Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Derivation and presentation of formulas for drug concentrations in two-, three- and
four-compartment pharmacokinetic models

Swietaszczyk, Cyprian; Jadal, Lars

Published in:
Journal of Pharmacological and Toxicological Methods

DOl (link to publication from Publisher):
10.1016/j.vascn.2019.106621

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Swietaszczyk, C., & Jgdal, L. (2019). Derivation and presentation of formulas for drug concentrations in two-,
three- and four-compartment pharmacokinetic models. Journal of Pharmacological and Toxicological Methods,
100, Article 106621. https://doi.org/10.1016/j.vascn.2019.106621

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.


https://doi.org/10.1016/j.vascn.2019.106621
https://vbn.aau.dk/en/publications/1cc443d4-66b7-4fe4-b8dd-71b12afcacae
https://doi.org/10.1016/j.vascn.2019.106621

Title:
Derivation and presentation of formulas for drug concentrations in two-, three- and four-
compartment pharmacokinetic models

Authors: Cyprian Swietaszczyk, Lars Jodal
corresponding author: C. Swictaszczyk

Dept. of Nuclear Medicine, Citomed, Torun, Poland
c.swietaszczyk@bieganski.org

key words:
pharmacokinetics, compartment model, analytic model, numeric model

Conflict of interests: none perceived

Source of funding of the work: none

Abstract:

Although compartment models are frequently used in pharmacokinetics, it is difficult to find
complete analytical formulas describing the behaviour of drugs in universal simpler
compartment models in the accessible literature. The paper presents derivations of formulas
for general two- and three-compartment models, including the possibilities of original non-
zero quantity in all compartments and elimination from all compartments. Formulas for four-
compartment models are also derived with the restriction that original quantity is non-zero in
only one compartment. Derivation uses Laplace transformation but does not require prior
knowledge of the technique. The derived analytical formulas are verified numerically. These
formulas can be easily simplified to less complex cases.
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Introduction

To describe and understand the pharmacokinetics of a drug, it is very often useful to set up a
model and determine the model parameters best fitting the data. Compartment models are
useful tools in this respect; however, it is difficult to find complete analytical formulas
describing the behaviour of drugs in universal simpler compartment models. A three-
compartment model (3-C) is frequently mentioned in the literature; however, the accessible
references are limited for mammillary models and present complete formulas neither for
catenary nor for cyclic models [1, 2, 3, 4, 5]. The accessible literature for four-compartment
models (4-C) also does not present the final complete equations [6, 7]. Although the formulas
for two-compartment models (2-C) are better known, they will be presented here as well for a
better demonstration of the derivation method.

The purpose of the paper is to give a derivation of the concentration formulas for 2-C, 3-C,
and 4-C models, in a form accessible to readers knowledgeable of compartment models and
not scared by math, but without assuming prior knowledge of advanced technigues such as
Laplace transformations. In Supplementary Material, the results are presented as computer
algorithms to make the formulas easier applicable for the readers. These algorithms are
implemented in PHP, but, after minor changes, can be used in other software languages as
well.

The treatment will be general, except that it will be assumed that all drug has entered the
system at time t=0. While this restriction excludes cases where drugs are introduced
gradually, it can be circumvented for cases where further drug is introduced at specific time
points ty, t2, etc.: First the problem is solved from 0 until t;, then using the final quantities +
newly introduced drug is used to solve from t; to t, etc.

Briefly on compartment models

In modelling, a compartment is used to specify where (e.g. in the plasma) or in what state
(e.g. free or bound) the discussed substance is distributed. As such, pharmacokinetic
compartments do not necessarily correspond to structurally delineated anatomic
compartments. Compartment modelling assumes uniform distribution within each
compartment, i.e. that each compartment can be assigned a concentration. After the drug has
entered the system (e.g. by injection), the concentration in a given compartment at time t can
be generally described by a multi-exponential function:

C=>c-e" {eq. 1}
i=1

where n is the number of compartments in the system.

Having the above formula, the area under the time-concentration curve (AUC) in the
compartment can be expressed as:

A LJ%/@ {eq. 2}

In the specific case of a 2-C model, a common notation is to write A-exp(-a-t) + B-exp(-£+)
rather than c1-exp(-b1-t) + co-exp(-bz-t). In this case,
AUC = A/o. + B/p. {eq. 3}



The exponentials describe the overall behaviour of the system. This behaviour arises from the
inherent parameters of the model: elimination rate constants, clearances, and compartment
volumes. These parameters are sometimes referred to as micro-constants.

In the models considered here, the rate of the transport of a drug (quantity per time) is
proportional to its concentration in the respective compartment (linear models, first order
processes). The transport rate constants (k) are signed with lower indices describing the
direction of the transport, i.e., kij denotes elimination rate constant from compartment i to j, kj;
from j to i, kio from compartment i to the environment (and, hence, from the entire organism).
In passive transport, there is no preferred direction of transport, leading to the following
dependence:

VY \r=<, {eq. 4}
where Cljj is the intercompartmental clearance (the same in both directions) and V; is the
volume of the compartment i. Additionally, Q« and Cti denote the quantity and concentration,
respectively, of the drug in compartment i in a given time point t. Similarly, Qio is its initial
amount, and Cjo its initial concentration in compartment i.

By definition, a single compartment has only a single concentration, corresponding to
assuming instantaneous mixing of the injected drug with the entire volume of the
compartment. If that assumption is a problem in a given context, then a different model is
needed, e.g. a compartment models where the “problematic” compartment is represented by
more than one compartment.

Introduction to Laplace transformation

A compartment model can be described with a system of differential equations in which the
behaviour of the drug in each compartment is described with a separate equation.
The Laplace transformation can be used as a powerful tool in finding solutions for such
systems by turning the differential equations into normal equations [8]. Overall, the procedure
is:
1) Use the Laplace transformation to replace the differential equations by normal (non-
differential) equations on the so-called Laplace transforms.
2) Solve these equations to obtain the solutions for the Laplace transforms.
3) Rewrite the solutions into a form that can be inversely transformed without too much
difficulty.
4) Perform inverse Laplace transformation to obtain the solution to the original problem,
i.e. to solve the differential equations.
Shortly, Laplace transformation is a mathematical operation which changes a t-dependent
function into an s-dependent one according to a general rule:

F()=L(f(®) = [, f(©) -e st dL. {eq. 5}
The function F(s) is called a Laplace transform. The variable s is abstract and has no obvious
interpretation, but is mathematically needed to avoid loss of information: One function is
transformed into another function, allowing inverse transformation (see below). Such inverse
transformation would not be possible if only a single value (rather than a full function) was
known, e.g. AUC can be calculated from the curve, but the curve cannot be calculated from
the value of AUC.



