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Abstract: 

Although compartment models are frequently used in pharmacokinetics, it is difficult to find 

complete analytical formulas describing the behaviour of drugs in universal simpler 

compartment models in the accessible literature. The paper presents derivations of formulas 

for general two- and three-compartment models, including the possibilities of original non-

zero quantity in all compartments and elimination from all compartments. Formulas for four-

compartment models are also derived with the restriction that original quantity is non-zero in 

only one compartment. Derivation uses Laplace transformation but does not require prior 

knowledge of the technique. The derived analytical formulas are verified numerically. These 

formulas can be easily simplified to less complex cases.  

 

mailto:c.swietaszczyk@bieganski.org
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Introduction 

 

To describe and understand the pharmacokinetics of a drug, it is very often useful to set up a 

model and determine the model parameters best fitting the data. Compartment models are 

useful tools in this respect; however, it is difficult to find complete analytical formulas 

describing the behaviour of drugs in universal simpler compartment models. A three-

compartment model (3-C) is frequently mentioned in the literature; however, the accessible 

references are limited for mammillary models and present complete formulas neither for 

catenary nor for cyclic models [1, 2, 3, 4, 5]. The accessible literature for four-compartment 

models (4-C) also does not present the final complete equations [6, 7]. Although the formulas 

for two-compartment models (2-C) are better known, they will be presented here as well for a 

better demonstration of the derivation method.  

 

The purpose of the paper is to give a derivation of the concentration formulas for 2-C, 3-C, 

and 4-C models, in a form accessible to readers knowledgeable of compartment models and 

not scared by math, but without assuming prior knowledge of advanced techniques such as 

Laplace transformations. In Supplementary Material, the results are presented as computer 

algorithms to make the formulas easier applicable for the readers. These algorithms are 

implemented in PHP, but, after minor changes, can be used in other software languages as 

well.   

The treatment will be general, except that it will be assumed that all drug has entered the 

system at time t=0. While this restriction excludes cases where drugs are introduced 

gradually, it can be circumvented for cases where further drug is introduced at specific time 

points t1, t2, etc.: First the problem is solved from 0 until t1, then using the final quantities + 

newly introduced drug is used to solve from t1 to t2, etc.  

 

 

Briefly on compartment models 

 

In modelling, a compartment is used to specify where (e.g. in the plasma) or in what state 

(e.g. free or bound) the discussed substance is distributed. As such, pharmacokinetic 

compartments do not necessarily correspond to structurally delineated anatomic 

compartments. Compartment modelling assumes uniform distribution within each 

compartment, i.e. that each compartment can be assigned a concentration. After the drug has 

entered the system (e.g. by injection), the concentration in a given compartment at time t can 

be generally described by a multi-exponential function: 

 
=

−
=

n

i

tb

it
iecC

1

       {eq. 1} 

where n is the number of compartments in the system.  

 

Having the above formula, the area under the time-concentration curve (AUC) in the 

compartment can be expressed as: 

 
=

=
n

i

ii bcAUC
1

/ .        {eq. 2} 

In the specific case of a 2-C model, a common notation is to write A·exp(-α·t) + B·exp(-β·t) 

rather than c1·exp(-b1·t) + c2·exp(-b2·t). In this case, 

 AUC = A/α + B/β.        {eq. 3} 
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The exponentials describe the overall behaviour of the system. This behaviour arises from the 

inherent parameters of the model: elimination rate constants, clearances, and compartment 

volumes. These parameters are sometimes referred to as micro-constants. 

 

In the models considered here, the rate of the transport of a drug (quantity per time) is 

proportional to its concentration in the respective compartment (linear models, first order 

processes). The transport rate constants (k) are signed with lower indices describing the 

direction of the transport, i.e., kij denotes elimination rate constant from compartment i to j, kji 

from j to i, ki0 from compartment i to the environment (and, hence, from the entire organism). 

In passive transport, there is no preferred direction of transport, leading to the following 

dependence: 

 ijjjiiij ClVkVk == ,      {eq. 4} 

where Clij is the intercompartmental clearance (the same in both directions) and Vi is the 

volume of the compartment i. Additionally, Qti and Cti denote the quantity and concentration, 

respectively, of the drug in compartment i in a given time point t. Similarly, Qi0 is its initial 

amount, and Ci0 its initial concentration in compartment i.  

 

By definition, a single compartment has only a single concentration, corresponding to 

assuming instantaneous mixing of the injected drug with the entire volume of the 

compartment. If that assumption is a problem in a given context, then a different model is 

needed, e.g. a compartment models where the “problematic” compartment is represented by 

more than one compartment. 

 

 

 

Introduction to Laplace transformation 

 

A compartment model can be described with a system of differential equations in which the 

behaviour of the drug in each compartment is described with a separate equation.  

The Laplace transformation can be used as a powerful tool in finding solutions for such 

systems by turning the differential equations into normal equations [8]. Overall, the procedure 

is: 

1) Use the Laplace transformation to replace the differential equations by normal (non-

differential) equations on the so-called Laplace transforms. 

2) Solve these equations to obtain the solutions for the Laplace transforms. 

3) Rewrite the solutions into a form that can be inversely transformed without too much 

difficulty. 

4) Perform inverse Laplace transformation to obtain the solution to the original problem, 

i.e. to solve the differential equations. 

Shortly, Laplace transformation is a mathematical operation which changes a t-dependent 

function into an s-dependent one according to a general rule: 

  

 𝐹(𝑠) = ℒ(𝑓(𝑡)) = ∫ 𝑓(𝑡) · 𝑒−𝑠∙𝑡
∞

0
𝑑𝑡.      {eq. 5} 

The function F(s) is called a Laplace transform. The variable s is abstract and has no obvious 

interpretation, but is mathematically needed to avoid loss of information: One function is 

transformed into another function, allowing inverse transformation (see below). Such inverse 

transformation would not be possible if only a single value (rather than a full function) was 

known, e.g. AUC can be calculated from the curve, but the curve cannot be calculated from 

the value of AUC.  
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In the equations, the distinction between letter t and letter s distinguishes original functions 

from Laplace transforms. 

The Laplace transformation is linear: 

  

 ℒ(𝑎 · 𝑓(𝑡) + 𝑏 · 𝑔(𝑡)) = 𝑎 · ℒ(𝑓(𝑡)) + 𝑏 · ℒ(𝑔(𝑡))   {eq. 6} 

Noteworthy, the Laplace transform of a derivative has a simple relation to the transform of the 

original function: 

 ℒ(𝑓′(𝑡)) = 𝑠 · ℒ(𝑓(𝑡)) − 𝑓(0),       {eq. 7} 

where f(0) is the value of the function for t=0 (initial value).  

