the MPCs evolution. Finally, note that decreasing in excess the value of TDS will not

improve the results evaluation of the distance metrics and can result in an unnecessary increase

of the computational cost. In general, having a few samples between each pair of consecutive

IMPCs will be enough.

Once a SMPC is added to a certain LMPC, the process of search of SMPCs that fit in the

updated LMPC is restarted. When no more SMPCs match the current LMPC, a new one is

created and initialized as including only the SMPC with the largest amount of IMPCs still not

included in any LMPC. Only SMPCs with a number of IMPCs larger than a certain threshold

Ne are considered for the search of LMPCs, in order to increase the reliability of the results11.

Fig. 4 presents the results of applying the Algorithm 2 to the simplified case shown in Fig. 1a,

by using as input the SMPCs detected by the Algorithm 1. The LMPCs are represented as solid

thick red curves and the corresponding SMPCs for each trajectory are also plot overimposed as

10In the actual implementation, if DS(·, dDS) for two fits is equivalent, the one with the lowest sum of distances between the

points of the quadratic fit and their counterparts in the line comprised by the segments that join each pair of consecutive IMPCs

will be selected.
11In general, it is expected that the LMPCs are comprised by stable SMPCs, and hence not including too few IMPCs each.

Increasing the value of Ne enables to consider only stable SMPCs and whose trend is better defined (since they include more

IMPCs) and hence to avoid fitting erroneous LMPCs. However, a too high Ne setting can result in the algorithm not being able

to fit LMPCs that appear and disappear very frequently (hence leading to short SMPCs).
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Fig. 4: LMPCs detected by the Algorithm 2 for the SMPCs shown in Fig. 2a.

thin black lines. Each LMPC can be comprised by a single SMPC (e.g., the LoS component

case) or several of them (e.g., the scattered components).

One could argue why the GSTM needs to detect the SMPCs (by means of Algorithm 1) in

order to obtain the LMPCs (by means of Algorithm 2) instead of directly detecting the LMPCs

by looking for geometric patterns defined by the IMPCs in the PDP. Although this approach

would be more simple, it would not ensure the short-term spatial consistency of the Doppler

frequency and power of the tracked MPCs, leading to potentially incorrect results. Hence, the

GSTM, by considering the Algorithm 1 and Algorithm 2, exploits both the short- and long-term

spatial consistency of the IMPCs to ensure that the obtained results are realistic.

C. Performance of the GSTM

In order to test the effectiveness of the GSTM, Monte-Carlo simulations were used with

random realizations of propagation scenarios. Then, the IMPCs and SMPCs obtained by the

GSTM were compared with the theoretical expected results.

The same BS location and flight route as in Fig. 1a were considered. “Last hop” scatterers are

generated along the flying route with random distance between consecutive scatterers, random

height and random distance to the flight route. Furthermore, each scatterer can be selected to lead

to a component with scattering order 1 (i.e., BS → last-hop scatterer → UAV) or with higher

scattering order (i.e., BS→ scatterer(s)→ last-hop scatterer→ UAV) with a given probability. In

order to model the cases in which the scattering order is larger than 1, the delay value associated
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to the MPCs generated by the last hop scatterer is be increased randomly, and a power loss

coefficient (to account for power looses due to successive reflections in multi-scattered signal

components). Finally, the MPCs generated by the scatterers can encounter blockage effects. The

blockages for each scatterer occur randomly along the flight route and have a random duration.

All the parameters of the considered distributions are specified in Table I. Finally, in order to

account for the effect of inaccuracies in the IMPCs estimation, we added noise to the generated

IMPCs before applying the GSTM. We denote by SNRest the Signal to Noise Ratio (SNR) of

the IMPCs estimates. A value of SNRest = 40 dB would mean that noise is added to the power,

delay and Doppler frequency of the IMPCs so that the corresponding SNR for each component

is 40 dB.

