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Abstract: In many modern data analysis problems, the available data is not static but, instead,
comes in a streaming fashion. Performing Bayesian inference on a data stream is challenging for
several reasons. First, it requires continuous model updating and the ability to handle a posterior
distribution conditioned on an unbounded data set. Secondly, the underlying data distribution may
drift from one time step to another, and the classic i.i.d. (independent and identically distributed),
or data exchangeability assumption does not hold anymore. In this paper, we present an approximate
Bayesian inference approach using variational methods that addresses these issues for conjugate
exponential family models with latent variables. Our proposal makes use of a novel scheme based
on hierarchical priors to explicitly model temporal changes of the model parameters. We show
how this approach induces an exponential forgetting mechanism with adaptive forgetting rates.
The method is able to capture the smoothness of the concept drift, ranging from no drift to abrupt
drift. The proposed variational inference scheme maintains the computational efficiency of variational
methods over conjugate models, which is critical in streaming settings. The approach is validated on
four different domains (energy, finance, geolocation, and text) using four real-world data sets.

Keywords: latent variable models; nonstationary data streams; concept drift; variational inference;
power priors; exponential forgetting

1. Introduction

One core problem in Bayesian statistics is the computation of posterior probability over the
parameters (and the latent variables) of a model given a data set. In most relevant cases, the computation
of this posterior probability is not feasible and requires the use of approximate inference algorithms [1,2].
Moreover, in many real-life settings, the data set is not static but arrives sequentially, in a streaming
fashion. Computing the Bayesian posterior probability over the parameters (and the latent variables)
of a model, in this case, is even more challenging. First, it requires the ability to handle a posterior
distribution conditioned on an unbounded data set. Secondly, the posterior probability has to be
updated frequently, at every time step, imposing restrictions over the speed of computation of the
posterior probability. Finally, the classical i.i.d. (independent and identically distributed, or data
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exchangeability) assumption does not hold because the underlying data distribution may drift/change
from one time step to the next. This last issue is known in the machine learning literature as learning
from data streams that exhibit concept drift [3] in the sense that the underlying generative process may
contain both gradual and abrupt changes.

In this paper, we look at the common setting in many real-world problems, where data arrives
as a sequence of (potentially large) batches. Specifically, each batch is associated with a new time
step and the data points within a batch are assumed to be i.i.d. However, the underlying distribution
generating the batches may change from one time step to the next. For illustration, in Section 6, we will
apply a probabilistic topic model [4] to identify the main topics of research papers published over
a sequence of years. New papers are submitted yearly; hence, every year, the probabilistic model
must be updated to infer the topics of that year’s papers. One approach could be to discard all data
from previous years, but that would result in a loss of relevant data that could potentially have been
used to draw more accurate inferences about the current year’s topic distribution (research topics
typically span multiple years). On the other hand, we also have to take into account that the underlying
distribution of the papers may change from one year to the next following the development of the
research field. As another example domain, we will model the financial profile of customers asking
for a loan/mortgage from a financial institution [5]. In this example, we update the financial profile
of the customers on a monthly basis while simultaneously keeping in mind that the occurrence of
exogenous events (like an economic crisis) may strongly affect the customers and therefore induce
a drift in the underlying data distribution. Other situations similar to the ones above arise in many
different real-life settings.

Standard temporal models [6] have the potential to capture the underlying temporal dynamics
of the data set. However, for the problems addressed in this paper, temporal models are not readily
applicable. The reason for this is two-fold. First, the set of objects differs from one time step to the next.
For example, a new set of papers is submitted to a conference every year. Thus, temporal modeling
needs to be applied at the level of the parameters in the model, not at the objects themselves. Secondly,
drift (both gradual and abrupt) in the underlying distributions is not easily modelled with a stationary
transition model as would typically be the case in temporal models. Instead, we will employ an
implicit transition model to model the temporal dynamics, thus sidestepping the problem of specifying
an explicit stationary transition distribution.

The approach presented in this paper is applicable to domains that, at each time point, can be
described by a conjugate exponential family model. These models are widely used in probabilistic
modeling [7,8] and include popular models like latent Dirichlet allocation (LDA) models [4] to uncover
the hidden topics in a text corpora, a mixture of (multivariate) Gaussian models to discover hidden
clusters in data [9], and probabilistic principal component analysis for revealing a low-dimensional
representation of the data [10]. See, for instance, [9,11,12] for detailed reviews and applications of these
models in data mining and machine learning settings.

Exact Bayesian inference is intractable for the model-class proposed in this paper, partly due to the
implicit transition model and partly due to the high dimensionality of the parameters/latent variables
in the model. We therefore resort to approximate Bayesian inference methods, and owing to the
potential real-time requirements imposed by the streaming domains, we focus on variational methods
(see [13] for an introduction). Markov Chain Monte Carlo methods (MCMC) [1,2], although widely
used in Bayesian statistics, are not as computationally efficient as variational methods, especially in the
presence of large datasets or complex models [13]. Moreover, variational inference can be performed
very efficiently in conjugate exponential family models by exploiting properties of this model family.