In the equations, the distinction between letter t and letter s distinguishes original functions
from Laplace transforms.
The Laplace transformation is linear:

Lla-fO)+b-g)=a-L(F©)+b-L(g(®) {eq. 6}
Noteworthy, the Laplace transform of a derivative has a simple relation to the transform of the
original function:

L(f'®) =s- L(f®) = (0, {eq. 7}
where f(0) is the value of the function for t=0 (initial value).

Thus, Laplace transformations can be used to change a problem of differential equations into
a problem of non-differential equations. Solving these equations yields the Laplace transforms
F(s).

The last step is inverse transformation to obtain the solutions f(t) to the original problem:

LEV(F(s)) = f(©). {eq. 8}

However, inverse Laplace transformation is in general far from easy, which is the reason for
step 3 in the outlined procedure. Tables exist for a number of inverse transformations, so step
3 typically consist of rewriting F(s) into a linear combination of such known results.

In pharmacokinetics of tracers, the involved functions are most often exponentials, allowing

us to focus on only the Laplace transform of an exponential:
1

L(e™*) = — {eq. 9}
with inverse transform:
LED (ﬁ) = e %, {eq. 10}

The linearity of the Laplace transformation tells us that if the solution for the transforms can
be written as a sum of simple fractions A/(s+a) then the solution for the original equations
will be a sum of exponentials A-exp(-a-t).

For simplicity of notation, the independent variable is sometimes written as index, e.g. f; and
Fs, or even the same letter for the original function and transform, e.g. Qt and Qs

Two-compartment model
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Figure 1: The universal two-compartment model. See the Introduction for the explanations of
the symbols used.

A

Setup of equations
The 2-C model is presented in the Figure 1. Additionally, the following variables are defined:



=Kotk

eg. 11
K=ot {ea- 11}
The behaviour of the drug can be described by the initial system of differential equations:
d
12 Qi
3 ' {eq' 12}
d
S

where the dQi/dt are the derivatives and the Qy are the sought variables (quantities of the
drug) related to the concentrations with a formula:

Qi :Qi/\/i.

Step 1: Laplace transformations
The Laplace transform of the system is:

Rearranging:

;{sg%_ {eq. 14

This allows to directly re-write the system in a matrix form:

{_ Qm} _ {—(Kl +s)  +ky HQ@ {eq. 15}

_on +k12 _(Kz +S) Qs2
where the left-side consists of one column matrix (“Q-zero” column) and the main matrix can
be named matrix A:
—(K,+s +k
A= (K, +s) 2 {eq. 16}
+Kp, ~(K; +3)
in which (according to the rules of multiplying of matrices) the first column is the Qs:-column
and the second is Qsz.

Step 2: Solving for Laplace transforms

Linear equations on matrix form can be solved as ratios of determinants (Cramer’s formulas).
For the 2-C system, the main matrix A was given above. The determinant of this 2x2 matrix is
a quadratic polynomial:

IS G E =t {eq. 17}

If the Qs1-column is replaced by the “Q-zero” column, then one receives the Agi-matrix:

- QlO + k21 }

= {eg. 18}
P { Qw (K, +5)
whose determinant is:
A N B B {eq. 19}
The solution of the system for Qs: comes from the division:

defy,

Q= dom {eq. 20}

Analogously, one can obtain the solution of the second compartment:



(K +s) -
%2:[ (Ky+s) Qm}, (eq. 21}
+ k12 _QZO
a5 P b {eq. 22}
and
deg,
BTN {eq. 23}
The solution of the entire system for Qs1 and Qs is then:
Q _ S'Qlo"‘Qlo'Kz"‘on'k21
s1 —
s?+5- (K, + Ky )+ K, - K, =Ky, Ky (eq. 24}
Q., = $-Qy +Qy - Ky +Qy -k,
s2

Cs2ase (K + K, )+ K, K, =Ky, Ky

Step 3: Rewriting of the Laplace transforms

The above expressions are the solutions for the Laplace transforms, but inverse transformation
is far from obvious. However, as noted earlier, if Qs can be rewritten as a sum of terms on the
form A/(s+a), then inverse transformation will be simple.

In both Qs1 and Qs2, the numerator is a linear expression of s, and the denominator is a
quadratic expression of s (namely the common value det A). As a first step, the denominator
(the polynomial {eq. 17}) can be factorized:

detA=s?+s-(K, +K,)+ K, -K, =k, -k,, =(s+b,)-(s+b,), {eq. 25}

where —b; and —b> are the roots of the quadratic function; this non-standard form of the
factorized polynomial is chosen so that the resulting formulas better fit the next steps. The
roots can be found either by solving of the quadratic equation or by use of the Vieta equations
resulting from {eq. 25}:

b, +b, =K, +K, {eq. 26}

b b, =Ko Ky +Kyo - Kip +Kig - Ky {eq. 27}

Either way, the solutions for by and b; are:

1 _
b1;b2 = E (K1 + K, + \/(K1 + Kz)z —4- (k21 ' k10 + k12 ' kzo + kzo ' k10))
{eq. 28}

Which solutions becomes by and which bz is a matter of choice. When the minus sign is
applied for by and the plus sign for b then the expressions have b1 < by, which in the final
result will make b1 part of the most slowly decaying exponential.

The system of transforms becomes:

Q. = $-Qyp +Qyp - Ky +Qy Ky
! (s+b,)-(s+b,)

Q. = S+ Qg +Qy - Ky +Qy -kyp
2 (s+b,)-(s+b,)

Each of these fractions can be decomposed into a sum of simple fractions according to the
method introduced by Oliver Heaviside:
_3'Q10+Q10'K2+Q20'k21 A B,

Qu=""b)(s+b,)  (s+b) (s+b,) {eq. 30}

{eq. 29}




where A; and B> are variables to be found according to an algorithm presented below. This
method can be used with only some exceptions which, in turn, are not expected to occur in the
compartment models.

