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Abstract 
In this article, a novel hot wire oxidation-sublimation deposition (HWOSD) 

technique, as an optional technology, was developed to prepare molybdenum oxide 

(MoOx) thin films. Silicon heterojunction (SHJ) solar cells with the HWOSD MoOx 

as a hole selective transport layer (HSL) were fabricated. A power conversion 

efficiency up to 21.10% was achieved on a champion SHJ solar cell using a 14nm 

MoOx layer as the HSL. Dark current density-voltage-temperature (J-V-T) 

characteristics of the SHJ solar cell were measured at the temperatures from 200K to 

380K. Transport processes including thermionic emission of electrons over the 

potential barrier and quantum assisted tunneling of holes through the gap states in the 

MoOx layer were used to fitting the J-V curves of the MoOx/n c-Si heterojunction. 

The investigation of the transport mechanisms provides us a better understanding of 

the characteristics of the novel SHJ solar cells and it is helpful for us to fully 

demonstrate the potential of such kind of solar cells in the future.  
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1. Introduction  

More and more attention has been paid to the novel silicon heterojunction (SHJ) 

solar cells by making use of metal oxides to replace the conventional doped 

hydrogenated amorphous Si (a-Si:H) thin films as the carrier selective transport layers 
[1, 2-4]. Due to the wide band-gap nature, optional work functions and relatively simple 

fabrication techniques related to the metal oxides, the novel SHJ solar cells show 

great potential to further improve the efficiency and reduce the cost of c-Si based 

solar cells[2, 5]. Difference between work functions of the metal oxides and Fermi level 

of the c-Si leads to a large energy band bending of the c-Si near the interface, which 

allows only one type of carriers to pass through and inhibits carrier recombination at 

the interface[6]. Some metal oxides with high work functions, such as MoOx
 [2, 3], VOx 

[7], WOx 
[8], NiOx 

[9, 10] and CuOx 
[11, 12], can provide a good hole selective transport 

when they form heterocontacts with c-Si. Similarly, some metal oxides with low work 

functions, e.g. TiOx 
[9, 13]，MgOx 

[14, 15] and ZnO[16], can be used as the electron 

selective transport layers instead of n-type a-Si:H in c-Si solar cells.  

Based on such a factor that it is more difficult to obtain high quality p-type 

a-Si:H than n-type a-Si:H, people are more eager to find a suitable substitute for 

p-type a-Si:H in SHJ solar cells. In recent years, remarkable achievements have been 

made on the SHJ solar cells using molybdenum oxide (MoOx) with wide band-gap 

(3.0-3.3 eV) and high work function (>6 eV) as the HSL to replace the p type a-Si:H 

thin film[4, 17, 18, 19]. Various techniques, such as thermal evaporation[2-4], electron beam 

evaporation[15, 20], atomic layer deposition[21], sputtering[22] and solution-processed 

method[5], etc. , are available in preparation of MoOx thin films. By using thermal 

evaporated MoOx thin films as the HSL, silicon heterojunction solar cells with the 

power conversion efficiencies up to 22.5% were fabricated by Jonas Geissbuhler et al. 
[2]. Jing Yu et al. [15] prepared the MoOx films using electron beam evaporation and 

achieved an efficiency of 14.2% on a plane SHJ solar cell with the structure of 

MoOx/n-type c-Si/MgO. A solution-processed method was reported by Jingnan Tong 

et al. [5] to form the MoOx layers by spin-coating hydrogen molybdenum bronze 

solution on crystalline silicon wafer surfaces. The developments of the novel 

heterojunction solar cells with the MoOx HSL are very exciting and the efficiency is 
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expected to be further improved in the future.  

To promote the commercialization of the novel SHJ solar cells in the future, a 

simple and scalable production technique capable of fabricating high quality MoOx 

thin films is needed. Different from the methods mentioned above, in this work, we 

provide a new alternative technique for the fabrication of the MoOx film. We 

developed a hot wire oxidation-sublimation deposition (HWOSD) technique to 

fabricate amorphous molybdenum oxide thin films with good photoelectric properties. 