The rest of the paper is organized as follows. Section 2 discusses related works, and Section 3
introduces preliminaries relevant for the remainder of the paper. In Section 4, we introduce an implicit
transition model that works as an off-the-self parameter transition scheme to model both gradual and
abrupt changes in the data distribution. Section 5 positions the transition model in a hierarchical
Bayesian setting to model the rate of change of the data stream as an unobserved mechanism. Section 5



Mathematics 2020, 8, 1942 3 of 27

also includes the derivation of an ad hoc variational inference algorithm [13], based on a novel
lower-bound of the data log-likelihood function for the proposed model family (i.e., a conjugate
exponential model with an implicit transition scheme). As a consequence, the proposed approximate
inference scheme is deterministic and scales to large data streams. Section 6 empirically evaluates
the appropriateness of our approach using both synthetic and real-life data (covering energy, finance,
geolocation, and text data), showing promising results. We conclude in Section 7, where the main
conclusions and future works are discussed.

2. Related Work

Making inferences from nonstationary data streams has been extensively studied in statistics.
Time series models [14] is a classic example of models that could be assumed relevant for this problem,
but as we are not dealing with temporal data (where the the same set of objects are observed at each
time step), this model class is not applicable in our situation. Work by [15,16] is closer to ours, but these
contributions focus on simpler model classes (like generalized linear models without latent variables),
and due to this simplicity, they do not consider variational inference.

Methods for change point detection [17,18] are also related to our situation. However, where these
methods consider abrupt changes in the data stream, our method is able to deal with both abrupt and
smooth changes in the distribution. Additionally, the main focus of change point detection methods
is the detection of points where the changes occur, while our goal is to have a statistical model that
accurately models the data at each time step by continuously adapting the model parameters.

Learning from nonstationary data streams has also been extensively studied in the machine
learning literature, especially in the context of classification and clustering [3,19–21]. One of the main
techniques employed in this area has been exponential forgetting [22,23]. Here, each new observation is
initially assigned a weight (or “importance”) equal to 1, followed by an exponential decrease of the
weight at each subsequent time step. In this way, older observations are less relevant than newer ones
when the model is learned, thereby accounting for potential drift in the data stream. The main problem
with this approach is to quantify the so-called exponential forgetting rate, which is usually determined
by the analyst on a trial-and-error basis. In the present work, we provide a sound approach based on
Bayesian methods to automatically adjust the exponential forgetting rate and show the advantages of
this strategy empirically.

Bayesian modeling of nonstationary data streams for general probabilistic inference has not
been extensively studied so far. An online variational inference method, which exponentially forgets
old data, was proposed by Honkela and Valpola [24], but similarly to [22,23], this approach suffers from
the problem of setting the exponential forgetting rate. Another proposal, called population variational
Bayes (PVB), was introduced by [25]. It builds directly on the stochastic variational inference (SVI)
algorithm [26]. SVI assumes the existence of a fixed data set observed in a sequential manner and, in
particular, that this data set has a known finite size. This is unrealistic when modeling data streams.
PVB addresses the problem by using the frequentist notion of a population distribution, F, which is
assumed to generate the data stream by repeatedly sampling M data points at a time; here, M
parameterizes the size of the population and helps control the variance of the population posterior.
By artificially having high variance in the posterior (i.e., by choosing a small value for M), PVB is able
to accommodate drift in the data set. Unfortunately, M must be specified by the user, and no clear
rule exists for specifying it. Furthermore, McInerney et al., [25] shows that the optimal value for M
may differ between data stream. The streaming variational Bayes (SVB) algorithm by [27] also tries to
address Bayesian inference in data streams. SVB builds on a Bayesian recursive updating approach
but does not provide a mechanism for dealing with concept drift. In Section 6, we will show that our
proposed method, which does not rely on hyperparameters that are hard to tune, outperforms these
closely related approaches on several real-world data sets.

The so-called power prior approach [28] has also been studied in the context of data aggregation
for Bayesian modeling. Power priors provide a sound mechanism for Bayesian updating in light of
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new data and introduces partial forgetting of older observations. The approach enjoys nice theoretical
properties [29] but depends on a hyperparameter (set by the analyst) to control the forgetting rate.
Our work builds partially on the power prior model but extends this model with a Bayesian model of
the forgetting mechanism, thereby dispensing of the analyst-specified hyperparameter.

A modeling approach based on time-series models for concept drift using implicit transition models
was pursued by [30,31]. Unfortunately, the implicit transition model also depends on a hyperparameter
determining the forgetting factor, which has to be manually set. Our work also partially builds on
this approach and establishes novel connections between the implicit transition models [30,31], power
priors [28], and exponential forgetting [22,23].

Many other contributions have proposed an ad hoc extension to specific statistical models
in order to deal with nonstationary data streams [32,33], including dynamic extensions of latent
Dirichlet allocation (LDA) models [34–36]. However, none are so far applicable to general conjugate
exponential family models. Moreover, most of these contributions rely on complex and tailor-made
inference mechanisms, instead of variational inference (which is well understood for conjugate
exponential models).

3. Preliminaries

3.1. Conjugate Exponential Models

Let x = x1:N denote a set of observed variables, z = z1:N denote a set of latent variables,
and β = β1:M denote the parameters of the model. Let α also denote a hyperparameter vector.

We assume that the joint distribution of our statistical model factorizes into a product of local
terms and a global term:

p(x, z, β|α) = p(β|α)
N

∏
n=1

p(xn, zn|β).

This kind of factorization is quite usual in many statistical models [26], for example, the case of
the Bayesian mixture of Gaussian, where each latent variable is a categorical variable defining the
component to which each data point belongs. We also consider the special case when there are no
latent variables; this case would cover models like Bayesian linear regression. Figure 1a provides a
graphical description of these model family in terms of probabilistic graphical models with plateau
notation [11].