Multiplying by the denominator of the left side gives:

$: Qi+ Q- Ky +Qy k21 =A '(S+b1)+ B, '(S+b2); {eq. 31}
The equation should be valid for all values of s. Setting s = —b> yields:

QlO '(Kz _bz)"'on : k21 = A1 '(_ bz +b1)+ Bz '(_bz +b2) {eq- 32}
and hence:

Qlo'(Kz_b2)+Q20'k21:A1'(b1_b2)1 {eq. 33}

and further:
QlO '(Kz _bz)"'on 'k21 .

A = {eq. 34}
(bl _bz)

Similarly, setting s = —b; yields:

_bl 'Qlo +Q10 : Kz +Q20 : k21 = Ai (_b1 +b1)+ Bz (_b1 +b2)’ {eq- 35}

after rearrangement:

B, = Qo '(Kz _b1)+Q20 Ky, . {eq. 36}

(bz - b1)

Step 4: Inverse transformation to find the solution for the original problem
The Laplace transform for compartment 1 is now on the form:
1 1

Qslel'm+Bz'W {eq. 37}

Accordingly, the tracer quantity as a function of time is:
Qu = A -exp(=b, t)+B,-exp(-b -t) {eq. 38}
A similar procedure should be performed for compartment 2.

After division of the formulas by the volume of the respective compartment, one receives the
final solution of the concentrations in both compartments as follows:

Cy =C, -exp(-b, -t) +c, -exp(-h, - t) {eq. 39}
C, =d, -exp(-b, -t)+d, -exp(-b, -t) | |
where:
Qu '(Kz _b1)+Q20 Ky
o | {eq. 40}
1 A .(b2 — bl)
Qi '(Kz _bz)+ Qu Ky
. | {eq. 41}
2 V, .(bl — b2)
Qyo Ky, +Qy '(Kl _bl)
o | {eq. 42}
' Vz '(bz - bl)
Quo -k +Qy '(Kl _bZ)
i | {eq. 43}
2 V, .(b1 - b2)

Readers preferring a different notation, e.g. plasma concentration on the form A-exp(-a-z) +
B-exp(-ff), are welcome to rewrite in this notation. The only pitfall could be the choice of —
and + in the equations for b1 and by, see {eq. 28} and the comment below the equation.



Numerical verification for 2-C model

Verification of the above derived analytical model followed by the comparison of the
concentrations obtained with the analytical and numerical (Runge-Kutta second order, RK2)
models within a time window of zero to 300 (in the below presented examples for 2-C and
higher models, all the faster decaying components of the time-concentration curve are
comparable to the slowest-decaying in the time point zero, but lower by several orders of
magnitude in the time point 300). For RK2 (the algorithm — see Table 1), the concentrations
were obtained within this time window in consecutive time steps 4t. The error was calculated
as the quotient of the concentrations: analytic by numeric; thus, an error-free method would
correspond to the quotient of exactly one. Several combinations of micro-constants have been
tested and gave comparable results; the set below is an example.

Table 1: The RK2-algorithm used for testing of the formulas in the 2-C model.

Compartment 1; initial condition: Compartment 2; initial condition:
Q1o (given) Q20 (given)
and then: and then:
ml(l) = _Kl ’QlA + k21 'QzA m1(2) = _Kz 'QzA + k12 'QlA
At At
Qu =Qn + My ? Q2+ = Q24 + My(p) )
My = —K;-Qp + kzl *Qye My = K- Qe + k12 Q.
Qe =Qa+ My - At Qo = Qon +Mygp) - Al

Example
1. Input values:

V1= 8100, V2= 5400 (and hence ECV= 13 500), Cl1>= 125, Cl1o= 100, Cl20= 0, Q10=
20 000 000, Q20=0.
2. Elimination rate constants:
- with eq. 4 one receives kio= 0.012345679, kao= 0, k1= 0.015432099, k1=
0.023148148;
- with eq. 11 one receives: K1=0.027777778, K= 0.023148148.
Calculation of the macro-constants bi (eq. 28): b= 0.006421354, bo= 0.044504572.
4. Calculation of the macro-constants c; and di (egs. 40-43): c1= 1084.486253, co=
1384.649549, d1= 1500.816479, d»=-1500.816479.
5. The quotients of concentrations (analytical result over numerical result) for 4t= 0.01:
- compartment 1: maximal 1.000443465 (in t= 300), minimal 1.0000000 (t= 0),
- compartment 2: maximal 1.000118681 (t= 300), minimal 0.999722267 (t= 0.01).
6. The quotients of concentrations for At=0.1:
- compartment 1: maximal 1.00444 (in t= 300), minimal 1.0000000 (t= 0),
- compartment 2: maximal 1.001185 (t= 300), minimal 0.99723 (t= 0.1).

w

Thus, a very good agreement was found between results of the analytical derivation and
results of the numerical calculation, with a quotient deviating less than 1% from the ideal
value of 1.




Three-compartment universal model

é
Q2o
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Figure 2: Universal 3-C model discussed in this study. If exchange between all compartments
is possible (all k are >0), this is a cyclic model. Under assumption that compartment 1 is the
central compartment, k2s=ks>=0 for the mammillary model (parallel compartments); for the
catenary model (serial compartments), k1z=ks1=0.

Setup of equations
The general 3-C model is shown in Figure 2. To ease notation, we define:

K=Kotk+Kas
K =oHG S {eq. 44}
kS =hottsitis:

The initial system of differential equatlons is:
d
CRQKQ kA ks
Q

A

—1Q -k Q- K+Q -k {eq. 45}
d@

\

=1Q- kst QR ks Q- P%

Step 1: Laplace transformation
The Laplace transform of the system is:

{eq. 46}

Its matrix form is:



- QlO Qsl

—Q, |=A-|Q,, |, Where {eq. 47}
_Qso st
- (Kl + S) + k21 + k31
A= +k, —(K,+s) +ky, | {eq. 48}
+ky +ky  —(Ky+s)

Step 2: Solving for Laplace transforms
The main matrix was given above. The other matrices are:

—Qy +kyy +Ky
Ay =|-Qx —(K,+s)  +ky {eq. 49}
- Qso + kzs - (Ks + S)_
- (Kl + S) - QlO + k31 |
Agy =| +ky —Qy +Ky {eq. 50}
B + k13 - Qso - (Ks + S)_
- (Kl +S) + k21 _Qlo_
Ap=| +k, —(K,+s) —Qy {eq. 51}
+Ky +Ky —Qq i

Further solutions proceed according to the schema used for the 2-C model, i.e.:

_desy
~ dem {eq. 52}
_def,
=g {eq. 53}
_d ety

Qg—TE : {eq. 54}

In the later factorisation of det A there will be a minus sign due to the odd number of rows
containing a negatively signed s (cf. eq. 48):

detA=—(s+Db,)-(s+b,)-(s+b,). {eq. 55}

Instead of keeping this minus sign, we have chosen to calculate —det A, as well as —det Aqi.