The SHJ solar cells were fabricated making use of the HWOSD MoOx as the HSL. 

Investigations and optimizations of the device structure, interface passivation and 

annealing process were carried out. A power conversion efficiency up to 21.10% was 

achieved for a champion SHJ solar cell with the structure of Ag/ITO/n-type a-Si:H/ 

intrinsic a-Si:H/n-type textured c-Si/intrinsic a-Si:H/MoOx/Ag. Dark J-V-T 

characteristics were analysed to understand the transport mechanisms of the novel 

heterojunction solar cells. 

 

2. Preparation of MoOx thin films by novel HWOSD technique 

A schematic diagram of the HWOSD technique is presented in Fig. 1. In a 

deposition chamber with oxygen atmosphere, molybdenum wires are electrically 

heated to a high temperature. MoOx molecules are generated on the surface of the hot 

molybdenum wires and are sublimated directly into the chamber. The MoOx 

molecules adsorb, diffuse, coalesce and finally form the MoOx thin films on the 

substrate. During the deposition, the substrate temperature was lower than 70℃. The 

molybdenum wires with a purity of 99.995% and a diameter of 1 mm were used. The 

hot wire temperature, oxygen flow rate and deposition pressure were optimized to be 

1095±5℃, 4 sccm and 0.2 Pa, respectively. Under the optimal condition, the 

deposition rate of the MoOx thin films is about 9nm/min. 

A
cc

ep
te

d 
A

rt
ic

le



 

This article is protected by copyright. All rights reserved 

                  

Fig.1 Schematic diagram of hot wire oxidation-sublimation deposition technique. 

 

The novel HWOSD technique is attractive in many ways. Actually, it is 

somewhat similar to the well-known hot wire chemical vapor deposition technology 
[23]. Some of the advantages of this technique make it very easy to scale up for 

industrialization. Scaling to large areas merely requires an increase in number and/or 

length of molybdenum wires along with a proportionally larger supply of oxygen gas. 

The deposition rate of MoOx film using HWOSD technique can be well adjusted by 

varying the oxygen pressure and/or the temperature of the molybdenum wires. 

Powder spattering, which is easy to occur during thermal evaporation[2-4], can be 

avoided. Next, conformal coating on any type of surface shape is possible for the 

HWOSD technique due to the gas-phase and surface diffusion of MoOx molecules, 

which is conducive to the formation of good coverage on textured silicon substrates. 

Furthermore, the HWOSD technique is based on the characteristic of higher melting 

point of molybdenum and lower boiling point of molybdenum oxide. Therefore, it is 

suitable to be used to fabricate other metal oxides with similar characteristics, such as 

WOx and VOx.  

 

 

3. Results and discussion 
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3.1 Characteristics of the MoOx thin films prepared by HWOSD 

Fig. 2 The Mo 3d core level XPS spectrum for a MoOx film fitted with multiple Voigt peaks 

(shaded areas) to quantify the contribution of different oxidation states. 

 

During the process of hot wire oxidation-sublimation deposition, hot wire 

temperature and oxygen pressure are two important parameters affecting the 

opto-electronic properties of the deposited MoOx thin films. Under the optimized hot 

wire temperature (1095±5℃) and oxygen pressure (0.2Pa), an average transmittance 

of 94.2% in the wavelength range of 400-1100 nm can be obtained on a 15nm MoOx 

thin film. (The effect of the oxygen pressure on the transmittance of the MoOx thin 

films is given in Figure S1). The dark conductivity of the optimized MoOx film is 1.6

×10-6 S/cm. The XRD spectrum shows that the HWOSD MoOx thin film is in an 

amorphous structure (Figure S2).  

Figure 2 shows the XPS spectrum of the Mo 3d core level in MoOx thin film. 