βα

xizi

i = 1, . . . , N

βtβt−1

ρtγ

xi,tzi,t

i = 1, . . . , N

(a) (b)

Figure 1. The left figure (a) displays a graphical representation of the probabilistic model examined
in this paper (see Section 3.1). The right figure (b) includes a temporal evolution model for βt as
described in Section 5. The graphical notation corresponds to probabilistic graphical models with
plateau notation [11]. Under this notation, a random variable is represented by a node, and it is
conditionally dependent on those random variables with a node pointing to it. The nodes within the
box denote random variables that are replicated for every data sample.

We further assume that the (conditional) distributions defining the statistical model belong to the
conjugate exponential family [37]. This model family has been largely studied and covers a wide range of
probability distributions such as multinomial, normal, gamma, Dirichlet, beta, etc. According to this
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assumption, the functional form of the conditional distribution of the local variables (xn, zn) given the
parameters β has the well-known exponential family form [37]:

ln p(xn, zn|β) = ln h(xn, zn) + βTt(xn, zn)− al(β), (1)

where the scalar functions h(·) and al(·) are the base measure and the log-normalizer, respectively,
and the vector function t(·) is the sufficient statistics vector. Moreover, the prior distribution p(β) also
belongs to the exponential family and has the following structure:

ln p(β) = ln h(β) + αTt(β)− ag(α) (2)

where the sufficient statistics are t(β) = (β,−al(β)) and the hyperparameter α has two components
α = (α∗, ξ), where the first component α∗ has the same dimension as β and encodes the prior belief
about the distribution over β and the second component ξ > 0 is a scalar and encodes the strength in
our prior belief [38]. This second parameter is also known in the literature [39] as the equivalent sample
size of the prior distribution (ESSprior).

Our inference goal is to approximate the posterior distribution over the parameters and latent
variables given the following observations:

p(β, z|x) = p(β)∏n p(xn, zn|β)∫
β p(β)∏n

∫
zn

p(xn, zn|β)dzndβ
.

However, this posterior is intractable in general due to the integral in the denominator (i.e., the evidence
integral), and we therefore have to resort to approximate inference algorithms such as variational
inference. These (and other) inference algorithms benefit enormously when the complete conditional
distribution of the parameters and the latent variables belongs to the exponential family [26]. Therefore,
we make this extra assumption about the model class (Note however, that the presented approach also
applies to the more general conjugate exponential family.), which states that the conditional distribution
over β and z given the rest of the variables has the same functional form as the priors:

ln p(β|x, z, α) = ln h(β) + ηg(x, z, α)Tt(β)− ag(x, z, α)

ln p(zn|xn, β) = h(zn) + ηl(xn, β)Tt(zn)− al(ηl(xn, β)),

where the vector function η·(·) denotes the natural parameter vectors of the conditional
probability distributions.

By Equations (1) and (2), the natural parameter vector of p(β|x, z, α) can be expressed as

ηg(x, z, α) =

(
α∗ +

N

∑
n=1

t(xn, zn), ξ + N

)
. (3)

Therefore, computing the full posterior reduces to updating the natural parameters of the prior.
Moreover, the equivalent sample size of the posterior (ESSpost) is equal to the equivalent sample size of the
prior (ESSprior) plus the size of the observations.

3.2. Variational Inference

Variational inference is a deterministic technique for finding a tractable posterior distribution,
denoted by q, which approximates the true posterior, p(β, z|x), that is often intractable to compute.
More specifically, by lettingQ be a set of possible approximations of this posterior, variational inference
solves the following optimization problem for any model in the conjugate exponential family:

min
q(β,z)∈Q

KL (q(β, z) || p(β, z|x)) , (4)
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where KL denotes the Kullback–Leibler divergence between two probability distributions.
In the mean field variational approach, the approximation family Q is assumed to fully factorize.

Following the notation of Hoffman et al. [26], we have that

q(β, z|λ, φ) = q(β|λ)
N

∏
n=1

q(zn|φn).

Furthermore, each factor of the variational distribution is assumed to belong to the same family
as the model’s complete conditionals:

ln q(β|λ) = h(β) + λTt(β)− ag(λ)

ln q(zn|φn) = h(zn) + φT
n t(zn)− al(φn).

It can be seen that λ parameterizes the variational distribution of β while φ plays the same role for the
variational distribution of z.

To solve the minimization problem in Equation (4), the variational approach exploits
the transformation:

ln p(x) = L(λ, φ|x, α) + KL (q(β, z|λ, φ) || p(β, z|x)) , (5)

where L(·|·) is a lower bound of ln p(x) since KL is nonnegative. This lower bound can be written as

L(λ, φ|x, α) = Eq[ln p(x|z, β)]−Eq[KL (q(z|φ) || p(z|β))]− KL (q(β|λ) || p(β|α))]. (6)

We introduce x and α in L’s notation to make explicit the function’s dependency on x, the data sample,
and α, the natural parameters of the prior over β. As ln p(x) is constant, and minimizing the KL
term is equivalent to maximizing the lower bound. Equation (6) shows the trade-off involved in the
lower-bound. The first term measures the model’s fit to the data and favors variational posterior mass
concentrated around the maximum likelihood estimate. The second and third terms are regularization
terms and favor variational posteriors close to their respective prior distributions.

This lower bound can be maximized, for example, by a coordinate ascent method that iteratively
updates each individual variational distribution while holding the others fixed. As shown in [26],
these iterative updating equations have the following closed-form solutions:

λ = α +
N

∑
n=1

Eφn
[(t(xn, zn), 1)], (7)

φn = Eλ[ηl(xn, β)], (8)

where Eλ[·] and Eφn
[·] denote the expected value according to q(β|λ) and q(zn|φn), respectively. If the

number of data points is large, alternative scalable methods can also be used [26,40].