Thus, Laplace transformations can be used to change a problem of differential equations into 

a problem of non-differential equations. Solving these equations yields the Laplace transforms 

F(s).  

The last step is inverse transformation to obtain the solutions f(t) to the original problem:

 ℒ (−1)(𝐹(𝑠)) = 𝑓(𝑡).        {eq. 8} 

 

However, inverse Laplace transformation is in general far from easy, which is the reason for 

step 3 in the outlined procedure. Tables exist for a number of inverse transformations, so step 

3 typically consist of rewriting F(s) into a linear combination of such known results.  

In pharmacokinetics of tracers, the involved functions are most often exponentials, allowing 

us to focus on only the Laplace transform of an exponential: 

 ℒ(𝑒−𝑎·𝑡) =
1

𝑠+𝑎
       {eq. 9} 

with inverse transform: 

 ℒ (−1) (
1

𝑠+𝑎
) = 𝑒−𝑎·𝑡.        {eq. 10} 

 

The linearity of the Laplace transformation tells us that if the solution for the transforms can 

be written as a sum of simple fractions A/(s+a) then the solution for the original equations 

will be a sum of exponentials A·exp(-a·t). 

For simplicity of notation, the independent variable is sometimes written as index, e.g. ft and 

Fs, or even the same letter for the original function and transform, e.g. Qt and Qs 

 

 

 

Two-compartment model 
 

 
Figure 1: The universal two-compartment model. See the Introduction for the explanations of 

the symbols used.  

 

Setup of equations 

The 2-C model is presented in the Figure 1. Additionally, the following variables are defined: 

Q10 

k10 

comp. 1 

k12 

k21 

comp. 2 

Q20 

k20 



 5 

21202

12101

kkK

kkK

+=

+=
         {eq. 11} 

 

The behaviour of the drug can be described by the initial system of differential equations: 



















−+=

+−=

22121
2

21211
1

KQkQ
dt

dQ

kQKQ
dt

dQ

tt

tt

,      {eq. 12} 

where the dQi/dt are the derivatives and the Qti are the sought variables (quantities of the 

drug) related to the concentrations with a formula: 

ititi VQC /= .  

 

Step 1: Laplace transformations 

The Laplace transform of the system is: 









−+=−

+−=−

22121202

21211101

KQkQQQs

kQKQQQs

sss

sss

.      {eq. 13} 

Rearranging: 

( )

( )







+−+=−

++−=−

sKQkQQ

kQsKQQ

ss

ss

2212120

2121110

.      {eq. 14} 

This allows to directly re-write the system in a matrix form: 

( )

( ) 
















+−+

++−
=









−

−

2

1

212

211

20

10

s

s

Q

Q

sKk

ksK

Q

Q
,     {eq. 15} 

where the left-side consists of one column matrix (“Q-zero” column) and the main matrix can 

be named matrix A: 

( )

( )







+−+

++−
=

sKk

ksK
A

212

211
       {eq. 16} 

in which (according to the rules of multiplying of matrices) the first column is the Qs1-column 

and the second is Qs2.  

 

Step 2: Solving for Laplace transforms  

Linear equations on matrix form can be solved as ratios of determinants (Cramer’s formulas). 

For the 2-C system, the main matrix A was given above. The determinant of this 2×2 matrix is 

a quadratic polynomial: 

( ) 21122121

2det kkKKKKssA −+++= .     {eq. 17} 

 

If the Qs1-column is replaced by the “Q-zero” column, then one receives the AQ1-matrix: 

( )







+−−

+−
=

sKQ

kQ
AQ

220

2110

1        {eq. 18} 

whose determinant is: 

2120210101det kQKQQsAQ ++=       {eq. 19} 

The solution of the system for Qs1 comes from the division: 

A

A
Q

Q

s
det

det 1

1= .         {eq. 20} 

Analogously, one can obtain the solution of the second compartment: 
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( )









−+

−+−
=

2012

101

2
Qk

QsK
AQ ,       {eq. 21} 

1210120202det kQKQQsAQ ++= ,      {eq. 22} 

and 

A

A
Q

Q

s
det

det 2

2= .         {eq. 23} 

 

The solution of the entire system for Qs1 and Qs2 is then: 

( )

( ) 























−+++

++
=

−+++

++
=

21122121

2

121012020

2

21122121

2

212021010

1

kkKKKKss

kQKQQs
Q

kkKKKKss

kQKQQs
Q

s

s

    {eq. 24} 

 

Step 3: Rewriting of the Laplace transforms 

The above expressions are the solutions for the Laplace transforms, but inverse transformation 

is far from obvious. However, as noted earlier, if Qs can be rewritten as a sum of terms on the 

form A/(s+a), then inverse transformation will be simple. 

In both Qs1 and Qs2, the numerator is a linear expression of s, and the denominator is a 

quadratic expression of s (namely the common value det A). As a first step, the denominator 

(the polynomial {eq. 17}) can be factorized: 

( ) ( ) ( )2121122121

2det bsbskkKKKKssA ++=−+++= ,   {eq. 25} 

where –b1 and –b2 are the roots of the quadratic function; this non-standard form of the 

factorized polynomial is chosen so that the resulting formulas better fit the next steps. The 

roots can be found either by solving of the quadratic equation or by use of the Vieta equations 

resulting from {eq. 25}: 

2121 KKbb +=+         {eq. 26} 

20101220211021 kkkkkkbb ++=      {eq. 27} 

Either way, the solutions for b1 and b2 are: 

𝑏1, 𝑏2 =
1

2
∙ (𝐾1 + 𝐾2 ∓√(𝐾1 + 𝐾2)2 − 4 ∙ (𝑘21 ∙ 𝑘10 + 𝑘12 ∙ 𝑘20 + 𝑘20 ∙ 𝑘10)) 

 {eq. 28} 

 

Which solutions becomes b1 and which b2 is a matter of choice. When the minus sign is 

applied for b1 and the plus sign for b2 then the expressions have b1 < b2, which in the final 

result will make b1 part of the most slowly decaying exponential.  