This makes no difference in the fractions eq. 52-54, as the changed signs cancel each other.

The negative determinant of the main matrix is:
—detA=5*+5% (K, + K, + K, )+5- (K, - K, + K, - K, + K, - Ky =Ky, Ky —Kyg Ky — Ko Ky )
+K1'K2 'K3_K1'k32 'k23 _Kz 'k13 'k31_K3 'k12 'k21_k21'k13 'k32 _k31'k12 'k23
{eq. 56}
The other negative determinants are:

_dEtAQl = 32 'Qlo +S'(Q10 : Kz +Q10 : K3 +Q20 ‘k21 +Q30 'ksl) {eq 57}
+Q10 '(Kz ' Ka _k23 'kaz)"'on '(Ka 'k21 +k31 'k23)+Q30 '(Kz 'k31 +k32 'k21)

10



_detAQz = 32 'on +S-(Q20 : Kl +Q20 : K3 +Q10 'k12 +Q3o 'kaz) {eq_ 58}
+Q10 ‘(K3 ‘klz + k13 'k32)+Q20 '(Kl : K3 _k13 'k31)+Q30 '(Kl 'k32 + k31 ‘klz)

_detAQs = 52 'Qso +S'(Q30 . Kl +Q30 : Kz +Q10 'k13 +Q20 'kzs) {eq_ 59}
+Q10 '(Kz 'k13 + k12 ’k23)+Q20 '(Kl ' kza + k21 ’k13)+Q30 '(Kl : Kz _klz 'k21)
The solution of the entire equation system is then:

52 'Qlo +S"(Qlo ' Kz +Qlo : Ks +Q20 'k21 +an 'k31)
_ +Q10 '(Kz ) K3 _kzs : ksz)"'on '(K3 'k21 +k31 ) kzs)"'Qso '(Kz 'k31 + k32 'kzl)

eg. 60
Qu (s+b,)-(s+b,) (s+b;) {eq. 603
s Qy +S'(on Ky +Qy - Ky + Q- Kyy +Qy 'kzz)
Q _ +Q10 '(Ks ) klZ + k13 'k32)+Q20 '(Kl : Ks - k13 ) k31)+Q30 '(Kl : ksz + k31 'klz){eq. 61}
*2 (s+b)-(s+b,)-(s+h,)
s? 'Qso +S'(Q30 ’ Kl +Q30 ’ Kz +Qlo 'k13 +on 'kzs)
st — +Q10 '(Kz 'k13 + k12 'kzs)"'on '(Kl 'k23 + k21 'k13)+Q30 '(Kl ) Kz B kl?_ 'kzl) {eq_ 62}

(s+b,)-(s+b,) (s+b,)

Step 3: Rewriting of the Laplace transforms
Again, we should rewrite the transforms Qs as sums of simple fractions, 1/(s+b;). Basic
relationships (derived from the Vieta formulas):

2l i—i=i- {egs. 63-65}
The solution of these equations involves finding roots of third-degree polynomial. There are
many possible ways to find these solutions [2, 3, 4, 5], an exemplary solution is:

b, ,5 =a,/3—-cos(g+ 2.k.ﬂ-)‘rz {eq. 66}
for k=0,1,2.
A number of the following auxiliary variables have been defined:

p=a-—&/Z {eq. 67}
== A {eq. 68}
=/ (5/2 {eq. 69}
r,=2-" {eq. 70}

qéar{ez%} {eq. 71}

For brevity, the numerators are stated only in the final results below.

11



Step 4: Inverse transformation to find the solution for the original problem

The final results for the concentrations (after divisions Ci =

C, =C,-exp(=b, -t)+c, -exp(~b, -t)+c, -exp(-b, -t)
C, =d,-exp(~b, -t)+d, -exp(~b, -t)+d, -exp(~b; -1)
C, =6 -exp(-b, -t)+e, -exp(—b, -t)+e,-exp(-b,-t)

where:

QU= s
sk qis dsls)
—4<§;E4§§§J€;-4ﬂ§;245£-—*§?l§;)

N4 SR L =52

Q=) Is i<
ks s ds o ks)
—c s s qis Is Toks)

=T e e

Qs sk
ks s s ks )
4%(*5'&%25—'%'&)

e 6

Qs dsbls)
= BDEsD s s
s s lc)

% =gt =
Qsisoisdsois)

= EE) S E S

4@(@& sihs A5 st )

Ve e
Rftshsisdsskals)

e o) (ES ) R i

s i s sals )

d—

Ve )

Qi/Vi) become:

{eq. 72}

{eq. 73}

{eq. 74}

{eq. 75}

{eq. 76}

{eq. 77}

{eq. 78}

12



Qs =g s sbhlk)

“fss ks Sk =sblks )

o "R Isds {eq. 79}
BV =Y S

Qssois s -bis)

i<t =iks ssbols)

== s ds. {eq. 803
T e b

Qsk=is s k)

s ois ksl )

o A== 153 fea. 813
R YL =2 ) =NS)

Numerical verification of the 3-C results
The verification was performed analogically as for the 2-C model. The numerical algorithm is
presented in Table 2.

Table 2: The RK2-algorithm used for testing of the formulas in the 2-C model.