The two major peaks, with binding energies of 233.3 eV and 236.4 eV, correspond to 

the Mo6+ 3d5/2 and 3d3/2, respectively[5, 19]. And the minor ones centered at 232.0 eV 

and 235.0 eV can be attributed to Mo5+. The estimated O/Mo atomic ratio of the 

MoOx thin film is about 2.94, which closes to the stoichiometric ratio of 3. The 

relatively high oxygen content in the MoOx thin films usually leads to a high work 

function[18, 19] .  

 

3.2 Surface morphologies and passivation effect of MoOx on Si substrates  
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Fig. 3 (a) Top-view SEM image of MoOx (25nm) on polished Si substrate. (b) Cross-sectional 

SEM image of MoOx (70 nm) on polished Si substrate. (c, d) SEM images of MoOx (70 nm) on 

textured Si wafers. 

 

SEM images of the MoOx thin films deposited on Si wafers are shown in Fig. 3. 

Figure 3 (a) and (b) exhibit the top-view and cross-sectional SEM images of the 

MoOx films on polished Si substrates, respectively. It can be seem that compact MoOx 

films with high thickness uniformity were formed on the polished Si substrates by 

using HWOSD. The SEM images of pyramid-shaped silicon surfaces covered with 

HWOSD MoOx thin films are shown in Fig. 3 (c) and (d). Conformal coverage of the 

MoOx thin films on the random pyramids is realized. The nice coverage 

characteristics can be confirmed by the elemental EDS mappings of O and Mo 

(Figure S3).  

The effective lifetimes for n-type CZ Si wafers sandwiched between intrinsic 

a-Si:H (i a-Si:H) thin film or i a-Si:H/MoOx combination layer as a function of excess 

carrier density were measured and compared (Figure S4). The i a-Si:H/MoOx 

combination layer passivated sample shows enhanced lifetimes in the whole carrier 

injection concentration range of 7×1014 cm-3~1×1016cm-3 and a maximum lifetime 

up to 1.3 ms is achieved. The recombination current density (J0) and the implied open 

circuit voltage (iVoc) under one sun illumination are 26 fA/cm2 and 697mV, 

respectively. The results demonstrate the effective field passivation effect of the 

molybdenum oxide film on the surface of c-Si. The high work function of the MoOx 

layer produces a large band bending of the n-type c-Si surface and thus reduces the 

surface recombination effectively.  

 

3.3 Optimization of the SHJ solar cells with MoOx as HSL  

The structure of the heterojunction solar cells with MoOx HSL is shown in Fig. 4(a). 
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The illuminated side (front side) structure of the devices is set to be Ag 

grid/ITO/n-type a-Si:H/ i a-Si:H. The rear side structure is Ag/MoOx/i a-Si:H. The 

main reason for putting the MoOx HSL on the back side of the solar cell is to avoid 

the ITO layer sputtering and make the MoOx contacting directly with Ag electrode. In 

this case, the deterioration of the MoOx thin film related to the ITO sputtering process 
[2, 24] can be avoided and the role of the HWOSD MoOx HSL on the performance of 

the SHJ solar cells can be well demonstrated. Of course, without the ITO layer, the 

SHJ solar cell fabrication process has become more concise. Another consideration is 

that, with this configuration, the novel solar cell can be compared with our reference 

SHJ devices. Generally, high-quality n-type a-Si:H thin films are easier to be realized 

than p-type a-Si:H. Therefore, using the n-type a-Si:H thin film in the front side of the 

SHJ solar cells is beneficial to achieve higher efficiency. The process flow chart for 

the fabrication of the novel and reference SHJ solar cells is illustrated in Fig.4 (b).  

 

   
 

 

Fig. 4 (a) Cross-sectional schematic of the heterojunction solar cells with MoOx HSL and 
photographs of the front and back of the HSL device.  

(b) Process flow chart for the fabrication of the novel and reference SHJ solar cells. 
 