The system of transforms becomes: 

( ) ( )

( ) ( ) 























++

++
=

++

++
=

21

121012020

2

21

212021010

1

bsbs

kQKQQs
Q

bsbs

kQKQQs
Q

s

s

.      {eq. 29} 

Each of these fractions can be decomposed into a sum of simple fractions according to the 

method introduced by Oliver Heaviside: 

( ) ( ) ( ) ( )2

2

1

1

21

212021010

1
bs

B

bs

A

bsbs

kQKQQs
Qs

+
+

+
=

++

++
= ,   {eq. 30} 
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where A1 and B2 are variables to be found according to an algorithm presented below. This 

method can be used with only some exceptions which, in turn, are not expected to occur in the 

compartment models.  

Multiplying by the denominator of the left side gives: 

( ) ( )2211212021010 bsBbsAkQKQQs +++=++ ;   {eq. 31} 

The equation should be valid for all values of s. Setting s = –b2 yields: 

( ) ( ) ( )22212121202210 bbBbbAkQbKQ +−++−=+−    {eq. 32} 

and hence: 

( ) ( )21121202210 bbAkQbKQ −=+− ,     {eq. 33} 

and further: 

( )
( )21

21202210

1
bb

kQbKQ
A

−

+−
= .       {eq. 34} 

Similarly, setting s = –b1 yields:  

( ) ( )2121112120210101 bbBbbAkQKQQb +−++−=++− ,   {eq. 35} 

after rearrangement: 

( )
( )12

21201210

2
bb

kQbKQ
B

−

+−
= .       {eq. 36} 

 

Step 4: Inverse transformation to find the solution for the original problem 

The Laplace transform for compartment 1 is now on the form: 

 
( ) ( )1

2

2

11

11

bs
B

bs
AQs

+
+

+
=      {eq. 37} 

Accordingly, the tracer quantity as a function of time is: 

 ( ) ( )tbBtbAQs −+−= 12211 expexp     {eq. 38} 

A similar procedure should be performed for compartment 2.  

 

After division of the formulas by the volume of the respective compartment, one receives the 

final solution of the concentrations in both compartments as follows: 









−+−=

−+−=

)exp()exp(

)exp()exp(

22112

22111

tbdtbdC

tbctbcC

t

t
,     {eq. 39} 

where: 

( )
( )121

21201210

1
bbV

kQbKQ
c

−

+−
= ,      {eq. 40} 

( )
( )211

21202210

2
bbV

kQbKQ
c

−

+−
= ,      {eq. 41} 

( )
( )122

11201210

1
bbV

bKQkQ
d

−

−+
= ,      {eq. 42} 

( )
( )212

21201210

2
bbV

bKQkQ
d

−

−+
= .       {eq. 43} 

 

Readers preferring a different notation, e.g. plasma concentration on the form A·exp(-α·t) + 

B·exp(-β·t), are welcome to rewrite in this notation. The only pitfall could be the choice of – 

and + in the equations for b1 and b2, see {eq. 28} and the comment below the equation.  
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Numerical verification for 2-C model 

Verification of the above derived analytical model followed by the comparison of the 

concentrations obtained with the analytical and numerical (Runge-Kutta second order, RK2) 

models within a time window of zero to 300 (in the below presented examples for 2-C and 

higher models, all the faster decaying components of the time-concentration curve are 

comparable to the slowest-decaying in the time point zero, but lower by several orders of 

magnitude in the time point 300). For RK2 (the algorithm – see Table 1), the concentrations 

were obtained within this time window in consecutive time steps Δt. The error was calculated 

as the quotient of the concentrations: analytic by numeric; thus, an error-free method would 

correspond to the quotient of exactly one. Several combinations of micro-constants have been 

tested and gave comparable results; the set below is an example.  

 

Table 1: The RK2-algorithm used for testing of the formulas in the 2-C model.  

Compartment 1; initial condition:  

Q10 (given) 

and then: 

AA QkQKm 22111)1(1 +−=  

2
)1(11*1

t
mQQ A


+=  

*221*11)1(2 QkQKm +−=  

tmQQ AB += )1(211  

Compartment 2; initial condition:  

Q20 (given)  

and then: 

AA QkQKm 11222)2(1 +−=  

𝑄2∗ = 𝑄2𝐴 +𝑚1(2) ∙
∆𝑡

2
 

*112*22)2(2 QkQKm +−=  

tmQQ AB += )2(222
 

 

 

Example 

1. Input values: 

V1= 8100, V2= 5400 (and hence ECV= 13 500), Cl12= 125, Cl10= 100, Cl20= 0, Q10= 

20 000 000, Q20= 0.  

2. Elimination rate constants:  

- with eq. 4 one receives k10= 0.012345679, k20= 0, k12= 0.015432099, k21= 

0.023148148; 

- with eq. 11 one receives: K1= 0.027777778, K2= 0.023148148.  

3. Calculation of the macro-constants bi (eq. 28): b1= 0.006421354, b2= 0.044504572.  

4. Calculation of the macro-constants ci and di (eqs. 40-43): c1= 1084.486253, c2= 

1384.649549, d1= 1500.816479, d2= -1500.816479.  

5. The quotients of concentrations (analytical result over numerical result) for Δt= 0.01: 

- compartment 1: maximal 1.000443465 (in t= 300), minimal 1.0000000 (t= 0), 

- compartment 2: maximal 1.000118681 (t= 300), minimal 0.999722267 (t= 0.01).  

6. The quotients of concentrations for Δt= 0.1: 

- compartment 1: maximal 1.00444 (in t= 300), minimal 1.0000000 (t= 0), 

- compartment 2: maximal 1.001185 (t= 300), minimal 0.99723 (t= 0.1).  

 

Thus, a very good agreement was found between results of the analytical derivation and 

results of the numerical calculation, with a quotient deviating less than 1% from the ideal 

value of 1. 
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Three-compartment universal model 
 

 
Figure 2: Universal 3-C model discussed in this study. If exchange between all compartments 

is possible (all k are >0), this is a cyclic model. Under assumption that compartment 1 is the 

central compartment, k23=k32=0 for the mammillary model (parallel compartments); for the 

catenary model (serial compartments), k13=k31=0.  