Compartment 1; initial condition:

Qo (given)
and then:

my, :_Kl 'Q1A + k21 'QzA + k31 'QaA
At

Qe = Qp + My, )

My :_Kl 'Ql* + k21 'Qz* + k31 Qs*

QlB = QlA + My - At

Compartment 2; initial condition:

Q20 (given)
and then:

My, :_Kz 'QzA + k12 'Q1A + k32 'Q3A

At
Qpe = Qpp + My Y

My, :_Kz 'Qz* + k12 'Ql* + k32 'Q3*
QZB = QzA +Myy - At

Compartment 3; initial condition:

Q3o (given)
and then:

Myq = -K; 'Q3A + kzs ‘Quat k13 ‘Qua

At
Qs* = Q3A + My 7

My = _Ks Qa* + k23 Qz* + k13 'Ql*
QSB = Q3A + My 5 - At

Example

1. Input values: V1= 3000, V2= 2000, V3= 5000, Q10= 20 000 000, k1= 0.003333, k2o=
0.025, k3p=0.012, k1>= 0.166667, ko1= 0.25, k13= 0.033333, k31= 0.02, ko3= 0.2, k3o=
0.08.

2. Macro-constants: b1=0.011882, b,=0.173534, b= 0.604917, c1= 4138.613, co=
2602.983, c3=-74.9293, d1= 3956.416, d,= 857.6132, d3= 185.9709, e1= 3988.164, e,=
-1961.02, e3= -27.1427.
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3. The error calculation for the respective compartments, At=0.1:
- compartment 1: minimal 0.99999, maximal 1.000000,

- compartment 2: minimal 0.999988, maximal 1.000000,

- compartment 3: minimal 0.999999, maximal 1.000014.

General remarks on the 2-C and 3-C models

The models considered above have no preferred or central compartment, e.g. allowing for the
possibility of initial injection into all compartments. Accordingly, a kind of symmetry can be
noticed among the formulas for different compartments.

In practice, however, a parallel injection into multiple compartments seems a rare
phenomenon. The above formulas could be remarkably simplified if the initial amounts of the
drug were set to zero in all except for one compartment. Further simplification will result if
some of the k-values are assumed to be zero, e.g. reduction of the cyclic model to mammillary
or catenary.

Four-compartment models

The above remarks on possible simplification allow reducing the necessary calculations for a
universal 4-C model just to injection into the compartment number 1. As the model is
otherwise universal, a simple change of numbering will handle the case where e.g.
compartment 2 is the only compartment initially containing the drug. However, the algorithm
for the 4-C model found in the Supplementary Material can be set up with non-zero starting
values for any compartment.

The (simplified) derivation follows according to the schema presented above for the 2-C and
3-C. The most important steps are summarized in the following.

Main matrix and determinant
The matrix form of the Laplace-transformed equation system is:

- Qlo Qsl
0 Qsz L
=A. , Where matrix A is: {eq. 82}
0 QsS
0 Qss
- (Kl + S) kZl k31 k41
A= k12 - (Kz + S) kaz I(42 {eq. 83}
k13 k23 - (Ks + S) k43
k14 k24 k34 - (K4 + S)
Its determinant is a quartic pentanomial:
e L SRS == =2 = {eq. 84}
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Stk

a=K - -K,+K -K;+K-K, +K, - K, +K, - K, + K, - K,
_k12 'k21_k13'k31_k14'k41_k23'k32 _k24'k42 _k34'k43

a, =K, (K, - Ky + K, Ky + Ky - Ky =Ky Kay =Koy Ky =Ky +Kyg)
+K2 (K _kla'ksl_k14’k41_k24'k42)
- K;- (klz Ko —Kyy - Kyy =Ky k42)

k12 k23 k31 k13 k32 ’ k21 - klz ’ k24 ’ k41 - k13 ) k34 ’ k41

—kyy Ky K k k34'k42_k14'k43'k31_k24'k43'k32

14 42 21

K1 (K 'Kz'K4_K2'k34‘k43_K3'k24'k42_K4'k23'k32_k23'k34'k42_k24'k43‘k32)

Kz (K k14 'k41+ K -k13~k31+k13-k34 -k 1+k14 'k43'k31)
K3 (K k12 k21 + k12 k24 k41 + k14 k42 k21)
k13 k32 'k24 ) k41 - k12 ’ k23 ) k34 ) k41 - k14 ) I(42 'k23 'k31
k13 k34 'k42 ’ k21 - klZ ) k24 ’ k43 'k31 - k14 ) k43 'ksz 'k21
+ klz k21 ) k34 'k43 + k13 ’ k31 ’ k24 ’ k42 + k14 ) k41 ) k23 ’ k32
{egs. 85-89}

Solution of the polynomial allows presenting the determinant as a product:
= {eq. 90}

Other determinants
The determinants of the other matrices are:
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{eqs. 91-94}

Solutions
The solutions of the Laplace transforms of the equation systems are:

dea,
Q; ~ den’ {eq. 95}

where i denotes the number of the respective compartment (from 1 to 4).

The final solution for the four compartments can be presented as:

e e {eq. 96}
Csle dpt feq. 97}
G oRe WPt {eq. 98}
A e dpt feq. 99}

[(Kz _bl)'(Ka _bl)'(K4 _b1)+b1 '(kzs 'k32 + k24 'k42 +k34 'k43) ]
Qu

c, =—~2. _Kz'k34'k43_K3’k24'k42_K4’k23‘k32_k23'k34'k42_k24'k43'k32
Vi bz_bl)'(b3_b1)'(b4_b1)
((Kz _bz)'(Ka _bz)'(K4 _b2)+b2 ’(kzs 'k32 +k24 'k42 +k34 'k43) j
c :Qlo. _Kz'k34'k43_K3'k24'k42_K4'kzs'k32_k23'k34'k42_k24'k43'k32
i Vi (bl_bz)'(bz_bz)'(b4_b2)
((Kz _bs)'(Ka _ba)'(K4 _b3)+b3 '(kza 'ksz +|(24 ‘k42 +k34 'k43) j
c =Qlo. _Kz'k34'k43_K3'k24'k42_K4'k23'k32_k23'k34'k42_k24'k43 k32
’ Vi (bl_ba)'(bz _bs)'(b4_b3)
((Kz _b4)'(K3 _b4)'(K4 _b4)+b4 '(kzs ‘k32 + I(24 'k42 + k34 'k43) j
c =Qlo. _Kz'k34'k43_K3'k24'k42_K4'k23'k32_k23'k34'k42_k24'k43'k32
) Vi (bl_b4)'(b2_b4)'(b3_b4)