Effective interface passivation plays critical role in increasing the performance of 

the SHJ solar cells. We found that the SHJ solar cells with MoOx HSL directly 

deposited on Si substrates usually show much worse performance than a traditional 

SHJ solar cell, implying a serious recombination of photo-generated carriers at the 

MoOx/c-Si interface. Different passivation layers, including intrinsic a-Si:H thin film, 

UV/O3 photo-oxidized SiOx, and the combination of a-Si:H and SiOx, were adopted to 
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passivate the c-Si substrates before the deposition of MoOx (Table S1). Compared 

with the solar cell without any passivation layer, all the passivation methods we tried 

improved the performances of the solar cells to some extent. Among them, the 

intrinsic a-Si:H layer deposited using PECVD exhibits the best passivation effect. The 

UV/O3 treatment is quite simple compared with the a-Si:H deposition technique. 

However, the passivation effect of the UV/O3 photo-oxidized SiOx layer is less than 

satisfactory. Similar to reported in the literature[2], we also noticed that the SiOx layer 

may lead to the deterioration of the annealing performance of a SHJ solar cell with 

MoOx HSL, which will be discussed later. Therefore, we used the PECVD a-Si:H as 

the passivation layer at present stage.  

 

Influence of the MoOx HSL thickness (10nm-71nm) on the photovoltaic 

parameters of the SHJ solar cells was investigated (Figure S5). In the case that the 

thickness of the MoOx HSL is too small (e.g. 10nm), the space charge region or the 

inversion layer near the c-Si surface may not be well formed, which is not favorable 

for the separation and collection of the photo-generated carriers. However, as for the 

condition of excessive MoOx thickness (>14nm), the consequentially enhanced 

recombination in the MoOx layer leads to the reduced carrier collection and then 

decline of the open circuit voltage (Voc) and a rapid drop in the short circuit current 

density (Jsc). Despite the similar behavior as Voc and Jsc under very small or very large 

thickness, the FF was kept to be at a relatively high value for the MoOx thickness 

between 14nm-55nm due to the almost invariable series resistance. Considering all 

the photovoltaic parameters of the series of the SHJ solar cells, we determined an 

optimal MoOx thickness of 14 nm. A power conversion efficiency of 18.11% was 

achieved for the SHJ solar cell with a 14 nm MoOx as the HSL.  
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Fig. 5 (a) Influence of annealing process on Voc and FF of the SHJ solar cells with MoOx HSL.  

(b) Light J-V characteristics of a champion SHJ solar cell with MoOx HSL (red line) and a 

reference SHJ solar cell (black dots).  

 

 Post-annealing as a low-temperature step with temperatures from 150C to 350C 

is a typical process needed for the fabrication of conventional SHJ solar cells, which 

can improve the overall performance of the devices. However, post-annealing tends to 

show a bad effect on the SHJ solar cells with metal oxides (such as MoOx, WOx, VOx) 

as the hole selective transport layer[2, 6]. Many researches related to the degradation 

mechanism have been carried out. It was reported that the work functions of metal 

oxides and the characteristics of the interface between the metal oxides and the c-Si 

have been changed by post-annealing[25]. Stephanie Essig et al.[26] showed that 

effusion of hydrogen from the adjacent layers is a likely cause for the degradation for 

the SHJ solar cells with MoOx HSL contacts. They suggested a pre-MoOx-deposition 

annealing step to reduce the hydrogen content of the a-Si:H layer and allow high FF 

to be obtained. More research on the annealing process of SHJ solar cells with MoOx 

HSL is still needed.   