Value Distribution Parameters

Distance between consecutive scatterers Exponential λ = 100m

Dist. between scatterers and flight route Truncated Gaussian µ = 75m, σ = 15m, [a, b] = [25, 300]m

Scatterers height Uniform [a, b] = [15, 90]m

Scattering order higher than 1 (SOHT1) Bernoulli p = 0.3

Excess of delay (SOHT1 cases) Truncated Gaussian µ = 0.75µs, σ = 0.5µs, [a, b] = [0.25, 2]µs

Power loss coefficient (SOHT1 cases) Uniform [a, b] = [0.5, 0.7]µs

Distance between consecutive blockages Exponential λ = 200m

Length of blockage effect Exponential λ = 100m

TABLE I: Parameters of the statistical distributions used for the simulations. λ is the rate of

a exponential distribution, whereas µ and σ denote the mean and the standard deviation of

Gaussian distributions. p denotes the success probability of a Bernoulli distribution and a and

b are the lower and upper limits, respectively, for uniform or truncated Gaussian distributions.

For each theoretical SMPC (or LMPC), we firstly identify the SMPC (LMPC) obtained by the

GSTM that includes the largest amount of IMPCs contained in the theoretical SMPC (LMPC).

Then, we consider all the IMPCs included in both the theoretical SMPC (LMPC) and the one

detected by the GSTM as correctly detected. If there are IMPCs in the theoretical SMPC (LMPC)

not included in the SMPC (LMPC) detected by the GSTM or the latter includes extra IMPCs,

all of them are considered as incorrectly detected. The obtained results are included in Table II.

RSMPC denotes the percentage of received power that is included in any SMPC and it is calculated
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as RSMPC = 100 ·PSMPC/PIMPC ≈ 98.40%, where PSMPC =
N∑

n=1

|Gn|∑
m=1

gn,m2 , PIMPC =
I∑

i=1

L∑
l=1

∣∣αi,l

∣∣2, N

is the total number of detected SMPCs and gn,m2 is the power of the m-th IMPC contained in the

n-th SMPC, as defined in Algorithm 1. RLMPC is the percentage of received power that is included

in any LMPC as is calculated in an analogous way. CSMPC and CLMPC are the percentages of

IMPCs correctly associated to a SMPC or LMPC, respectively. Together with the average values,

the corresponding 95% BCa bootstrap confidence intervals for the mean [31] are also provided

in the Table II.

SNRest [dB] RSMPC [%] RLMPC [%] CSMPC [%] CLMPC [%]

∞ 99.14 [98.18, 99.58] 98.54 [96.43, 99.48] 96.49 [93.08, 98.60] 93.62 [90.52, 96.98]

40 99.14 [98.36, 99.62] 98.54 [96.39, 99.40] 96.76 [94.16, 99.09] 93.91 [90.82, 96.99]

30 99.13 [98.04, 99.56] 98.55 [96.02, 99.53] 94.88 [90.38, 98.12] 92.92 [89.90, 96.53]

25 98.86 [97.45, 99.45] 97.87 [95.50, 99.08] 90.24 [84.61, 95.83] 89.56 [85.24, 93.85]

20 98.51 [97.91, 99.05] 97.08 [95.70, 98.24] 80.96 [74.91, 89.14] 82.26 [74.92, 89.30]

15 97.47 [96.91, 97.97] 94.69 [91.16, 96.46] 69.83 [61.51, 80.29] 63.17 [55.11, 75.36]

TABLE II: GSTM performance results for different values of IMPCs estimates SNR. Average

values together and corresponding 95% BCa bootstrap confidence intervals [31] are provided.

IV. EXPERIMENTAL RESULTS

In this section, the GSTM is applied to actual data obtained from a A2G low-height UAV

measurement campaign in a realistic suburban environment and the results are presented. Sec-

tion IV-A briefly describes the measurement environment as well as the procedure followed for

acquiring the signals, whereas Section IV-B shows the obtained results. Finally, Section IV-C

analyzes in detail some sample cases to prove that the obtained results are coherent with the

propagation geometry.