3.3. Variational Inference over Data Streams

As commented in the previous section, we envision a situation where the data stream is defined
by a sequence of data batches generated at discrete points in time {x1, . . . , xt} and where each batch
is composed by a set of data samples, xt = xt,i=1:Nt . As new batches arrive, we want to update the
posterior distribution over the parameters of the model. This can be addressed by applying a Bayesian
recursive approach:

p(β|x1, . . . , xt) ∝ p(β|x1, . . . , xt−1)
Nt

∏
i=1

∫
p(xt,i, zt,i|β)dzt,i.
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Hence, updating the posterior at time t reduces to a problem of computing a posterior over β

conditional on the data xt given that β gets a prior equal to p(β|x1, . . . , xt−1), i.e., the posterior
in the previous time step.

When the above posterior is intractable to compute, we can use the streaming variational
Bayes (SVB) algorithm [27]. This algorithm translates the above recursive updating approach to
the variational settings described in the previous sections. Firstly, it approximates the posterior in the
previous time step with a variational approximation, p(β|x1, . . . , xt−1) ≈ q(β|λt−1), so that the new
posterior is expressed as

p(β|x1, . . . , xt) ∝ q(β|λt−1)
Nt

∏
i=1

∫
p(xt,i, zt,i|β)dzt,i.

This posterior is still intractable due to integration. We therefore use variational inference to compute
a new approximation q(β|λt) to the posterior at time t. The variational parameters are given as the
solution to the optimization problem:

(λt, φt) = arg min
λt ,φt

L(λt, φt|xt, λt−1),

which, similarly to the static case (see Equation (6)), can be solved by a coordinate ascent method that
iteratively updates each individual variational distribution while holding the others fixed. The end
result is defined by the following closed-form solutions:

λt = λt−1 +
Nt

∑
i=1

Eφt,i
[(t(xt,i, zt,i), 1)], (9)

φt,i = Eλ[ηl(xt,i, β)], (10)

where Eλ[·] and Eφt,i
[·] denote the expected value according to q(β|λt) and q(zi,t|φi,t), respectively.

3.4. Exponential Forgetting in Variational Inference

Exponential forgetting is a classic technique [19] that allows to gradually forget past data and
to put more focus on more recent data samples when learning from a nonstationary data stream.
This idea is usually implemented by exponentially down-weighting the loss function term associated
with each data sample so that data samples closer in time have more impact on the model that older
data samples.

In probabilistic terms, exponential forgetting is achieved by using a log-likelihood function of the
following form:

ln p(x1, x2, . . . , xt|β) =
t

∑
i=1

ρt−i ln p(xi|β) + cte,

where ρ ∈ [0, 1] is the exponential decay weight and cte is a constant term. By using a small ρ value,
we aggressively forget old data samples. However, ρ values close to 1 tend to mildly forget previous
data samples.

Similarly, in Bayesian learning settings [24], we can use this scheme to compute the posterior:

p(β|x1, x2, . . . , xt, ρ) ∝ p(x1, x2, . . . , xt|β, ρ)p(β)

= p(xt|β)p(xt−1|β)ρ · · · p(x1|β)ρt−1
p(β).
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This scheme also applies to variational learning by considering this exponential down-weighted
log-likelihood instead of the standard data log-likelihood, as used by [24]. Then, the lower bound
function has the following form:

Lρ(λ, φ|x, αu) = Eq

[
t

∑
i=1

ρt−i ln p(xi|zi, β)

]
− KL (q(β, z|λ, φ) || p(β, z|αu)) , (11)

where αu denotes the natural parameters of a non-informative prior, p(β, z|αu).
The updating equation of the coordinate gradient ascent algorithm described in Equation (7) can

now be expressed as follows [41]:

λ = αu +
t

∑
i=1

ρt−iEφi
[(t(xi, zi), 1)]. (12)

The main point here is to highlight how, at the convergence point, the variational solution λ

exponentially down-weights the contribution (i.e., the expected sufficient statistics) of old data samples.
Exponential forgetting also addresses the problem of Bayesian learning over unbounded

data streams. According to Equation (7), one of the components of the λ parameter corresponds
to the equivalent sample size of the variational posterior (ESSpost). In this case, this value can be
computed as

ESSpost,t = ESSprior +
t

∑
i=1

ρ(i−1).

If ρ < 1, then ESSpost,t converges to a finite number:

lim
t→∞

ESSpost,t = ESSprior +
1

1− ρ
, (13)

avoiding the problem of having a degenerated Bayesian posterior distribution in the presence of
an unbounded data stream. As noted in [30,42], this schema approximates a posterior distribution
conditioned on the last 1

1−ρ data samples of the stream.
Stochastic varitional inference (SVI) [26] is a widely used variational learning algorithm for

dealing with large data sets. Population variational Bayes [25] is a simple modification of SVI used
when the total size of the data set is unknown. When these algorithms are applied in data streaming
settings, they use a constant learning rate ν (It is usually set to small values like 0.1 or 0.01.), and the
sequential updating equation of the global variational parameters λ can be written as

λt = (1− ν)λt−1 + ν(αu + SEφt
[(t(xt, zt), 1)]), (14)

where S is equal the total size of the data set. This size is equal to N in the case of SVI or to the size of
the population M in the case of PVB. By expanding this equation, we find that

λt = (1− (1− ν)t)αu + Nν
t

∑
i=1

(1− ν)t−iEφi
[(t(xi, zi), 1)]. (15)

The above equation highlights that SVI and PVB also exponentially down-weight old data samples,
with a forgetting rate of ρ = 1− ν (compare the above equation with Equation (12)). Therefore, this is
one of the mechanisms that these two methods use to adapt to drifts in the nonstationary data stream.