In this paper, an investigation on the annealing process of the SHJ solar cells 

with the MoOx HSL was carried out and the influences of different annealing 

processes on the Voc and FF of the SHJ solar cells are illustrated in Fig. 5 (a). As a 

reference, the Voc and FF of an as-prepared SHJ solar cell without undergoing any 

annealing process are included as shown in red symbols. Similar to reported in the 

literature, annealing after the fabrication of the whole device (post-annealing, 190°C, 

5min) leads to deterioration in device performance (green symbols). MoOx-annealing 

(blue symbols) in Fig. 5 (a) refers to an annealing process that was carried out just 

after the preparation of MoOx and before the deposition of silver electrode. Voc and FF 

of the solar cell are further reduced with MoOx-annealing compared with the 

post-annealing process, indicating serious damage to the exposed MoOx layer was 

caused by the MoOx-annealing process. In order to avoid the annealing damage to the 

MoOx layer, annealing process was carried out before the preparation of the MoOx 

layer, namely pre-annealing. The solar cell performance, disappointingly, is worse 
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instead of getting better. Possible reason is that an a-Si:H/SiOx double-layer is formed 

during the pre-annealing process in the air atmosphere. Thus, dipoles could be formed 

at the SiOx/MoOx interface[27], which have a negative effect on the energy band 

bending and the selective transportation of the carriers. Therefore, we removed the 

oxidation layer on the amorphous silicon by HF solution (2%) treatment after the 

pre-annealing process and immediately prepared the MoOx HSL and the metal back 

electrode to finish the device fabrication. Just as expected, the performance of the 

pre-annealing-HF sample shows a remarkable improvement as depicted in Fig. 5(a). 

The light J-V curve and PV parameters of a champion SHJ solar cell fabricated with 

the pre-annealing-HF process are shown in Fig. 5(b). An efficiency of 21.10% with 

Voc of 713 mV, Jsc of 37.50 mA/cm2 and FF of 78.92% was achieved for the SHJ solar 

cell with a MoOx HSL. The integrated photocurrent density calculated from the 

external quantum efficiency is 37.2mA/cm2 (Figure S6), which is in good agreement 

with the measured Jsc. For comparison, the J-V curve and PV parameters of an 

optimized reference SHJ solar cell(15.615.6 cm2) are also given in Fig. 5(b). We can 

find that, at present stage, the performance of the novel SHJ solar cell is still lower 

than that of the reference SHJ solar cell. It should be noted that the novel SHJ solar 

cells are affected by the size effect of the solar cells. The size of the novel SHJ solar 

cells is about 11 cm2. The edges of the device are not well passivated at present 

stage. If larger Si substrates were used, or if the edges of the devices were well 

passivated, higher performance can be expected for the SHJ solar cells. 

The performance of the SHJ solar cells with the HWOSD MoOx HSL is 

comparable to those of the SHJ solar cells with MoOx HSL prepared by thermal 

evaporation[2, 4], electron-beam evaporation[15, 20] or atomic layer deposition[21]. The 

simplification and scalability of the MoOx preparation and the simplified fabrication 

process of the devices with ITO free make the HWOSD MoOx a great potential 

substitute for the doped Si layer in high efficiency c-Si solar cells in the future.  
 
3.4 Transport mechanisms of the SHJ solar cells with HWOSD MoOx HSL 

Inspired by the great potential of the SHJ solar cells with MoOx HSL, a lot of 
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researches, numerically or experimentally, on the current extraction of charge carriers 

via the MoOx HSL were carried out to deeply understand the transport mechanisms 

and to assist the engineering of the novel SHJ solar cells[6, 28, 29]. It was shown that, for 

an effective hole extraction, a sufficiently high MoOx work function or/and efficient 

trap-assisted tunneling paths are requirements have to be fulfilled [28, 29]. Based on the 

analysis of the dark J-V-T characteristics, transport mechanisms including 

trap-assisted tunnel of holes at low voltage and transport behavior of a Schottky-like 

junction at higher voltage were proposed by R. García-Hernansanza et al. for a SHJ 

solar cell with a thermally evaporated MoOx HSL and without any passivation layer[6]. 

For our SHJ devices with a MoOx HSL fabricated using HWOSD and with an a-Si:H 

passivation layer prepared by PECVD, fairly high Voc of above 710 mV was achieved. 