A. Measurements Environment and Procedure

The data acquired in the measurement campaign detailed in our previous work [8] was used

to test the performance of the GSTM. The reader is referred to that work for details regarding

the measurement environment as well as the setup used to perform the measurements. However,

for the sake of completeness, we will detail the most important aspects below. Section IV-A1
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Fig. 5: Considered measurement scenario including the BS and UAV flight route. Some of the

buildings are labeled in the map for reference as well as some of the scatterers considered.

defines the considered measurement scenario, whereas Section IV-A2 describes the employed

measurement setup. Finally, Section IV-A3 describes the transmit signals as well as the processing

performed at the receiver.

1) Measurement Environment: A measurement campaign consisting in horizontal flights at

different heights in several suburban scenarios at the Jiading Campus of the Tongji University

(Shanghai, China) was performed. In this work, a single flight is considered. The lowest flight

height (15m) and the richest scenario in architectural and natural structures were chosen, so that

the influence of the ground elements is more noticeable. The scenario is imaged in Fig. 5. The

figure also shows the position of the transmitter12 (BS), as well as the starting and end points of

the flight route13 (the UAV acts as the receiver). As imaged in Fig. 5, a straight flight in which

the UAV flies between several buildings is considered, resulting in an Obstructed LoS (OLoS)

environment. The total flight distance is about 450m. Some sample reflection points are also

marked in the figure labeled with red characters, being their details provided in Section IV-C.

2) Measurement Equipment: Fig. 6a illustrates a diagram of the equipment transmitting and

acquiring the signals. It consists of two parts, namely the air part (which acts as a transmitter)

and the ground part (receiver). The air part was loaded on a UAV as illustrated in Fig. 6d,

whereas the ground part is mounted at a height-variable tower fixed at a height of 15m (see

12Coordinates of the transmitter expressed as (latitude, longitude) are: (31.2873872◦, 121.2040907◦).
13Coordinates of the starting point and end point expressed as (latitude, longitude) are: (31.287433◦, 121.204179◦) and

(31.288310◦, 121.208793◦).
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(a) Diagram of the measurement equipment. (b) Ground part (transmitter).

(c) Antenna (transmitter

and receiver).

(d) Air part (receiver).

(e) Radiation pattern of the antenna (transmitter and receiver).

Fig. 6: Measurement equipment.

Fig. 6b). Both air and ground parts include a set of common equipments, which are14:

• Universal Software Radio Peripheral (USRP) N-210: generates (at the transmitter side)

or acquires (receiver side) the signals.

• GPS-disciplined oscillator: generates the common reference signals for transmitter/receiver

synchronization based on the received Global Positioning System (GPS) information. On the

one hand, a 10MHz signal at both ends enable the synchronization of the transmitter/receiver

internal oscillators, which is essential for the accuracy of the obtained results. On the

14Note that the cases of several elements were removed in the air part to reduce the size and weight of the onboard equipment.
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other hand, the 1Pulse Per Second (PPS) signal enables synchronization of the sample

times for the transmitter and the receiver. This way, the transmitter and receiver share a

common absolute time-basis, allowing to estimate the absolute propagation delay. Note that

the measurements were geo-localized by using the GPS information as well.

• Antenna: two identical quasi-omnidirectional packaged discone antennas (as the one imaged

in Fig. 6c) were used at transmitter and receiver sides to minimize the effects of the radiation

pattern on the estimated channel characteristics (see the radiation pattern in Fig. 6e). As

detailed in [8] and in Figs. 6a and 6b, there is an additional antenna available at the

transmitter, which was not used for this study.