 

Setup of equations 

The general 3-C model is shown in Figure 2. To ease notation, we define:  

3231303

2321202

1312101

kkkK

kkkK

kkkK

++=

++=

++=

        {eq. 44} 

 

The initial system of differential equations is: 






















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



−++=

+−+=

++−=

33232131

3
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2

31321211
1

KQkQkQ
dt

dQ

kQKQkQ
dt

dQ

kQkQKQ
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dQ

ttt

ttt

ttt

,     {eq. 45} 

 

Step 1: Laplace transformation 

The Laplace transform of the system is: 

















−++=−

+−+=−

++−=−

33232131303

32322121202

31321211101

KQkQkQQQs

kQKQkQQQs

kQkQKQQQs

ssss

ssss

ssss

.    {eq. 46} 

 

Its matrix form is: 

Q10 

k10 

comp. 2 

comp. 1 

k12 

k21 

comp. 3 

k13 

k31 

k20 

k30 

k23 k32 

Q30 

Q20 
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















=

















−

−

−

3

2

1

30

20

10

s

s

s

Q

Q

Q

A

Q

Q

Q

, where       {eq. 47} 

( )

( )

( )















+−++

++−+

+++−

=

sKkk

ksKk

kksK

A

32313

32212

31211

.     {eq. 48} 

 

Step 2: Solving for Laplace transforms  

The main matrix was given above. The other matrices are: 

( )

( )















+−+−

++−−

++−

=

sKkQ

ksKQ

kkQ

AQ

32330

32220

312110

1
     {eq. 49} 

( )

( )















+−−+

+−+

+−+−

=

sKQk

kQk

kQsK

AQ

33013

322012

31101

2      {eq. 50} 

( )

( )
















−++

−+−+

−++−

=

302313

20212

10211

3

Qkk

QsKk

QksK

AQ      {eq. 51} 

 

Further solutions proceed according to the schema used for the 2-C model, i.e.: 

A

A
Q

Q

s
det

det 1

1=          {eq. 52} 

A

A
Q

Q

s
det

det 2

2=         {eq. 53} 

A

A
Q

Q

s
det

det 3

3= .        {eq. 54} 

 

In the later factorisation of det A there will be a minus sign due to the odd number of rows 

containing a negatively signed s (cf. eq. 48):  

 

( ) ( ) ( )321det bsbsbsA +++−= .       {eq. 55} 

 

Instead of keeping this minus sign, we have chosen to calculate –det A, as well as  –det AQi. 

This makes no difference in the fractions eq. 52-54, as the changed signs cancel each other. 

 

The negative determinant of the main matrix is: 

( ) ( )

231231321321211233113223321321

322331132112313221321

23det

kkkkkkkkKkkKkkKKKK

kkkkkkKKKKKKsKKKssA

−−−−−+

−−−++++++=−
 

 {eq. 56} 

 

The other negative determinants are: 

( )

( ) ( ) ( )21323123023312132032233210

3130212031021010

2

1det

kkkKQkkkKQkkKKQ

kQkQKQKQsQsAQ

++++−+

++++=−
 {eq. 57} 
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( )

( ) ( ) ( )12313213031133120321312310

3230121032012020

2

2det

kkkKQkkKKQkkkKQ

kQkQKQKQsQsAQ

++−+++

++++=−
 {eq. 58} 

 

( )

( ) ( ) ( )21122130132123120231213210

2320131023013030

2

3det

kkKKQkkkKQkkkKQ

kQkQKQKQsQsAQ

−+++++

++++=−
 {eq. 59} 

 

 

The solution of the entire equation system is then: 

 

( )

( ) ( ) ( )
( ) ( ) ( )321

21323123023312132032233210

3130212031021010

2

1
bsbsbs

kkkKQkkkKQkkKKQ

kQkQKQKQsQs

Qs
+++

++++−+

++++

= {eq. 60} 

 

( )

( ) ( ) ( )
( ) ( ) ( )321

12313213031133120321312310

3230121032012020

2

2
bsbsbs

kkkKQkkKKQkkkKQ

kQkQKQKQsQs

Qs
+++

++−+++

++++

= {eq. 61} 

 

( )

( ) ( ) ( )
( ) ( ) ( )321

21122130132123120231213210

2320131023013030

2

3
bsbsbs

kkKKQkkkKQkkkKQ

kQkQKQKQsQs

Qs
+++

−+++++

++++

= {eq. 62} 

 

 

Step 3: Rewriting of the Laplace transforms 

Again, we should rewrite the transforms Qs as sums of simple fractions, 1/(s+bi). Basic 

relationships (derived from the Vieta formulas): 

2312313213212112331132322313213210 kkkkkkkkKkkKkkKKKKbbba −−−−−==

3223311321123132213132211 kkkkkkKKKKKKbbbbbba −−−++=++=  

3213212 KKKbbba ++=++=        {eqs. 63-65} 

The solution of these equations involves finding roots of third-degree polynomial. There are 

many possible ways to find these solutions [2, 3, 4, 5], an exemplary solution is: 

223,2,1 )
3

2
cos(3/ r

k
ab 


+−=


        {eq. 66} 

for k=0,1,2.  

 

A number of the following auxiliary variables have been defined: 

3/2

21 aap −=          {eq. 67} 

021

3

2 3/27/2 aaaaq +−=         {eq. 68} 

( )27/3

1 pr −=          {eq. 69} 
3/1

12 2 rr =           {eq. 70} 

3/
2

arccos
1










−=

r

q
         {eq. 71} 

For brevity, the numerators are stated only in the final results below. 
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Step 4: Inverse transformation to find the solution for the original problem 

The final results for the concentrations (after divisions Ci = Qi/Vi) become: 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) 














−+−+−=

−+−+−=

−+−+−=

tbetbetbeC

tbdtbdtbdC

tbctbctbcC

t

t

t

3322113

3322112

3322111

expexpexp

expexpexp

expexpexp

   {eq. 72} 

 

where: 

 

( )( ) 
( )

( )
( )( )13121

311213231230

211312321320

3223131210

1
bbbbV

kbkkkKQ

kbkkkKQ

kkbKbKQ

c
−−

−++

−++

−−−

=

     {eq. 73} 

 

( )( ) 
( )

( )
( )( )23211

312213231230

212312321320

3223232210

2
bbbbV

kbkkkKQ

kbkkkKQ

kkbKbKQ

c
−−

−++

−++

−−−

=

     {eq. 74} 

 

( )( ) 
( )

( )
( )( )32311

313213231230

213312321320

3223333210

3
bbbbV

kbkkkKQ

kbkkkKQ

kkbKbKQ

c
−−

−++

−++

−−−

=

     {eq. 75} 

 

 

 

( )

( )( ) 
( )
( )( )13122

321123132130

3113131120

121321312310

1
bbbbV

kbkkkKQ

kkbKbKQ

kbkkkKQ

d
−−

−++

−−−+

−+

=

     {eq. 76} 

 

( )