It is necessary to investigate and understand the mechanisms governing charge carrier 

transport of the novel heterojunction and to further improve the performance of the 

devices.  

Dark J-V-T measurements were carried out for a SHJ solar cell with the structure 

of Ag/ITO /n+ a-Si:H /i a-Si:H/n c-Si/i a-Si:H/ MoOx/Ag in a temperatures range of 

200K to 380K and the dark J-V curves are shown in Fig. 6 (a). The corresponding 

photovoltaic parameters of the device are Voc=710mV, FF=77.0%, Jsc=37.3mA/cm2 

and Eff=20.4%.   

Considering the change of the slopes of the J-V curves, two-diode model can be 

used to fit the experimental results [30]. The current density varied with the applied 

voltage can be written as:  

sh

s)JRV(A)JRV(A

R

V-JR
]e[J]e[JJ ss 

 11 21

0201            (1)   

where J01 and J02 are the saturation current densities of diode 1 and 2, Rs and Rsh are 

the series and shunt resistance, A1 and A2 depend on the transport mechanisms. The 

contributions of diodes 1 and 2 to the J-V curves are generally considered to be in the 

high (>0.5V) and low (<0.5V) voltage regions, respectively. The exponential factor Ai 

(i=1,2) generally has an empirical expression of Ai=q/nikT, where q is the electron 

charge, ni the diode ideality factor, k the Boltzmann’s constant, and T the absolute 

temperature.  

Based on equation (1), the dark J-V curves were fitted. It was found that A1 

changes linearly with the increasing of 1/kT and a constant ideality factor n1=1.2 can 
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be determined for the diode 1, which is often observed in a rectifier junction. 

However, A2 does not change significantly in the whole experimental temperature 

range and no unified ideality factor n2 can be determined. For a relatively narrow 

temperature region of 250K<T<330K (35.0<1/kT<46.2), fairly large diode ideality 

factor values varied between 3.51 and 3.93 can be obtained. In the traditional SHJ 

solar cells, large n2 is usually considered to be a signal of serious shunt leakage 

current[31] or interface recombination[32] which certainly degrades the fill factor, Voc 

and efficiency. In this work, the contradiction between the large n2 and quite high Voc 

and fill factor of the device implies different transport mechanisms from the 

traditional ones. Numerical calculation has shown that the trap-assisted tunnel 

transport plays an important role in the current extraction of the novel SHJ solar cells 
[28], which has been proved by R. García-Hernansanza et al in a MoOx/n c-Si 

heterojunction device[12]. According to the large value and the temperature 

dependence characteristic of n2, trap-assisted tunnel transport at lower voltage range is 

also considered for our novel SHJ solar cell and will be discussed further.  

   

    
Fig. 6 (a) Dark J-V curves of a novel SHJ solar cell measured at the temperatures 

from 200K to 380K. (b) Experimental (hollow symbols) and fitting (solid lines) dark 

J-V curves under forward bias for the novel SHJ solar cell under three temperatures of 
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200K, 300K and 360K. The green dashed and dotted lines respectively represent the 

fitted JTe (majority-carrier processes a and b) and JTu (minority-carrier process c) for 

the J-V curve measured under 300K. (c) Schematic energy band structures of the 

MoOx/i a-Si:H/n c-Si heterocontact under forward bias. Three transport processes, 

including thermionic emission of electrons, thermal assisted tunneling of electrons 

and tunneling of holes are denoted by a, b, and c, respectively. (d) Schematic energy 

band structures of the heterocontact under illumination.  

 

Considering the high work function (>6eV) and high density of gap states 

characteristics of amorphous MoOx
[4], it is appropriate to think of the MoOx/i a-Si:H/n 

c-Si heterocontact as a Schottky-like rectifier junction with large barrier height[12], 

whose energy band structures under forward bias and illumination are depicted in Fig. 

6 (c and d). Based on the above analysis, three main transport processes, including 

thermionic emission of electrons, thermal assisted tunneling of electrons and 

trap-assisted tunneling of holes, denoted by a, b, and c respectively, are considered as 

the basic transport processes.  