In the case of the PVB method, the parameter M helps to adapt to drifts in the data set through
the effect it has on computing φi, as discussed by [25]. However, when the model does not contain
local random variables, the variational parameters φi do not exist and, then, the size of the population
does not play any role in adapting to drifts in the data stream.
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4. Implicit Transition Models

In order to extend the model in Figure 1a to data streams, we may introduce a transition model
p(βt|βt−1) to explicitly model the evolution of the parameters over time, enabling estimation of the
predictive density at time t:

p(βt|x1:t−1) =
∫

p(βt|βt−1)p(βt−1|x1:t−1)dβt−1. (16)

However, this approach introduces two problems. First, in nonstationary domains, we may not have a
single transition model or the transition model may be unknown. Secondly, if we seek to position the
model within the conjugate exponential family in order to be able to compute the gradients of L in
closed form, we need to ensure that the distribution family for βt is its own conjugate distribution,
thereby severely limiting the model’s expressive power (e.g., we cannot assign a Dirichlet distribution
to βt).

Rather than explicitly modeling the evolution of the βt parameters as in Equation (16), we instead
follow a similar approach to Kárnỳ [31] and Ozkan et al. [30] by defining the time evolution model
implicitly by constraining the maximum KL divergence over consecutive parameter distributions.
Specifically, by defining

pδ(βt|x1:t−1) =
∫

δ(βt − βt−1)p(βt−1|x1:t−1)dβt−1 (17)

one can restrict the space of possible distributions p(βt|x1:t−1), supported by an unknown
transition model, by the constraint

KL (p(βt|x1:t−1) || pδ(βt|x1:t−1)) ≤ κ. (18)

We then propose to approximate p(βt|x1:t−1) by the distribution p̂(βt|x1:t−1) having minimum
Kullback–Leibler divergence w.r.t. (with respect to) a prior density pu(βt). This approach ensures that
we will not underestimate the uncertainty in the parameter distribution. The following result shows
how this constraining optimization problem has an amenable solution.

Theorem 1 (Implicit Transition Models). The density p̂(βt|x1:t−1, ρt) which has minimum
Kullback–Leibler divergence w.r.t. a prior density pu(βt),

p̂(βt|x1:t−1, ρt) = arg min
q

KL (q(βt) || pu(βt))

and which satisfies the constrain imposed in Equation (18) takes the form

p̂(βt|x1:t−1, ρt) ∝ pδ(βt|x1:t−1)
ρt pu(βt)

(1−ρt), (19)

where 0 ≤ ρt ≤ 1 is indirectly defined by Equation (18) and therefore depends on the user-defined parameter κ.

Proof. The proof can be found in Appendix A. �

This approach defines transition models without having to make explicit assumptions about
the parametric family. In consequence, it provides a generic off-the-self mechanism for defining
transition models. In subsequent subsections, we provide an intuitive interpretation of this approach
by establishing a direct relationship with exponential forgetting and power prior [28] approaches,
which has been previously use to deal with nonstationary data streams. We deviate from the original
formulation given in Kárnỳ [31] and Ozkan et al. [30], which proposes to approximate p(βt|x1:t−1) by
the distribution p̂(βt|x1:t−1) having maximum entropy under the constraint in Equation (18). However,
in this case, they require that pu(βt) is defined as an invariant measure (i.e., Eq[ln pu(βt)] has to be



Mathematics 2020, 8, 1942 10 of 27

constant w.r.t. any density q(βt)). Note that, in case we employ a prior pu(βt) satisfying this property,
Theorem 1 also chooses the maximum entropy distribution.

In our streaming data setting, we follow the assumed density filtering approach [43] and the SVB
approach [27] and use the approximation p(βt−1|x1:t−1) ≈ q(βt−1|λt−1), where q(βt−1|λt−1) is the
variational distribution calculated in the previous time step. Using this approximation in Equations (16)
and (17), we can express pδ in terms of λt−1, in which case, Equation (19) becomes

p̂(βt|λt−1, ρt) ∝ pδ(βt|λt−1)
ρt pu(βt)

(1−ρt), (20)

which we use as the prior density for time step t. Now, if pu(βt) belongs to the same family as
q(βt−1|λt−1), then p̂(βt|λt−1, ρt) will stay within the same family and have natural parameters ρtλt−1 +

(1− ρt)αu, where αu are the natural parameters of pu(βt). Therefore, we can write

ln p̂(βt|λt−1, ρt) = ln h(βt) + (ρtλt−1 + (1− ρt)αu)t(βt)− ag(ρtλt−1 + (1− ρt)αu) (21)

where h(βt) is the base measure, which does not depend on any parameter. Thus, under this approach,
the transitioned posterior remains within the same exponential family, so we can enjoy the full
flexibility of the conjugate exponential family (i.e., computing gradients of the L function in closed
form), an option that would not be available if one were to explicitly specify a transition model as
in Equation (16).

Therefore, at each time step, we simply have to solve the following variational problem,
where only the prior changes with respect to the original SVB approach:

arg max
λt ,φt

L(λt, φt|xt, ρtλt−1 + (1− ρt)αu). (22)

We shall refer to the method outlined in this section as SVB with power priors (SVB-PP). The term
power prior [28] will be explained in Section 4.2.