( )( ) 
( )
( )( )23212

322123132130

3113232120

122321312310

2
bbbbV

kbkkkKQ

kkbKbKQ

kbkkkKQ

d
−−

−++

−−−+

−+

=

     {eq. 77} 

 

( )

( )( ) 
( )
( )( )3212

323123132130

3113333120

123321312310

3
3 bbbbV

kbkkkKQ

kkbKbKQ

kbkkkKQ

d
−−

−++

−−−+

−+

=

     {eq. 78} 
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( )

( )

( )( ) 
( )( )13123

2112121130

231132123120

131231213210

1
bbbbV

kkbKbKQ

kbkkkKQ

kbkkkKQ

e
−−

−−−+

−++

−+

=

     {eq. 79} 

 

( )

( )

( )( ) 
( )( )232213

2112222130

232132123120

132231213210

2
bbbbV

kkbKbKQ

kbkkkKQ

kbkkkKQ

e
−−

−−−+

−++

−+

=

     {eq. 80} 

 

( )

( )

( )( ) 
( )( )32313

2112323130

233132123120

133231213210

3
bbbbV

kkbKbKQ

kbkkkKQ

kbkkkKQ

e
−−

−−−+

−++

−+

=

     {eq. 81} 

 

Numerical verification of the 3-C results 

The verification was performed analogically as for the 2-C model. The numerical algorithm is 

presented in Table 2.  

 

Table 2: The RK2-algorithm used for testing of the formulas in the 2-C model. 

Compartment 1; initial condition:  

Q10 (given) 

and then: 

AAA QkQkQKm 33122111)1(1 ++−=  

2
)1(11*1

t
mQQ A


+=  

*331*221*11)1(2 QkQkQKm ++−=  

tmQQ AB += )1(211  

Compartment 2; initial condition:  

Q20 (given) 

and then: 

AAA QkQkQKm 33211222)2(1 ++−=  

2
)2(12*2

t
mQQ A


+=  

*332*112*22)2(2 QkQkQKm ++−=  

tmQQ AB += )2(222
 

Compartment 3; initial condition:  

Q30 (given) 

and then: 

AAA QkQkQKm 11322333)3(1 ++−=  

2
)3(13*3

t
mQQ A


+=  

*113*223*33)3(2 QkQkQKm ++−=  

tmQQ AB += )3(233
 

 

 

Example 

1. Input values: V1= 3000, V2= 2000, V3= 5000, Q10= 20 000 000, k10= 0.003333, k20= 

0.025, k30= 0.012, k12= 0.166667, k21= 0.25, k13= 0.033333, k31= 0.02, k23= 0.2, k32= 

0.08.  

2. Macro-constants: b1= 0.011882, b2= 0.173534, b3= 0.604917, c1= 4138.613, c2= 

2602.983, c3= -74.9293, d1= 3956.416, d2= 857.6132, d3= 185.9709, e1= 3988.164, e2= 

-1961.02, e3= -27.1427.  
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3. The error calculation for the respective compartments, Δt= 0.1: 

- compartment 1: minimal 0.99999, maximal 1.000000, 

- compartment 2: minimal 0.999988, maximal 1.000000, 

- compartment 3: minimal 0.999999, maximal 1.000014.  

 

 

 

 

General remarks on the 2-C and 3-C models 

 

The models considered above have no preferred or central compartment, e.g. allowing for the 

possibility of initial injection into all compartments. Accordingly, a kind of symmetry can be 

noticed among the formulas for different compartments. 

In practice, however, a parallel injection into multiple compartments seems a rare 

phenomenon. The above formulas could be remarkably simplified if the initial amounts of the 

drug were set to zero in all except for one compartment. Further simplification will result if 

some of the k-values are assumed to be zero, e.g. reduction of the cyclic model to mammillary 

or catenary.  

 

 

 

 

Four-compartment models  
 

The above remarks on possible simplification allow reducing the necessary calculations for a 

universal 4-C model just to injection into the compartment number 1. As the model is 

otherwise universal, a simple change of numbering will handle the case where e.g. 

compartment 2 is the only compartment initially containing the drug. However, the algorithm 

for the 4-C model found in the Supplementary Material can be set up with non-zero starting 

values for any compartment. 

 

The (simplified) derivation follows according to the schema presented above for the 2-C and 

3-C. The most important steps are summarized in the following. 

 

Main matrix and determinant 

The matrix form of the Laplace-transformed equation system is: 



















=

















−

4

3

2

110

0

0

0

s

s

s

s

Q

Q

Q

Q

A

Q

, where matrix A is:     {eq. 82} 

( )
( )

( )
( )


















+−

+−

+−

+−

=

sKkkk

ksKkk

kksKk

kkksK

A

4342414

4332313

4232212

4131211

   {eq. 83} 

Its determinant is a quartic pentanomial: 

01

2

2

3

3

4

4det asasasasaA ++++=      {eq. 84} 
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where: 

 

14 =a  

 

43213 KKKKa +++=  

 

433442243223411431132112

4342324131212

kkkkkkkkkkkk

KKKKKKKKKKKKa

−−−−−−

+++++=
 

 

( )

( )

( )

324324314314423423214214

413413412412213213312312

4224411421123

422441143113432

43344224322343423211

kkkkkkkkkkkk

kkkkkkkkkkkk

kkkkkkK

kkkkkkKKK

kkkkkkKKKKKKKa

−−−−

−−−−

−−−

−−−+

−−−++=

 

 

( )

( )

( )

322341144224311343342112

213243143143241221423413

312342144134231241243213

214214412412211243

31431441341331134411432

32432442342332234422434334243210

kkkkkkkkkkkk

kkkkkkkkkkkk

kkkkkkkkkkkk

kkkkkkkkKK

kkkkkkkkKkkKK

kkkkkkkkKkkKkkKKKKKa

+++

−−−

−−−

++−

+++−

−−−−−=

 

 

{eqs. 85-89} 

 

 

Solution of the polynomial allows presenting the determinant as a product: 

( )( )( )( )4321det bsbsbsbsA ++++=      {eq. 90} 

 

Other determinants 

The determinants of the other matrices are: 

 

( )

( )

( )32432442342332234422434334243210

43344224322343423210

43210

2

10

3

1det

kkkkkkkkKkkKkkKKKKQ

kkkkkkKKKKKKQs

KKKQsQsAQ

−−−−−+

−−−+++

+++=

 

 

( )

( )4334123243144234133213442143124310

42143213124123101210

2

2det

kkkkkkkkkkkKkkKkKKQ

kkkkkKkKQskQsAQ

−+++++

++++=
 

 

( )

( )4224134223144224122312443142134210

43142312134132101310

2

3det

kkkkkkkkkkkKkkKkKKQ

kkkkkKkKQskQsAQ

−+++++

++++=
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( )

( )3223143224133423122412334132143210

34132412143142101410

2

4det

kkkkkkkkkkkKkkKkKKQ

kkkkkKkKQskQsAQ

−+++++

++++=
 

 

{eqs. 91-94} 

 

 

Solutions 

The solutions of the Laplace transforms of the equation systems are: 

A

A
Q

Qi

si
det

det
= ,         {eq. 95} 

where i denotes the number of the respective compartment (from 1 to 4).  