In both a and b processes, thermionic activation of majority carriers is involved. 

Therefore, we use a total majority-carrier (electron) thermionic current density JTe to 

represent the thermionic emission and thermal assisted tunneling processes. In the 

process c, minority carriers (holes) tunnel through the gap states of the MoOx layer 

into the top of the valence band (TVB) of the c-Si and then recombine with electrons. 

JTu is used to express the current density related to the trap-assisted tunneling of holes. 

Now, the equation (1) can be expressed as:  

sh

ss

0

1

s

0
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where qBn is the effective barrier height for electrons, C(T) a temperature 

dependent pre-factor, E0 the tunneling barrier energy and qA the activation energy of 

holes. E0 is related to the almost invariable slopes of the dark J-V curves at low bias as 
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Fig. 6 (a) shows and is simplified to be a constant in the following fittings. qA is 

actually the difference between the top of the valence band (TVB) of c-Si surface and 

the Fermi lever of the Ag electrode, as shown in Fig. 6(c). Comparing the equations (1) 

and (2), we can easily find that JTe and JTu correspond to the contributions of diode 1 

and 2, respectively. In the equation (2), the transport mechanisms corresponding to the 

two diodes are specified.  

Three forward J-V curves measured at temperatures of 200K, 300K, and 360K were 

fitted according to equation (2), as shown in Fig. 6 (b). Good agreement between the 

measured and the fitted curves in the whole voltage range can be obtained. The fitting 

results for E0, qA, and qBn are 0.087eV, 0.29eV, and 0.98eV, respectively. To better 

understand the respective contributions of JTu and JTe to the total J-V curve, the fitted 

JTe and JTu for the J-V curve measured under 300K, as an example, are depicted in 

dashed and dotted lines in Fig. 6 (b).  

It can be seen that JTe starts to play a major role as V>0.6V. As we known, the 

dominate transport mechanism at high bias plays an important role in the performance, 

especially Voc, of the solar cells. Therefore, the high Voc of the novel SHJ solar cells 

should be related to the large effective barrier height qBn of the transport processes a 

and b. In this case, a strong inversion of the energy band near the n-type c-Si surface 

is formed and effective collection of photo-generated electrons can be achieved, as 

shown in Fig. 6 (d). The qBn we obtained is a little bit higher than that reported by R. 

García-Hernansanza et al.[6], which coincides with the fact that the Voc of our device 

is higher. It is worth noting that the fitted qBn is much smaller than the work-function 

difference between the MoOx and n type c-Si. The electrostatic potential and the 

barrier height can be modified by the interface-trapped charges and also the possible 

dipoles [33]. If the interface was better passivated, larger barrier height could be 

expected. Furthermore, as a type of inversion layer solar cells[34], the high 

conductivity of the inversion layer may lead to good transverse transportation and 

then high FF can be achieved.  

In the case of lower forward bias (V<0.5V), the tunnel current density JTu 

dominates the J-V curve and causes a lower slope of Log (J) versus V. The high defect 

density in the band gap of amorphous MoOx makes the tunneling process easily and 

the minority current density JTu is larger than that of a typical metal/Si Schottky 

junction. This tunneling channel is critical important for the carriers collection under 
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illumination. Photo-generated holes can be effectively collected through this tunneling 

channel, which is beneficial to achieve high open-circuit voltage. In addition, we can 

also see from the Fig. 6 (b) that, in the high voltage region, the contribution of the 

minority current density JTu should not be ignored like a typical majority-carrier 

device. The high barrier or the strong inversion characteristic makes the Schottky-like 

junction a high minority-carrier injection ratio. 