• Computer: used to control the USRP and store the generated (transmitter) or acquired

(receiver) signals. In the case of the UAV, a small-factor computer to reduce the total

weight and size of the whole set. Both computers are provided with a self-developed C++

program that uses the USRP hardware driver (UHD) library from Ettus to configure the

radio frequency (RF) parameters of the USRPs and send the signal to be transmitted to the

USRP (transmitter side) or acquire the received samples from the USRP (receiver side).

This program also performs synchronization tasks by means of the signals received from

the GPS-disciplined oscillator. Furthermore, in the case of some eventual sample dropping

by the limitations of the USRP or the storage media, the receiver is prepared to self-recover

itself in less than one second and keep track of the lost samples so that they can be avoided

during the processing of the acquired signal.

• Commercial Wi-Fi router: allows to establish a local area network between both computers

(at the transmitter and receiver) when the UAV is close to the BS to start/stop the signal

acquisition at the UAV by the operator at ground. It is worth noting that the routers worked

at the frequency band of 2.4GHz causing no interference to the measurements.

Additionally, the ground node (transmitter) includes a power amplifier, required for increasing

the SNR of the results, as well as extending the distance range of the measurements.

3) Signal Generation and Processing: Both for the generation as well as processing of the

signals, the so-called “GTEC 5G Simulator” was used [32], [33]. The “GTEC 5G Simulator”

is a versatile piece of software that enables to fully configure the transmit signal and includes

all the necessary developments for processing the acquired samples, such as channel estimation,



24

Parameter Value Parameter Value

Transmit power 40 dBm Sampling frequency 15.36MSamples/s

Antenna gain 0 dBi (omnidir., UAV and BS) FFT size 1024 points

BS antenna height 15m Used subcarriers 600 (excluding DC)

UAV flight height 15m Subcarrier spacing 15 kHz

UAV flight speed 5m/s Cyclic prefix length 72 samples

Carrier frequency 2.5GHz Estimated paths 15

Bandwidth 15.36MHz (9MHz plus guards) Snapshot rate 1 snapshot/s

TABLE III: Configuration parameters used for the measurements.

interpolation and equalization algorithms, as well as time and frequency synchronization15. A

High-Resolution Parameter Estimation (HRPE) algorithm, namely SAGE algorithm, similar to

that proposed in [34], is used at the “GTEC 5G Simulator” receiver, which allows us to estimate

the different parameters of the impinging waves for the acquired signals. More specifically, we

consider the delay, the complex-valued amplitude and the Doppler frequency for each path, in

accordance with the model presented in (1). For this study, an orthogonal frequency-division

multiplexing (OFDM) signal featuring a sampling rate of 15.36MHz was considered, being

the central carrier frequency of 2.5GHz, values which are similar to those corresponding to

commercial LTE deployments in the area of the measurements16. The signal, transmitted in a

continuous fashion, has a very similar structure to that of the 10MHz downlink profile of LTE

[35]. For our study, we estimated L = 15 paths, which were experimentally proved to contain

most of the energy of the channel for the considered scenario. The main configuration parameters

employed for the measurement campaign are indicated in Table III.

B. Obtained Results

In this section we consider the IMPCs estimated from the acquired signal by applying the

SAGE algorithm as an input to the GSTM. In order to firstly present a graphical representation of

the estimated IMPCs, we calculated the “instantaneous” PDP for each snapshot by applying (5),

15The source code of both the GTEC Testbed and the GTEC 5G Simulator is publicly available under the GPLv3 license at

https://bitbucket.org/tomas bolano/gtec testbed public.git.
16Note that the 2.5GHz band is also planned to be used in sub-6GHz 5G network deployments in China and other countries.

https://bitbucket.org/tomas_bolano/gtec_testbed_public.git
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(b) SMPCs detected by the Algorithm 1.

(c) LMPCs detected by the Algorithm 2.

Fig. 7: Results obtained when the Algorithms 1 and 2 are applied to actual received signals.

as detailed in Section II. The results are shown in Fig. 7a, where each dot represents an IMPC.