 

The final solution for the four compartments can be presented as: 

( )
=

−=
4

1

1 exp
i

iit tbcC        {eq. 96} 

( )
=

−=
4

1

2 exp
i

iit tbdC        {eq. 97} 

( )
=

−=
4

1

3 exp
i

iit tbeC        {eq. 98} 

( )
=

−=
4

1

4 exp
i

iit tbfC        {eq. 99} 

 

where:  

( ) ( ) ( ) ( )

( ) ( ) ( )141312

324324423423322344224343342

4334422432231141312

1

10

1
bbbbbb

kkkkkkkkKkkKkkK

kkkkkkbbKbKbK

V

Q
c

−−−










−−−−−

+++−−−

=  

 

( ) ( ) ( ) ( )

( ) ( ) ( )242321

324324423423322344224343342

4334422432232242322

1

10

2
bbbbbb

kkkkkkkkKkkKkkK

kkkkkkbbKbKbK

V

Q
c

−−−










−−−−−

+++−−−

=  

 

 

( ) ( ) ( ) ( )

( ) ( ) ( )343231

324324423423322344224343342

4334422432233343332

1

10

3
bbbbbb

kkkkkkkkKkkKkkK

kkkkkkbbKbKbK

V

Q
c

−−−










−−−−−

+++−−−

=  

 

 

( ) ( ) ( ) ( )

( ) ( ) ( )434241

324324423423322344224343342

4334422432234444342

1

10

4
bbbbbb

kkkkkkkkKkkKkkK

kkkkkkbbKbKbK

V

Q
c

−−−










−−−−−

+++−−−

=  

 

 

{eqs. 100-103} 
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( )

( ) ( ) ( )141312

43341232431442341332134421431243

42143213124123112

2

1

2

10

1
bbbbbb

kkkkkkkkkkkKkkKkKK

kkkkkKkKbkb

V

Q
d
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{eqs. 108-111} 
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{eqs. 112-115} 

 

For calculation of the exponentials from the micro-constants – see the Appendix.   

 

 

Numeric verification 

The verification of the derived formulas followed as for the 2- and 3-C models. The numerical 

algorithm is presented in Table 3.  

 

Table 3: Numeric model (RK2) used for verification of the analytical 4-C model.  

Compartment 1; initial condition: Q10 (given, >0), and then: 

AAAA QkQkQkQKm 44133122111)1(1 +++−=  
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t
mQQ A


+=  

*441*331*221*11)1(2 QkQkQkQKm +++−=  

tmQQ AB += )1(211
 

Compartment 2; initial condition: 020 =Q , and then: 
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Compartment 3; initial condition: 030 =Q , and then: 
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Compartment 4; initial condition: 040 =Q , and then: 

AAAA QkQkQkQKm 33422411444)4(1 +++−=  
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Example 

1. Input values: V1= 3000, V2= 1000, V3= 4000, V4= 5000, Q10= 20 000 000, k10= 

0.033333, k20= 0.01, k30= 0.005, k40= 0.006, k12= 0.066667, k21= 0.2, k13= 0.1, k31= 

0.075, k14= 0.166667, k41= 0.1, k23= 0.1, k32= 0.025, k24= 0.2, k42= 0.04, k34= 0.025, 

k43= 0.02.  

2. Calculated macro-constants: b1= 0.011985, b2= 0.162998, b3= 0.42268, b4= 0.575005, 

c1= 1388.721, c2= 62.4713, c3= 3816.194, c4= 1399.281, d1= 1451.115, d2= 85.5152, 

d3= 3158.319, d4= -4694.95, e1= 1502.112, e2= -437.644, e3= -1085.88, e4= 21.41068, 

f1= 1473.612, f2= 304.7205, f3= -1894.33, f4= 115.9929.  

3. Error calculation for the respective compartments for Δt= 0.1: 

- compartment 1: minimal 0.999998, maximal 1.000254, 

- compartment 2: minimal 0.999165, maximal 1.000011,  

- compartment 3: minimal 0.999731, maximal 1.000000,  

- compartment 4: minimal 0.999697, maximal 1,000001.  

 

 

 

 

 

 

Discussion  
 

When the pharmacokinetics of a drug in the body is to be studied, understood and described, 

it is often useful to focus on a limited number of organs or states, each of which represented 

by a "compartment". Typically, the important compartments and possible interactions are 

theorized (the model), and a concentration curve from e.g. the blood is known from 

measurements (the input). A solution to the model will then be the strengths of the transfer 

rates between compartments, possibly along with concentrations curves for drugs in all 

compartments. These results allow the researcher to evaluate where the drug goes, for how 

long, and through which interactions. 

 

While solutions can surely be used without full understanding of the mathematics behind, 

some understanding is generally helpful. Treating the solution as a "black box" not just limits 

understanding, but can also increase the risk of drawing fragile conclusions. Understanding is 

not a guarantee against mistakes, but it can be a valuable component in drawing sound and 

robust conclusions, as well as in spotting pitfalls. 

 

The above examples of universal 2-C, 3-C and 4-C models show that derivation of higher 

compartment models, as a five-compartment one, although possible, would meet the 

following problems: 

1. Complexity of the intermediate and the final formulas – this could be, however, alleviated, 

if a proper computer algorithm were used. 

2. Necessity of solution of a higher-degree polynomial; according to the Abel-Ruffini 

theorem, however, an algebraic, analytic solution for quintic hexanomials or higher 

polynomials cannot be achieved except for some special cases which, in turn, are not expected 
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to occur in the discussed compartment models. Instead, application of iterative algorithms 

would be inevitable.  