{egs. 100-103}
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(blz 'k12 _bl'(Ks 'k12 +K4 'k12 +k13 'k32 +k14 'k42) J
Qlo +K3'K4'k12+K3'k14'k42+K4'k13'k32+k13'k34'k42+k14'k43'k32_k12'k34'k43

d, ==
' Vz (bz _bl)'(bs _b1)'(b4 _bl)
(bzz 'k12 _bz '(Ks'klz +K4 'k12 +k13 'ksz +k14 'k42) j
d :ﬁ. +K3'K4'k12+K3'k14'k42+K4'k13'k32+k13'k34'k42+k14'k43'k32_k12'k34'k43
? Vz (bl_bz)'(ba_bz)‘(b4_b2)
[b:sz 'k12 _b3 '(K3 'k12 + K4 'k12 +k13 'k32 +k14 ‘k42) J
d :ﬁ‘ +K3'K4'k12+K3'k14'k42+K4'k13'k32+k13'k34'k42+k14'k43'k32_k12'k34'k43
? Vz (bl_b3)'(b2_b3)'(b4_b3)
{bj 'k1z _b4 '(Ks'klz +K4 'k12 +k13 'k32 +k14 'k42) J
d :%' +K3'K4'k12+K3'k14'k42+K4'k13'k32+k13‘k34'k42+k14'k43'k32_k12'k34'k43
* V2 (bl_bA)'(bz_bA)'(bs_b4)

{egs. 104-107}

(blz 'k13 _bl '(Kz 'k13 + K4 'k13 +k12 'k23 +k14 'k43) ]
e :%. +K2~K4'k13+K2'k14~k43+K4~k12-k23+k12~k24-k43+k14~k23-k42—k13~k24-k42
' V3 (bz_bl)'(b3_b1)'(b4_b1)

(béz'k13_b2‘(Kz'k13+K4’k13+k12'k23+k14‘k43) j
e :ﬁ. +K2'K4'k13+Kz'k14'k43+K4'k12'k23+k12'k24'k43+k14'kzs'k42_k13'k24'k42
? V3 (bl_bz)'(bs_bz)‘(b4_b2)

[baz'k13_bs'(Kz'kls+K4'k13+k12'k23+k14’k43) J
e 2%_ +K2'K4'k13+K2'k14'k43+K4'k12'k23+k12'k24'k43+k14'k23'k42_k13'k24'k42
’ V3 (b1_b3)'(b2_b3)'(b4_b3)

(bj'k13_b4'(K2'k13+K4'k13+k12'k23+k14'k43) J
e :ﬁ- +K2'K4'k13+K2'k14'k43+K4'k12'k23+k12'k24'k43+k14'k23'k42_k13'k24'k42
! V3 (bl_b4)'(b2_b4)'(b3_b4)

{egs. 108-111}

17



f, =10

(blz 'k14 _bl '(Kz 'k14 +K3 'k14 +k12 'k24 +k13 'k34) ]
Qlo +K2'K3'k14+K2 'k13'k34+K3'k12 'k24+k12 'k23'k34+k13'k24'k32_k14'k23'k32

V4 (bz_bl)'(ba_bl)'(b4_b1)
bzz 'k14 _bz '(Kz 'k14 + Ks 'k14 +k12 'k24 +k13 'k34)

f _%_("'Kz'Ks'km"'Kz'k13'k34+K3'k12'k24+k12'k23'k34+k13'k24'k32_k14'kzs'kszJ
) =

V4 (bl_bz)'(bs_bz)'(b4_b2)
b:f 'k14 _bs '(Kz 'k14 +Ks 'k14 +k12 'k24 +k13 'k34)

f _%.("'Kz'Ks'k14+K2'k13'k34+K3'k12'k24+k12'k23'k34+k13'k24'k32_k14'k23'k32j
3 =

V4 (bl—b3)-(b2—b3)‘(b4—b3)
(bf 'k14 _b4 '(Kz 'k14 + K3'k14 +k12 'k24 +k13 'k34) j
Qlo + Kz ’ Ks‘k14 +K2 'k13 'k34 + K3 'k12 'k24 +k12 'k23 'k34 +k13 ‘k24 'k32 _k14 'k23 'k32

f, =10,

Vv, (bl_b4)'(b2_b4)'(b3_b4)

{egs. 112-115}

For calculation of the exponentials from the micro-constants — see the Appendix.

Numeric verification

The verification of the derived formulas followed as for the 2- and 3-C models. The numerical

algorithm is presented in Table 3.

Table 3: Numeric model (RK?2) used for verification of the analytical 4-C model.

Compartment 1; initial condition: Q1o (given, >0), and then:

myq :_K1 'Q1A + k21 'QzA + k31 'QaA + k41 ‘Q4A

At
Ql* = QlA + m1(1) ?

m2(l) = _Kl : Ql* + k21 . Qz* + I(31 Qs* + k41 'Q4*
QlB = QlA +m,, - At

Compartment 2; initial condition: Q,, =0, and then:

My 5 =—K,  Qu + k12 “Qua ksz ‘Qgp t+ k42 Qua

At
Qpe = Qpp + My )

m,, :_Kz 'Qz* + k12 'Ql* + ksz Qs* + k42 'Q4*
st = QZA + My, - At

Compartment 3; initial condition: Q,, =0, and then:

m1(3) :_Ks ' Q3A + k23 'Q2A + k13 'Q1A + k43 'Q4A
Va |
GGty

My = _Ks Q3* + k23 Qz* + k13 'Ql* + k43 'Q4*
QSB = Q3A + My 5 - At

Compartment 4; initial condition: Q,, =0, and then:

my =—K, - Quat k14 Quat k24 ‘Qoat k34 Qs
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At

Qu =Qun + my ?

My ==Ky - Qp + Ky - Qu +Kyy - Qe +Kyy - Qs
Qe =Qua + My 4y - At

Example
1. Input values: V1= 3000, V2= 1000, V3= 4000, V4= 5000, Q10= 20 000 000, k1o=

0.033333, koo=0.01, k3p= 0.005, kso= 0.006, ki2= 0.066667, ko1= 0.2, kiz= 0.1, k31=
0.075, k1a= 0.166667, ka1= 0.1, ko3= 0.1, k3= 0.025, ko4= 0.2, kg2= 0.04, k34= 0.025,
ka3=0.02.