The color of each dot denotes the relative received power, whereas the X axis represents the

horizontal distance between the transmitter and the receiver and the Y axis the delay. Similarly

to the simplified case presented in Fig. 1b, it can be seen that the distribution of the IMPCs

for different snapshots is clearly not independent. On the one hand, a strong LoS contribution

can be identified as a set of powerful IMPCs that form a straight line with increasing delay

with respect to the horizontal distance between the UAV and the BS, which is coherent with

the fact that the UAV speed was constant. However, on the other hand we can see other IMPCs
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describing some curves, in a similar fashion as the one presented in Fig. 1b. Finally, there are

other IMPCs whose distribution looks more random.

Fig. 7b shows the results of applying the SMPCs detection algorithm (Algorithm 1) to the

detected IMPCs. Each two consecutive IMPCs from a common SMPC are joined by a segment.

This way, each SMPC is represented by a line comprised by the set of all segments joining pairs

of consecutive IMPCs, being the color of the line defined by the average power of all the IMPCs

in the SMPC. It can be seen that, similarly to the example shown in Fig. 2a, several of the shown

SMPCs tend to define curves in the delay domain. The percentage of received power included in

any SMPC (see Section III-C) is RSMPC = 98.40%. The average length of the detected SMPCs

can be obtained as LSMPC = 1
N

N∑
n=1

(
maxm=1,...,|Gn|

(
gn,m1

)
−minm=1,...,|Gn|

(
gn,m1

))
≈ 24.40m,

where gn,m1 denotes the horizontal distance between the UAV and the BS for the m-th of the

n-th SMPC, as defined in Algorithm 1.

Fig. 7c shows the main LMPCs detected from the SMPCs by means of the Algorithm 2.

A LMPC can be comprised by a single SMPC or several. For the sake of clearness, only the

LMPCs comprised by more than a single SMPC are plotted in Fig. 7c by thick red lines. The

corresponding SMPCs for each LMPC are also plotted overimposed as thin black lines. By

comparing Figs. 7a and 7c, it can be seen that the detected LMPCs describe well the observed

general trend of the observed IMPCs in the delay domain. It can be seen that some of the

LMPCs correspond to SMPCs located far away to each other, which accounts for the cases in

which the LMPC is not always active, but it is born and dies in several occasions. Moreover, it

can be seen that there are some areas of the plot (e.g., the area for horizontal distances between

250m and 350m) where many LMPCs are not active (no black lines on top of the red ones),

to later reappear, which is a result from the blockage of several reflections by large elements of

the measurement environment. The percentage of received power included in any LMPC (see

Section III-C) is RLMPC = 96.24%. This confirms that the MPCs exhibiting a regular trend over

time with the flight of the UAV contain most of the energy of the channel. The average length

of the detected LMPCs is 64.68m.

It is worth noting that several parameters and thresholds have been defined in the previous

algorithms. The considered values, obtained by manual tuning, are specified in Table IV.
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parameter value parameter value

r = (r1, r2, r3, r4)
T (17m, 9 dB, 0.04µs, 4.5Hz)T w = (w1, w2, w3, w4)

T (1, 1, 1, 1)T

Ne 3 IMPCs dOV 0 snapshots

dDH 0.07µs dDS 0.04µs

pDS 0.15 TDS 0.5m

TABLE IV: Parameters used in Algorithms 1 and 2.

label dS [m] dU [m] hS [m] description label dS [m] dU [m] hS [m] description

A 470 140 35 Telecom. School C 100 25 10 Media School (I)

B 340 75 70 Library D 50 35 10 Media School (II)

TABLE V: Coordinates of the scatterers A, B, C and D in Fig. 5. dS denotes the horizontal

distance between the scatterer and the BS, whereas dU is the horizontal distance between the

scatterer and the flight route and hS the height from the ground.