 

The parallel presented numeric RK2 models can be an alternative for the derived analytic 

models. In case of typical values of micro-constants and for time step (Δt) of 0.1 second, the 

relative difference between the analytic and the numeric solution will typically be less than a 

few per mille; a (reasonable) shortening of the time step and/or applying a more accurate (but 

also mathematically more complex) numeric model, as Runge-Kutta fourth order, would 

further reduce the errors. Such a numeric model consists of many (number of time units 

multiplied by the number of time steps per the unit) systems of equations, but can be built 

using a common commercially or even free available software and a more modern personal 

computer.  

 

A more basic problem, however, is that a model with many parameters need data of both high 

quantity and quality to obtain stable results. A universal model with many compartments is 

very prone to instability, where calculated parameters depend on small variations in the input 

data. Thus, even a mathematically correct result may contain very little information about the 

modelled system. Put another way: A more complex model is not necessarily a better model.  

 

This should be remembered already when going from a 2-C to a 3-C model, or from a 3-C to 

a 4-C model. On the other hand, it should be remembered that for modelling, the most basic 

measure of “complexity” (and following risk of instability) is not the number of 

compartments, but the number of fitted parameters. If some of the k-values are restricted to 

zero, this helps reduce complexity of the model. There may also be cases where a non-zero 

but fixed k-value is used, e.g. an independently known value. For example, if a drug with 

well-established 3-C model was not injected intravenously but given orally, a gastro-intestinal 

(fourth) compartment could be defined, with a transfer rate (outgoing k-value) set to a 

physiologically reasonable value. It will of course be wise to verify that the important results 

are relatively insensitive to small changes in the values chosen for the fixed k-parameters. 

 

The quality of data must also be considered when the allowed complexity of the model is 

decided. For clinical pharmacokinetics, the known inputs are often the initial amount of drug 

and measurements of drug concentration within one compartment at a series of time points. A 

first step can then be to determine the macro-constants from {eq. 1}, e.g. by the “peeling-off” 

or “curve-stripping” procedure [9, 10], where the slowest exponential is determined from late 

points and subtracted from the earlier concentration data points. The process is then repeated 

to determine the second-slowest exponential, etc. Dunne [10] pointed out that the 

determination of the early exponentials can be unstable if the exponential decay rates are not 

very clearly separated, and provided a more robust algorithm. Still, the quality of the time-

concentration curve will depend on the quality of the input data.  

 

In summary, even the best real-world data contain some element of noise, so even with a 

perfect model (which is in itself unlikely), the result should be critically examined. An in-

depth evaluation of model stability is beyond the scope of this paper, but a good starting point 

can be to critically test the model. If a small change in input can result in a non-ignorable 

change in the results of modelling, then it is wise to critically evaluate if the model can be 

simplified.  
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Conclusion  
 

In this paper we have attempted to provide tools for kinetic modelling with compartment 

models of up to 4 compartments. Performance of kinetic modelling is partly an art, but even 

art requires tools and craftsmanship in order to be expressed. The development of 

craftsmanship is the responsibility of the artist, but understanding of the tools can be a help in 

this process. We hope that we have not just presented final results, but also presented the tools 

in a way that allows both understanding and use. 
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Appendix  
 

Solution of quartic pentanomials (adopted from Shmakov [11])  

 

The key of this algorithm is to factorize the quartic: 
0

0

1

1

2

2

3

3

4

40 xaxaxaxaxa ++++=  

into two quadratics: 

http://www.pfim.biostat.fr/PFIM_PKPD_library.pdf
https://wiki.ucl.ac.uk/download/attachments/23206987/Shafer%20NONMEM.pdf?version=1&modificationDate=1339757293000&api=v2
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which can be easily solved.  

In this factorization:  
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where a, b, c and d are the coefficients in the monic form: 

0234 =++++ dxcxbxax  
 

1. Calculation of the coefficients of the monic polynomial: 

43 /aaa=  

42 /aab=  

41 /aac=  

40 /aad=  

 

2. Resolvent cubic ( 023 =+++ cubcubcub dycyby ): 

2A: coefficients: 
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The other two solutions of the cubic (for k=1 and k=2) lead to the same final solutions.  

 

3. Equations G ( 02 =++ gg cgbg ) and H ( 02 =++ hh chbh ):  

3A: coefficients 

abg −=  

ybcg −=  

ybh −=  

dch =  

3B: solution 
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ggg cb −= 42

 

hhh cb −= 42
 

On condition that Δg and Δh are not negative, the following solutions can be obtained: 
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4. Establishing and solution of the ultimate quadratics: 

Checking the third equation of the initial system: 

if 

chghg kn =+ 21  

then 

khh =1  and  nhh =2 , 

else if 

chghg nk =+ 21  

then 

nhh =1  and  khh =2 .  

 

 

 

 

 

Supplementary material 
 

Computer algorithm for calculation of macro-constants from micro-constants in 2-, 3- and 4-

compartment models (available and ready to copy in the electronic version).  
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Dear Lars, 

below, there is a project of such a letter. I tried to explain additionally why it had occurred. Is 

it helpful or better not?  

 

About the order of the terms in the equations: I tried to make it more comprehensible for a 

reader – in my sense, of course ☺ . Just, if anyone were so patient to read the terms, he/she 

could perhaps see the “pathway” of the transport between the compartments. Hence, for 

example, k14*k43*k34 (pathway), instead of k14*k34*k43 (increasing numbers).  

 

In a book on pharmacokinetics, I saw a statement that the terms are the sum of all possible 

permutations of k minus the “loop-forming” terms. In the 3-C, everything seems obvious, i.e. 

(eq. 63),  

a0= K1*K2*K3 – K1*k23*k32 (example of a short loop k23*k32) – k12*k23*k31 (a long 

loop) – other loops.  

 

In the 4-C, however, it looks more sophisticated like (eq. 89):  

a0= K1*K2*K3*K4 (“main term”) - … 

 

There are not only just more loops. Note, that K1 is a sum of k10+…+k14, likewise K2 and 

other “big Ks”. Then, if you subtract from the main term the exemplary two short loops: 

K2*K3*k14*k41 and K1*K4*k23*k32,  

then you subtract the double loop: 

k23*k32*k14*k41 

two times. Thus, at the end, you have to add this double loop to the equation.  

 

Below, the project of the letter is presented.  

 

 

 

Best Regards, 

 

Cyprian 
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Erratum to “Derivation and presentation of formulas for drug concentrations in two-, 

three- and four-compartment pharmacokinetic models” Journal of Pharmacological and 

Toxicological Methods 100 (2019) 106621] 

 

Unfortunately, the paper contained errors in several equations. Fortunately, these errors did 

not affect the final results, and did not influence the algorithms in the supplementary material. 