2. Calculated macro-constants: bi1=0.011985, b= 0.162998, bz= 0.42268, bs= 0.575005,
c1= 1388.721, c2= 62.4713, c3= 3816.194, c4= 1399.281, di= 1451.115, d>= 85.5152,
da= 3158.319, ds=-4694.95, e;= 1502.112, e,= -437.644, es= -1085.88, es= 21.41068,
fi= 1473.612, fo= 304.7205, f3=-1894.33, f,= 115.9929.

3. Error calculation for the respective compartments for A= 0.1:

- compartment 1: minimal 0.999998, maximal 1.000254,

- compartment 2: minimal 0.999165, maximal 1.000011,

- compartment 3: minimal 0.999731, maximal 1.000000,

- compartment 4: minimal 0.999697, maximal 1,000001.

Discussion

When the pharmacokinetics of a drug in the body is to be studied, understood and described,
it is often useful to focus on a limited number of organs or states, each of which represented
by a "compartment"”. Typically, the important compartments and possible interactions are
theorized (the model), and a concentration curve from e.g. the blood is known from
measurements (the input). A solution to the model will then be the strengths of the transfer
rates between compartments, possibly along with concentrations curves for drugs in all
compartments. These results allow the researcher to evaluate where the drug goes, for how
long, and through which interactions.

While solutions can surely be used without full understanding of the mathematics behind,
some understanding is generally helpful. Treating the solution as a "black box™ not just limits
understanding, but can also increase the risk of drawing fragile conclusions. Understanding is
not a guarantee against mistakes, but it can be a valuable component in drawing sound and
robust conclusions, as well as in spotting pitfalls.

The above examples of universal 2-C, 3-C and 4-C models show that derivation of higher
compartment models, as a five-compartment one, although possible, would meet the
following problems:

1. Complexity of the intermediate and the final formulas — this could be, however, alleviated,
if a proper computer algorithm were used.

2. Necessity of solution of a higher-degree polynomial; according to the Abel-Ruffini
theorem, however, an algebraic, analytic solution for quintic hexanomials or higher
polynomials cannot be achieved except for some special cases which, in turn, are not expected
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to occur in the discussed compartment models. Instead, application of iterative algorithms
would be inevitable.

The parallel presented numeric RK2 models can be an alternative for the derived analytic
models. In case of typical values of micro-constants and for time step (4¢) of 0.1 second, the
relative difference between the analytic and the numeric solution will typically be less than a
few per mille; a (reasonable) shortening of the time step and/or applying a more accurate (but
also mathematically more complex) numeric model, as Runge-Kutta fourth order, would
further reduce the errors. Such a numeric model consists of many (number of time units
multiplied by the number of time steps per the unit) systems of equations, but can be built
using a common commercially or even free available software and a more modern personal
compulter.

A more basic problem, however, is that a model with many parameters need data of both high
quantity and quality to obtain stable results. A universal model with many compartments is
very prone to instability, where calculated parameters depend on small variations in the input
data. Thus, even a mathematically correct result may contain very little information about the
modelled system. Put another way: A more complex model is not necessarily a better model.

This should be remembered already when going from a 2-C to a 3-C model, or from a 3-C to
a 4-C model. On the other hand, it should be remembered that for modelling, the most basic
measure of “complexity” (and following risk of instability) is not the number of
compartments, but the number of fitted parameters. If some of the k-values are restricted to
zero, this helps reduce complexity of the model. There may also be cases where a non-zero
but fixed k-value is used, e.g. an independently known value. For example, if a drug with
well-established 3-C model was not injected intravenously but given orally, a gastro-intestinal
(fourth) compartment could be defined, with a transfer rate (outgoing k-value) set to a
physiologically reasonable value. It will of course be wise to verify that the important results
are relatively insensitive to small changes in the values chosen for the fixed k-parameters.

The quality of data must also be considered when the allowed complexity of the model is
decided. For clinical pharmacokinetics, the known inputs are often the initial amount of drug
and measurements of drug concentration within one compartment at a series of time points. A
first step can then be to determine the macro-constants from {eqg. 1}, e.g. by the “peeling-off”
or “curve-stripping” procedure [9, 10], where the slowest exponential is determined from late
points and subtracted from the earlier concentration data points. The process is then repeated
to determine the second-slowest exponential, etc. Dunne [10] pointed out that the
determination of the early exponentials can be unstable if the exponential decay rates are not
very clearly separated, and provided a more robust algorithm. Still, the quality of the time-
concentration curve will depend on the quality of the input data.

In summary, even the best real-world data contain some element of noise, so even with a
perfect model (which is in itself unlikely), the result should be critically examined. An in-
depth evaluation of model stability is beyond the scope of this paper, but a good starting point
can be to critically test the model. If a small change in input can result in a non-ignorable
change in the results of modelling, then it is wise to critically evaluate if the model can be
simplified.
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Conclusion

In this paper we have attempted to provide tools for kinetic modelling with compartment
models of up to 4 compartments. Performance of kinetic modelling is partly an art, but even
art requires tools and craftsmanship in order to be expressed. The development of
craftsmanship is the responsibility of the artist, but understanding of the tools can be a help in
this process. We hope that we have not just presented final results, but also presented the tools
in a way that allows both understanding and use.
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Appendix

Solution of quartic pentanomials (adopted from Shmakov [11])
The key of this algorithm is to factorize the quartic:
taaZaa<a w3

into two quadratics:
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=S S=0 8 S2= 2
which can be easily solved.
In this factorization:
1:9+9,=a
2:g-g+h+h =b1
3:g-h+g-h=—c J
4:h-h,=d
where a, b, ¢c and d are the coefficients in the monic form:

2 =22 I =<l

1. Calculation of the coefficients of the monic polynomial:
a=a,/3q,
b=a,/a,
c=a/a,
d=g,/a,

2. Resolvent cubic ( S I =A%)

2A: coefficients:

bcub =_b

Gusaxc<4cC
dass=dE <kx
2B: solution:

3Qub u
=3

P - T Bl T
= 7

L=/—/2
=22/

(sz?a r&Sd
2

=
EECIG%EB?EE

The other two solutions of the cubic (for k=1 and k=2) lead to the same final solutions.