4.1. Exponential Forgetting as Implicit Transition Models

In this section, we show that the exponential forgetting mechanism used in variational inference,
as described in Section 3.4, is an implicit transition model with constant forgetting rate ρ.

The updating equation detailed in Equation (7) to optimize the lower-bound function described
in Equation (6) can be easily adapted to optimize the lower-bound associated to the implicit transition
models given in Equation (22). This new updating equation for implicit transition models can be
expressed as follows:

λt = Eφt
[(t(xt, zt), 1)] + ρλt−1 + (1− ρ)αu. (23)

Expanding the above equation, we have

λt =
t

∑
i=1

ρt−iEφi
[(t(xi, zi), 1)] + αu, (24)

which exactly matches exponentially down-weighting scheme of old data samples given in
Equation (12). Therefore, it is clear that the classic technique of exponential forgetting, which was
usually supported by heuristic arguments, has a sound interpretation in terms of implicit
transition models.
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4.2. Power Priors as Implicit Transition Models

Power priors [28] is a widely used class of informative priors for dealing with situations in which
historical data are available. Let x0 denote a previously obtained data set, and let x1 be our current
data set. According to the power priors scheme [28], the posterior probability over the model parameters
should be computed as

p(β|x1, x0, ρ) ∝ p(x1|β)p(x0|β)ρ p(β), (25)

where ρ ∈ [0, 1] is a scalar parameter down-weighting the likelihood of historical data relative to the
likelihood of the current data.

As stated in the following lemma, power priors can also be interpreted as implicit
transition models.

Lemma 1. The Bayesian updating scheme described by Figure 1b and Equation (19) but with ρt fixed to a
constant value is equivalent to the recursive application of the Bayesian updating scheme of power priors given
in Equation (25).

Proof. The proof can be found in Appendix A. �

This connection allows us to introduce well-known results of power priors [29], finding that

p(β|x1, x0, ρ) = arg min
r∈P
{ρ KL (r || p(β|x1, x0, ρ = 1))

+ (1− ρ) KL (r || p(β|x1, x0, ρ = 0))}

where P denotes the set of all possible densities over β. Citing [29], “power priors minimize the convex
combination of KL (Kullback–Leibler) divergences between two extremes: one in which no historical data is used
and the other in which the historical data and current data are given equal weight.”

5. Hierarchical Power Priors

In the approach taken by Ozkan et al. [30] (and, by extension, SVB-PP), the forgetting factor ρt

is user-defined. In this paper, we instead pursue a (hierarchical) Bayesian approach and introduce a
prior distribution over ρt, allowing the distribution over ρt (and thereby the forgetting mechanism) to
adapt to the data stream.

5.1. A Hierarchical Prior over the Forgetting Rate ρ

In this section, we extend the model in Figure 1a to also account for the dynamics of the data
stream being modeled. We shall assume here that only the parameters β in Figure 1a are time-varying,
which we will indicate with the subscript t, i.e., βt. The resulting model can be illustrated as in
Figure 1b. We shall refer to models of this type as hierarchical power prior (HPP) models.

We will show in Section 5.3 that the exponential and normal distributions, both of which truncated
to the interval [0,1], are valid alternatives as prior distributions, p(ρt|γ). The densities of these
distributions have the following forms:

p(ρt|γ) =
γ exp(−γρt)

1− exp(−γ)
, 0 ≤ ρt ≤ 1, (26)

p(ρt|µ, σ) =
exp

(
−(ρt − µ)2/(2σ2)

)
√

2πσ2
(

Φ( 1−µ
σ )−Φ(−µ

σ )
) , 0 ≤ ρt ≤ 1, (27)

where Φ represents the standard normal cumulative distribution function, µ ∈ R (can be outside
the interval [0, 1]), and σ > 0. Since the natural parameters of the normal distribution are(
µ/σ2,−1/(2σ2)

)
, it is sometimes convenient to parameterize in terms of the precision η = 1/σ2
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(the reciprocal of the variance). Using the precision, the natural parameters become (µη,−η/2).
Notice that precision η appears in both components.

Figure 2 plots examples of both densities for different values of the parameters. The truncated
exponential allows to model a uniform prior and priors that either favors ρt values close to 1
(i.e., non-forgetting past data) or ρt values close to 0 (i.e., forgetting past data). The truncated
normal distribution when using a mean equal to 0.5 tends to favor non-extreme ρt values (i.e., partial
forgetting of past data), where the variance parameter defines the strength of this belief.
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Figure 2. Density functions of the truncated exponential and the truncated normal distributions,
respectively, for different values of their parameters.

For later use, we also detail here the equation for computing the expected value of ρt for
both distributions:

E[ρt|γ] =
1

(1− e−γ)
− 1

γ
, (28)

Eq[ρt|µ, σ] = µ + σ
φ(−µ

σ )− φ( 1−µ
σ )

Φ( 1−µ
σ )−Φ(−µ

σ )
, (29)

where γ is the mean parameter parameter of the truncated exponential, µ and σ are the parameters
of the truncated normal distribution in [0, 1], and φ and Φ are respectively the probability density
function and the cumulative distribution function of the standard normal distribution.

5.2. The Double Lower Bound

For updating the model distributions, we pursue a variational approach where we seek to
maximize the evidence lower bound L in Equation (5) for time step t. However, since the model
in Figure 1b does not define a conjugate exponential distribution due to the introduction of p(ρt|γ),
we cannot maximize L directly. Instead, we will derive a (double) lower bound L̂ (with L̂ ≤ L) and
use this lower bound as a proxy for updating the rules of the variational posteriors.