 

 

4. Conclusions  

The hot wire oxidation-sublimation deposition method is demonstrated to be a 

promising technique for preparation of high-quality MoOx films with uniform 

thickness, compact structure, nice photoelectric properties and conformal coverage on 

textured Si substrates. Novel silicon heterojunction solar cells with the HWOSD 

MoOx thin films as the HSL were successfully fabricated. An efficiency of 21.10% 

was achieved for the champion SHJ solar cell with a MoOx HSL fabricated by the 

scalable HWOSD technique.  

Analysis of the dark J-V-T characteristics shows that tunneling of holes through 

the gap states of the MoOx layer causes the low slope of the plot of Log (J) versus V 

at low voltage range (V<0.5V). This tunneling channel is beneficial for the holes 

collection under illumination. A high Schottky-like barrier can be obtained from the 

fitting of the J-V curve in the high voltage range (>0.6), which indicates a strong 

inversion of the c-Si energy band near the interface. The high effective barrier and the 

strong inversion layer promote the efficient collection of the photo-generated carriers 

and lead to good transverse transportation, which are helpful for achieving high Voc 

and FF. It is this characteristic that makes the novel MoOx/c-Si heterojunction solar 

cells inherently possess potential of high efficiency. More research work is needed to 

fully reveal the potential of the novel SHJ solar cells.  

 

5. Experimental details 

5.1 Fabrication of silicon heterojunction solar cells  

 N-type <100> float zone (FZ) silicon wafers with a thickness of 250 μm and a 

resistivity of 1 to 5 Ω·cm were used as the substrates. Alkaline texturing and isotropic 

etching were carried out in succession to form random pyramids with less sharp tops 

on both sides of the c-Si wafers. After texturing, the c-Si substrates were chemically 
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cleaned according to the standard RCA procedure. Before proceeding to the next step, 

the textured silicon wafers were dipped in 2% hydrofluoric acid for 1 min to remove 

the surface oxide layer.  

The illuminated side (front side) structure of the devices is set to be Ag 

grid/ITO/n-type a-Si:H/ i a-Si:H. Intrinsic (~7 nm) and n-type (~10 nm) a-Si:H as the 

passivation and the electron selective transport layer were successively deposited on 

one side of the c-Si substrates by means of plasma enhanced chemical vapor 

deposition (PECVD) under a substrate temperature of about 200 °C. The front 

electrode consists of an indium tin oxide layer (ITO 80nm) by magnetron sputtering 

and a silver grid by thermal evaporation. The rear side structure of the SHJ solar cells 

is Ag/MoOx/i a-Si:H. The i a-Si:H thin film (~6nm) deposited by PECVD was also 

used for interface passivation. The MoOx thin film, as the HSL to replace the 

traditional p-type a-Si:H, was prepared by hot wire oxidation-sublimation deposition. 

Thermal evaporated Ag film was used as the rear electrode. The active area of the 

devices is 1 cm2.  

5.2 Characterization of thin films and devices  

Thicknesses of MoOx and ITO thin films were measured using a surface 

profilometer (ERUKER-DektakXT). Surface morphologies and elemental analysis of 

the MoOx thin films deposited on c-Si wafers were characterized using scanning 

electron microscope (SEM, Hitachi SU8010) and energy dispersive spectrometer 

(EDS, Bruker 6-30). Elemental compositions of the MoOx films were characterized 

using X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB250Xi) 

under ultra-high vacuum (<2×10-9 mbar). Minority carrier lifetimes of the passivated 

c-Si wafers were evaluated using the quasi-steady-state photo conductance (QSSPC 

Sinton WCT-120). Light current density-voltage (J-V) curves of the solar cells were 

obtained under AM1.5 (100 mW/cm2, 25℃) illumination. Dark J-V-T characteristics 

of the SHJ solar cells were measured at the temperatures from 200K to 380K. 
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a hot wire oxidation-sublimation deposition (HWOSD) technique was developed to 
prepare molybdenum oxide thin films. Silicon heterojunction solar cells with the 
HWOSD MoOx as a hole selective transport layer were fabricated. A power 
conversion efficiency up to 21.10% was achieved on a champion solar cell. 
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