The corresponding corrections are given below. The authors apologize for the errors. 

 

The affiliation of author Lars Jødal should be: Dept. of Nuclear Medicine, Aalborg University 

Hospital, Aalborg, Denmark. 

  

Errors in the equations (31)-(38), 2-C model:  

In the decomposition of the fractions into simple ones needed for the inverse Laplace 

transformation, the (s+b1) term was swapped with (s+b2); thus, the eight equations were 

written erroneously. However, this did not influence the final results of the model (eqs. 39-

43). The text describing equation (31) to equation (38) should be:  

 

 

Multiplying by the denominator of the left side gives: 

𝑠 · 𝑄10 + 𝑄10 · 𝐾2 +𝑄20 · 𝑘21 = 𝐴1 · (𝑠 + 𝑏2) + 𝐵2 · (𝑠 + 𝑏1);   (31)  

The equation should be valid for all values of s. Setting s = –b2 yields: 

𝑄10 · (𝐾2 − 𝑏2) + 𝑄20 · 𝑘21 = 𝐴1 · (−𝑏2 + 𝑏2) + 𝐵2 · (−𝑏2 + 𝑏1)  (32)  

and hence: 

𝑄10 · (𝐾2 − 𝑏2) + 𝑄20 · 𝑘21 = 𝐵2 · (𝑏1 − 𝑏2),     (33)  

and further: 

𝐵2 =
𝑄10·(𝐾2−𝑏2)+𝑄20·𝑘21

(𝑏1−𝑏2)
.        (34)  

Similarly, setting s = –b1 yields:  

−𝑏1 · 𝑄10 +𝑄10 · 𝐾2 + 𝑄20 · 𝑘21 = 𝐴1 · (−𝑏1 + 𝑏2) + 𝐵2 · (−𝑏1 + 𝑏1),  (35) 

after rearrangement: 

𝐴1 =
𝑄10·(𝐾2−𝑏1)+𝑄20·𝑘21

(𝑏2−𝑏1)
.        (36)  

Step 4: Inverse transformation to find the solution for the original problem 

The Laplace transform for compartment 1 is now on the form: 

𝑄𝑠1 = 𝐴1 ·
1

(𝑠+𝑏1)
+ 𝐵2 ·

1

(𝑠+𝑏2)
       (37) 

Accordingly, the tracer quantity as a function of time is: 

𝑄𝑡1 = 𝐴1 · 𝑒𝑥𝑝(−𝑏1 · 𝑡) + 𝐵2 · 𝑒𝑥𝑝(−𝑏2 · 𝑡)     (38) 

 

 

 

 

 

Errors in the 4-C model:  

 

Equation 88 should be: 

𝑎1 = 𝐾1 · (𝐾2 · 𝐾3 +𝐾2 · 𝐾4 + 𝐾3 · 𝐾4 − 𝑘34 · 𝑘43 − 𝑘24 · 𝑘42 − 𝑘23 · 𝑘32) 
+𝐾2 · (𝐾3 · 𝐾4 − 𝑘13 · 𝑘31 − 𝑘14 · 𝑘41 − 𝑘34 · 𝑘43) 
−𝐾3 · (𝑘12 · 𝑘21 + 𝑘14 · 𝑘41 + 𝑘24 · 𝑘42) 
−𝐾4 · (𝑘12 · 𝑘21 + 𝑘13 · 𝑘31 + 𝑘23 · 𝑘32) 
−𝑘12 · (𝑘23 · 𝑘31 + 𝑘24 · 𝑘41) 
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−𝑘13 · (𝑘32 · 𝑘21 + 𝑘34 · 𝑘41) 
−𝑘14 · (𝑘42 · 𝑘21 + 𝑘43 · 𝑘31) 
−𝑘23 · 𝑘34 · 𝑘42 − 𝑘24 · 𝑘43 · 𝑘32 

 

Equation 89 should be:  

𝑎0 = 𝐾1 · (
𝐾2 · 𝐾3 · 𝐾4 − 𝐾2 · 𝑘34 · 𝑘43 − 𝐾3 · 𝑘24 · 𝑘42 − 𝐾4 · 𝑘23 · 𝑘32

−𝑘23 · 𝑘34 · 𝑘42 − 𝑘24 · 𝑘43 · 𝑘32
) 

−𝐾2 · (𝐾3 · 𝑘14 · 𝑘41 + 𝐾4 · 𝑘13 · 𝑘31 + 𝑘13 · 𝑘34 · 𝑘41 + 𝑘14 · 𝑘43 · 𝑘31) 
−𝐾3 · (𝐾4 · 𝑘12 · 𝑘21 + 𝑘12 · 𝑘24 · 𝑘41 + 𝑘14 · 𝑘42 · 𝑘21) 
−𝐾4 · (𝑘12 · 𝑘23 · 𝑘31 + 𝑘13 · 𝑘32 · 𝑘21) 
−𝑘12 · 𝑘23 · 𝑘34 · 𝑘41 − 𝑘12 · 𝑘24 · 𝑘43 · 𝑘31 

−𝑘13 · 𝑘34 · 𝑘42 · 𝑘21 − 𝑘13 · 𝑘32 · 𝑘24 · 𝑘41 

−𝑘14 · 𝑘43 · 𝑘32 · 𝑘21 − 𝑘14 · 𝑘42 · 𝑘23 · 𝑘31 

+𝑘12 · 𝑘21 · 𝑘34 · 𝑘43 + 𝑘13 · 𝑘31 · 𝑘24 · 𝑘42 + 𝑘14 · 𝑘41 · 𝑘23 · 𝑘32 

 

Equation 93 should be: 

𝑑𝑒𝑡𝐴𝑄3 = 𝑠2 · 𝑄10 · 𝑘13 + 𝑠 · 𝑄10 · (𝐾2 · 𝑘13 + 𝐾4 · 𝑘13 + 𝑘12 · 𝑘23 + 𝑘14 · 𝑘43) 

+𝑄10 · (
𝐾2 · 𝐾4 · 𝑘13 + 𝐾2 · 𝑘14 · 𝑘43 + 𝐾4 · 𝑘12 · 𝑘23 + 𝑘12 · 𝑘24 · 𝑘43 + 𝑘14 · 𝑘42 · 𝑘23

−𝑘13 · 𝑘24 · 𝑘42
) 

 

 

 

 

Sincerely Yours, 

 

Cyprian Świętaszczyk, Lars Jødal 

 

 