First, by instantiating the lower bound LHPP(λt, φt, ωt|xt, λt−1) in Equation (5) for the HPP
model, we obtain

LHPP(λt, φt, ωt|xt, λt−1) = Eq[ln p(xt|Zt, βt)]−Eq[KL (q(Zt|φt) || p(Zt|βt))]

−Eq[KL (q(βt|λt) || p̂(βt|λt−1, ρt))]

− KL (q(ρt|ωt) || p(ρt|γ))
(30)

where ωt is the variational parameter of the variational distribution of ρt. For ease of presentation, we
shall sometimes drop from LHPP(λt, φt, ωt|xt, λt−1) the subscript and the explicit specification of the
parameters when this is otherwise clear from the context.
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We now define the double lower bound L̂HPP(λt, φt, ωt|xt, λt−1) as

L̂HPP(λt, φt, ωt|xt, λt−1) = Eq[ln p(xt|Zt, βt)]−Eq[KL (q(Zt|φt) || p(Zt|βt))]

−Eq[ρt]KL (q(βt|λt) || p(βt|λt−1))

− (1−Eq[ρt])KL (q(βt|λt) || p(βt|αu))

− KL (q(ρt|ωt) || p(ρt|γ)) (31)

which, according to Theorem 2, provides a lower bound for L.

Theorem 2. Let L̂HPP be as defined in Equation (31). Then,

L̂HPP(λt, φt, ωt|xt, λt−1) ≤ LHPP(λt, φt, ωt|xt, λt−1).

Proof. The proof can be found in Appendix A. �

Even though Equation (31) defines an alternative objective function, when we compare this
double lower bound with Equation (6), we can observe that the double lower bound still has the
intuitive interpretation of the standard lower bound in terms of data fitting and Kullback–Leibler (KL)
regularization. The only difference is that the KL regularization term associated to q(βt|λt) appears
now as a convex combination of two KL terms, one regularizing with respect to p(βt|λt−1) and the
other regularizing with respect to p(βt|αu), whith Eq[ρt], acting as a combination factor.

Rather than seeking to maximize L, we will instead maximize L̂; see Equation (31). Thus,
maximizing L̂ w.r.t. the variational parameters λt and φ also maximizes L. By the same observation,
we also have that the (natural) gradients are consistent relative to the two bounds, as stated by the
next corollary.

Corollary 1.

∇nat
λt
L̂HPP(λt, φt, ωt|xt, λt−1) = ∇nat

λt
LHPP(λt, φt, ωt|xt, λt−1)

= ∇nat
λt
L(λt, φt|xt,Eq[ρt]λt−1 + (1−E[ρt])αu)

The same result holds for φt.

Proof. The proof can be found in Appendix A. �

Thus, updating the variational parameters λt and φt in HPP models can be done in the same
way as for regular conjugate exponential models of the form in Figure 1. A pseudo-code description
of the updating process can be found in Algorithm 1 when ρt is assumed to follow a truncated
exponential distribution.

Algorithm 1 Streaming variational Bayes (SVB) with Hierarchical Power Priors (SVB-HPP).

Input: A data batch xt, the variational posterior in previous time step λt−1.
Output: (λt, φt, ωt), a new update of the variational posterior.

1: λt ← λt−1.
2: Eq[ρt]← 0.5.
3: Randomly initialize φt.
4: repeat

5: (λt, φt) = arg minλt ,φt
L(λt, φt|xt,Eq[ρt]λt−1 + (1−E[ρt])αu)

6: ωt = KL (q(βt|λt) || pu(βt))− KL (q(βt|λt) || pδ(βt|λt−1)) + γ
7: Update Eq[ρt] according to Equation (28) or Equation (29).
8: until convergence
9: return (λt, φt, ωt)
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In order to update ωt, we rely on L̂, which we can maximize using the natural gradient w.r.t.
ωt [44] and which can be calculated in closed form for a restricted distribution family for ρt, as stated
in the following result.

Lemma 2. Assuming that the first component of the sufficient statistics function for ρt is the identity function,
i.e., t1(ρt) = ρt, it holds that

∂natL̂
∂ωt,1

=KL (q(βt|λt) || pu(βt))− KL (q(βt|λt) || pδ(βt|λt−1)) + γ1 −ωt,1,

∂natL̂
∂ωt,k

=γk −ωt,k (k 6= 1).
(32)

Proof. The proof can be found in Appendix A. �

From the above lemma, we can easily deduce that the truncated exponential distributions,
for which the sufficient statistics are t(ρt) = ρt, and the truncated normal distribution, for which the
sufficient statistics are t(ρt) = (ρt, ρ2

t )
T , satisfy the criteria to be considered as hierarchical priors for ρt.

The problem of the above result is that, for k 6= 1, the optimal ωt,k is just equal to the the
prior value, i.e., ωt,k = γk. In the case of the truncated normal, which has a two-dimensional natural
parameter vector, it would imply that the variance of the posterior q(ρt|ωt), denoted by σ2

q , will be
equal to the variance of prior, denoted by σ2

p , which has to be set manually (We dropped the t-index in
σ2

q for simplicity.). To address the issue of having to manually fix the variance of the truncated normal
prior, σ2

p , we employ an empirical Bayes approach and consider σ2
p as another free parameter of the

double lower bound that we want to optimize. Therefore, we need to compute the gradient of the
double lower bound w.r.t. this parameter:

∂L̂
∂σ2

p
=

∂γ1

∂σ2
p

∂L̂
∂γ1

+
∂γ2

∂σ2
p

∂L̂
∂γ2

= −
µp

σ4
p
(E[ρt|µq, σ2

q ]−E[ρt|µp, σ2
p ]) +

1
2σ4

p
(E[ρ2

t |µq, σ2
q ]−E[ρ2

t |µp, σ2
p ]),

where γ = (µp/σ2
p ,−1/(2σ2

p)) is the natural parameter vector of the truncated normal prior, and µp

and µq denote the mean of the truncated normal prior and posterior over ρt, respectively. We set µp to
0.5, trying to define a non-informative and symmetric prior.