C. Discussion about the Results

In this section we will discuss the obtained results in more detail and relate them with the

underlying propagation environment. In order to do that, we select four of the detected LMPCs

as examples, marked with characters from “A” to “D” in Fig. 7c.

Firstly, based on the analytical geometrical model for each sample LMPC (as a quadratic

curve) extracted by the Algorithm 2, we identified a scatterer (modeled as a single point) in

the environment that can lead to the corresponding IMPCs forming the LMPC. Even if there

is not a closed mathematical expression to obtain the element of the environment leading to

a specific LMPC from the quadratic model, in many cases it is relatively easy to guess this

information by visual inspection of the environment and the parameters of the quadratic curve

(see Section III-B). The scatterers selected for the sample LMPCs were marked and labeled with

characters from “A” to “D” as well in Fig. 5, whereas their specific coordinates are provided in

Table V in terms of the distance to the flight route, the horizontal distance and the height from
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(a) Sample LMPCs and theoretical delay curves. (b) Doppler frequency evolution for the sample LMPCs.

Fig. 8: Results for the sample LMPCs.

the ground17.

Once the scatterers “A” to “D” are defined in the map, we calculate the theoretical curves

in delay domain that the time-evolving MPCs corresponding to those scatterers would create

by using (2). Such theoretical curves are plotted in Fig. 8a by means of dotted pink lines. No

obstructions were considered for their calculation, i.e., it was assumed the existence of LoS

between the BS and the scatterer, as well as between the scatterer and the UAV during the

whole flight, as well as it was considered that the reflected power was always large enough

to be detected at the UAV. This way, the curves are always visible regardless of the position

of the UAV. Fig. 8a also includes (as solid red curves) the representation of the corresponding

quadratic curves obtained by the GSTM. In this case, only the areas in which the corresponding

LMPCs are visible (i.e., at least one of the SMPCs of the LMPC is active, as represented by

the solid black lines in Fig. 7c) are plotted. It can be seen how, indeed, the red curves almost

perfectly match the pink ones in the respective ranges where they are defined, which shows that

the results obtained can effectively be justified by the geometry of the environment.

17The 3-D representation of the scatterers in the map (Fig. 5) does not match their actual coordinates in terms of horizontal

distance to the BS and the UAV flight route, especially for high buildings. This is due to two actual points with identical

coordinates except for the height are represented at the map as two points whose horizontal distances to the BS (as well as

their horizontal distances to the UAV flight trajectory) are different between them. In the calculations, the actual distance values

(over a 2-D map) were used.
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Taking a closer look to the results, indeed, one may realize that, for example, the reflection

caused by the library building (label “B”) is mainly visible when the UAV is close enough to

the building (between approximately 250m to 400m in terms of horizontal distance). However,

it can be observed that for the horizontal distance values in which the UAV is surpassing to the

building, the reflection disappears. This is coherent with the fact that the reflection is caused

by some element on top of the building (e.g., the metal parts comprising the air conditioning

system), hence, when the UAV flies very close to the building (at a much lower flight height

than that of the building), the building itself blocks the line of sight between the scatterer and

the UAV. In the case of the reflection caused by the Telecommunications School (label “A”),

it is blocked for some horizontal distance values by the library building as well and hence the

LMPC is not always visible. In the cases of the reflections caused by the Media School (labels

“C” and “D”), once the scatterer points are overpassed by the UAV, the delays almost converge

to the delay of the LoS path, and hence their contributions cannot be distinguished anymore.