3. Equations G ( I3 -GHe=F€) and H (FFHa-hneg,—€);
3A: coefficients

b, =-a

c, =b—y

b, =-y

c, =d

3B: solution
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A= —4q
A= 4q,

On condition that 44 and 4y are not negative, the following solutions can be obtained:
'gl =12 (_bg _\/g )\
J % ::Uz'(_bg +\/g)>
h=v2(-h,—/a,)

h, =12 (0, +/A,)

4. Establishing and solution of the ultimate quadratics:
Checking the third equation of the initial system:

if

ag-h-+g-h=<

then

h,=h,and N, =hn,

else if

ag-h—+g-hh=<

then

hy=h, and h, =Ny,

Supplementary material

Computer algorithm for calculation of macro-constants from micro-constants in 2-, 3- and 4-

compartment models (available and ready to copy in the electronic version).
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Dear Lars,
below, there is a project of such a letter. | tried to explain additionally why it had occurred. Is
it helpful or better not?

About the order of the terms in the equations: | tried to make it more comprehensible for a
reader — in my sense, of course © . Just, if anyone were so patient to read the terms, he/she
could perhaps see the “pathway” of the transport between the compartments. Hence, for
example, k14*k43*k34 (pathway), instead of k14*k34*k43 (increasing numbers).

In a book on pharmacokinetics, | saw a statement that the terms are the sum of all possible
permutations of k minus the “loop-forming” terms. In the 3-C, everything seems obvious, i.e.
(eq. 63),

a0= K1*K2*K3 — K1*k23*k32 (example of a short loop k23*k32) — k12*k23*k31 (a long
loop) — other loops.

In the 4-C, however, it looks more sophisticated like (eq. 89):

a0= KI1*K2*K3*K4 (“main term”) - ...

There are not only just more loops. Note, that K1 is a sum of k10+...+k14, likewise K2 and
other “big Ks”. Then, if you subtract from the main term the exemplary two short loops:
K2*K3*k14*k41 and K1*K4*k23*k32,

then you subtract the double loop:

k23*k32*k14*k41

two times. Thus, at the end, you have to add this double loop to the equation.

Below, the project of the letter is presented.

Best Regards,

Cyprian
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Erratum to “Derivation and presentation of formulas for drug concentrations in two-,
three- and four-compartment pharmacokinetic models” Journal of Pharmacological and
Toxicological Methods 100 (2019) 106621]

Unfortunately, the paper contained errors in several equations. Fortunately, these errors did
not affect the final results, and did not influence the algorithms in the supplementary material.
The corresponding corrections are given below. The authors apologize for the errors.

The affiliation of author Lars Jgdal should be: Dept. of Nuclear Medicine, Aalborg University
Hospital, Aalborg, Denmark.

Errors in the equations (31)-(38), 2-C model:

In the decomposition of the fractions into simple ones needed for the inverse Laplace
transformation, the (s+b1) term was swapped with (s+b.); thus, the eight equations were
written erroneously. However, this did not influence the final results of the model (egs. 39-
43). The text describing equation (31) to equation (38) should be:

Multiplying by the denominator of the left side gives:

S+ Q10+ Q0 Ky +Qz - kyy =A;-(s+Dby) + By (s + by); (31)
The equation should be valid for all values of s. Setting s = —b> yields:
QlO : (KZ - bZ) + QZO : k21 = Al ) (_bZ + bZ) + BZ : (_bZ + bl) (32)
and hence:
Q10 * (K3 = b3) + Q20 - k21 = By - (by — by), (33)
and further:
_ Q1o°(K2=b2)+Q20°k21
B, = Gty . (34)

Similarly, setting s = —b yields:

—by - Q10 + Q10 - Kz + Qp0 * ko1 = Ay - (=by + by) + By - (—by + by), (39)

after rearrangement:

A = Q10'(K2—b1)+Q20'k21. (36)
(b2-by)

Step 4: Inverse transformation to find the solution for the original problem

The Laplace transform for compartment 1 is now on the form:
1 1

QSl = Al ' (S+b1) 2" (S+b2) (37)
Accordingly, the tracer quantity as a function of time is:
Qi1 = Ay - exp(—by - t) + B, - exp(—by - 1) (38)

Errors in the 4-C model:

Equation 88 should be:

a; =Ky - (Ky K3+ Ky - Ky + K3 - Ky — K3y - kag — Kou - kap — ko3 - k3p)
+Ky - (K3 - Ky — kqg kg — kqa kg — k3g - ky3)

—K3 - (kiz " ko1 + kig - kag + Koy - kap)

=Ky - (k12 - kaq + ks - k3q + ka3 - k3p)

—kiz - (kpz - k3 + kog - kyq)
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—ky3 - (k3p - koq + K3y - kay)
—kya - (kg - oy + kg3 - k3q)
—Ko3 - ks kay — Koy - kys - k3

Equation 89 should be:

=K _(Kz - K3 'K4—K2'k34'k43—Ks'k24'k42—K4'k23'k32>
0 ! —ky3 - k3y  kay — Kpa - Kaz - k3

=Ky - (K3 kya - kag + Ky - kqz - kaq + Kz - kg - kyq + ke - Kag - k31)

—K3 - (Ky - kqp - koy + Kz - kos - kyq + Ky - Kaz - K1)

=Ky - (ki - ko3 - kg + kq3 - k3p - kaq)

—k1z - ka3 - k3s ks — Kig - Koac Kaz - kaq

—ky3 - k3s - kap ko — Kiz - K3z Kou - Kaq

—ky4 - kaz - k3p ko — Kia - Kap Kozt kag

thip - kay k3 kaz + Kigcksyckoskap + kyg kaq - koz ks

Equation 93 should be:
detAgs = 5% Qo ks +5- Q10 (Ky - kyzs + Ky - kyz + kip - ko3 + kg - ky3)

+Q . (KZ 'K4- 'k13 +K2 : k14- ' k4-3 +K4 : k12 ' k23 + k12 : k24 : k4-3 +k14 ’ k4-2 ' k23>
10 _k13 ’ k24 ’ k42

Sincerely Yours,

Cyprian Swictaszczyk, Lars Jodal