Although, as justified in Section III-B, the delay is a key parameter for detecting the LMPCs,

it is also interesting to see how the Doppler frequency of the LMPCs evolves. We define the

“instantaneous” Doppler power spectral density (PSD) for the i-th snapshot in an equivalent

approach to that used for the PDP in (5), as it was also defined in our previous works [8], [26]:

Di(ν) =
L∑
l=1

|αi,l|2δ(ν − νi,l). (10)

Fig. 8b shows the Doppler frequency PSD, where each dot represents an IMPC. The color

of each dot denotes the relative received power, whereas the X axis represents the horizontal

distance between the transmitter and the receiver and the Y axis the Doppler frequency. The

Doppler frequency values for the IMPCs with the highest powers are coherent with the low

speed considered for the UAV (it can be seen that the speed at the beginning of the flight is

still increasing until reaching the target value, 5m/s). The red curves in Fig. 8b correspond to

those in Fig. 8a, i.e., represent the evolution in Doppler of the four sample LMPCs. The active

areas of the LMPC (i.e., at least one of the SMPCs is visible) are represented in solid lines,

whereas the inactive in dashed ones. It is easy to see that the results in Doppler frequency

are coherent with the scatterers identified in Fig. 5. Indeed, it can be seen that, for example,

the Doppler changes from positive sign to negative somewhere in the period when the UAV is

passing by the library for the LMPC corresponding to the reflection in such a building (label
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“B”). A similar effect of change of the sign of the Doppler frequency can be appreciated for

the LMPC labeled as “C”. In this case, the Doppler changes abruptly from around 40Hz to

close to −40Hz when the second scatterer at the Media School is overpassed by the UAV. In

the case of the scatterer labeled as “D” the Doppler always keeps a negative sign since for the

range of horizontal distances presented in Fig. 8b the scatterer is always behind the UAV for the

represented range of horizontal distances. For the case of the scatterer at the Telecommunications

School, the contrary holds, i.e., the Doppler is always positive, since the UAV never overpasses

the scatterer.

V. CONCLUSIONS

In this paper, a simplified model for the channel MPCs inherent to the propagation for

A2G low-height UAV communications was studied. The model allows to analytically obtain the

evolution of the delay of the different MPCs based on the geometry of the propagation channel

and includes the case of MPCs that are born and die in several occasions due to blockage by

elements of the propagation environment. Based on this simplified model, a novel method for

tracking the channel MPCs of A2G low-height UAV, namely the GSTM, without knowledge

of the propagation environment, was presented. The GSTM is able to detect the long-term

spatial consistency of the MPCs by effectively supporting the tracking of MPCs that disappear

for long periods of time (birth/death processes due to blockage by elements of the propagation

environments). Moreover, the GSTM not only tracks the evolution of the MPCs, but also provides

an analytical geometrical model for the variation of each MPC, which in particular can be used

to detect which elements of the propagation environment lead to the different main MPCs. It

was shown by means of measurements obtained in a suburban scenario that the GSTM succeeds

in tracking the evolution of the MPCs in a real scenario and that the analytical model for the

MPCs obtained by the GSTM fits well to the characteristics of the propagation environment and

the theoretical expected results.

Our work also shows that in the propagation for A2G low-height UAV communications most

of the energy received has a well-defined structure and is consistent on time. What is more, very

simplified analytical approaches can effectively describe the propagation of most of the channel

energy and justify non-intuitive effects in the propagation channel characteristics studied in our

previous works. Hence, the results obtained by the GSTM will be the basis for the establishment

of new non-stationary channel models. Finally, the GSTM can be applied to other scenarios
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involving relative movement between the transmitter and receiver and frequent LoS conditions

between the transmitter and the main scatterers, as well as between those scatterers and the

receiver. Common scenarios fulfilling this criteria can be found in Vehicle-to-Vehicle (V2V) or

V2I communications, such as in high-speed train (HST) or cars-to-roadside elements, especially

in clutter environments, such as urban or suburban. In these scenarios, the GSTM can have much

better performance than the existing methods, which do not rely on geometrical propagation

properties.
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[9] R. He, B. Ai, G. L. Stüber, G. Wang, and Z. Zhong, “Geometrical-based modeling for millimeter-wave mimo mobile-to-

mobile channels,” IEEE Transactions on Vehicular Technology, vol. 67, no. 4, pp. 2848–2863, 2018.

[10] R. He, C. Schneider, B. Ai, G. Wang, Z. Zhong, D. A. Dupleich, R. S. Thomae, M. Boban, J. Luo, and Y. Zhang,

“Propagation channels of 5g millimeter-wave vehicle-to-vehicle communications: Recent advances and future challenges,”

IEEE Vehicular Technology Magazine, vol. 15, no. 1, pp. 16–26, 2020.

[11] Pei-Jung Chung and J. F. Bohme, “Recursive EM and SAGE-inspired algorithms with application to DOA estimation,”

IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2664–2677, Aug 2005.

[12] J. Salmi, A. Richter, and V. Koivunen, “Detection and tracking of MIMO propagation path parameters using state-space

approach,” IEEE Transactions on Signal Processing, vol. 57, no. 4, pp. 1538–1550, April 2009.

[13] T. Jost, W. Wang, U. Fiebig, and F. Perez-Fontan, “Detection and tracking of mobile propagation channel paths,” IEEE

Transactions on Antennas and Propagation, vol. 60, no. 10, pp. 4875–4883, Oct 2012.

https://www.3gpp.org/uas-uav


32

[14] X. Yin, G. Steinbock, G. E. Kirkelund, T. Pedersen, P. Blattnig, A. Jaquier, and B. H. Fleury, “Tracking of time-variant radio

propagation paths using particle filtering,” in 2008 IEEE Intl. Conference on Communications, May 2008, pp. 920–924.

[15] C. Huang, R. He, Z. Zhong, Y. Geng, Q. Li, and Z. Zhong, “A novel tracking-based multipath component clustering

algorithm,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2679–2683, 2017.

[16] J. Karedal, F. Tufvesson, N. Czink, A. Paier, C. Dumard, T. Zemen, C. F. Mecklenbrauker, and A. F. Molisch, “A geometry-

based stochastic MIMO model for vehicle-to-vehicle communications,” IEEE Transactions on Wireless Communications,

vol. 8, no. 7, pp. 3646–3657, July 2009.

[17] X. Cai, X. Yin, X. Cheng, and A. P. Yuste, “An empirical random-cluster model for subway channels based on passive

measurements in UMTS,” IEEE Transactions on Communications, vol. 64, no. 8, pp. 3563–3575, Aug 2016.

[18] C. Huang, A. F. Molisch, Y. Geng, R. He, B. Ai, and Z. Zhong, “Trajectory-joint clustering algorithm for time-varying

channel modeling,” IEEE Transactions on Vehicular Technology, pp. 1–1, 2019.

[19] X. Cai, B. Peng, X. Yin, and A. P. Yuste, “Hough-transform-based cluster identification and modeling for V2V channels

based on measurements,” IEEE Transactions on Vehicular Technology, vol. 67, no. 5, pp. 3838–3852, May 2018.

[20] P. Hanpinitsak, K. Saito, J. Takada, M. Kim, and L. Materum, “Multipath clustering and cluster tracking for geometry-based

stochastic channel modeling,” IEEE Trans. Antennas Propag., vol. 65, no. 11, pp. 6015–6028, 2017.

[21] K. Mahler, W. Keusgen, F. Tufvesson, T. Zemen, and G. Caire, “Tracking of wideband multipath components in a vehicular

communication scenario,” IEEE Transactions on Vehicular Technology, vol. 66, no. 1, pp. 15–25, 2017.

[22] C. Huang, A. F. Molisch, Y. Geng, R. He, B. Ai, and Z. Zhong, “Trajectory-joint clustering algorithm for time-varying

channel modeling,” IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 1041–1045, 2020.

[23] C. Lai, R. Sun, C. Gentile, P. B. Papazian, J. Wang, and J. Senic, “Methodology for multipath-component tracking in

millimeter-wave channel modeling,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1826–1836, 2019.
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