Note that, in this case, we have a plain gradient instead of a natural gradient w.r.t. σ2
p . Also,

note that there is no closed-form solution for the stationary point of σ2
p . To optimize along this direction,

we use a simple gradient ascent approach with backtracking line-search to set the learning rate.

5.3. Towards a Measure of Concept Drift

Observe that the form of the natural gradient of ωt given in Lemma 2 has an intuitive semantic
interpretation in terms of measure of concept drift. If we follow a coordinate ascent algorithm, at every
iteration, we should set

ωt = KL (q(βt|λt) || pu(βt))− KL (q(βt|λt) || pδ(βt|λt−1)) + γ. (33)

Specifically, using the constant γ as a threshold, we see that, if the uniform prior pu(βt) is closer to the
variational posterior at time t, in terms of KL divergence than the variational posterior at the previous
time step (i.e., KL (q(βt|λt) || pu(βt)) + γ < KL (q(βt|λt) || pδ(βt|λt−1))), then we will get a negative
value for ωt.

This in turn implies that Eq[ρ] < 0.5, according to Equations (28) and (29) (plotted in Figure 3),
which means that we have a higher degree of forgetting for past data. If ωt > 0, then Eq[ρ] > 0.5
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and less past data is forgotten. Figure 3 (left) graphically illustrates this trade-off, while Figure 4 shows
a particular example of this situation using Gaussian posterior distributions.

The difference between the use of a truncated normal over a truncated exponential is that, with the
former, the relation between ωt and Eq[ρt] can be tuned by a change in the precision of the truncated
normal prior, as it is graphically illustrated in Figure 3 (right). By using a prior with higher precision,
we impose a stronger belief about the fact that ρt values are close to neither 1 nor 0. In this way,
the approach has the possibility to enforce smooth drift regimes.
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Figure 3. The relationship between ωt andEq[ρt] according to Equation (28) (left) and Equation (29) (right):
see Section 5.3 for details.
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Figure 4. Example with Gaussian posterior distribution are shown. Two possible situations: no concept
drift (left) when λt is closer to λt−1 than to αu (in terms of KL divergence); otherwise (right), there is
concept drift. See Section 5.3 for details.

5.4. The Multiple Hierarchical Power Prior Model

In this section, we propose a modification of our HPP model to deal with complex concept drift
patterns which involve only a part of the model. For example, let us consider the application of an
LDA model [4] for tracking over time the evolution of topics in a text corpus. Under these settings,
a drift could eventually affect only a subset of the topics. Using our current approach, we might detect
this drift and forget part of the data to adapt to the new situation and to learn the new topics. However,
if some topics have not changed, we are losing information that could provide better estimations for
these topics.

We propose an immediate extension of HPP, which include multiple power priors ρ
(i)
t , one for each

parameter βi. In this model, the ρ
(i)
t s are pair-wise independent. The latter ensures that optimizing L̂

can be performed as above, since the variational distribution for each ρ
(i)
t can be updated independently

of the other variational distributions over ρ
(j)
t for j 6= i. This extended model allows local model

substructures to have different forgetting mechanisms, thereby extending the expressiveness of the
model. We shall refer to this extended model as a multiple hierarchical power prior (MHPP) model.
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6. Results

In this section we will evaluate the following methods:

1. Streaming variational Bayes (SVB) as described in Section 3.3.
2. Four versions of Population Variational Bayes (PVB) (We do not compare with SVI because SVI

is a special case of PVB when M is equal the total size of the stream.) resulting from combining
the values of the population size parameter M = 1000 (Section 6.1) and M = 10, 000 (Section 6.2)
with the learning rate values ν = 0.1 and ν = 0.01. In the four cases, the mini-batch size was
set to 1000. Note that, however, for the LDA case, we set M = 1000 rather than M = 10, 000 in
Section 6.2 and use a mini-batch size of 1000 instead of 10, 000.

3. Two versions of the SVB method with power priors (SVB-PP) or fixed exponential forgetting
(as described in Section 4.1) with ρ = 0.9 or ρ = 0.99.

4. Three versions of our method based on the SVB method with adaptive exponential forgetting
using hierarchical power priors (as described in Section 5):

• SVB-HPP-Exp using a single shared ρ with a truncated exponential distribution as a prior
over ρ with γ = 0.1 (i.e., close to uniform).

• SVB-MHPP-Exp using separate ρ(i) for each parameter (as described in Section 5.4) with
truncated exponential distributions as priors over each ρ(i) with γ = 0.1.

• SVB-MHPP-Norm using also separate ρ(i) for each parameters but with truncated normal
distributions as priors over each ρ(i). In this case, we use µp = 0.5 and learn the variance σ2

p
using the empirical Bayes approach described at the end of Section 5.2.

The underlying variational inference method used in the experiments is the variational message
passing (VMP) algorithm [41] for all models; VMP was terminated after 100 iterations or if the relative
increase in the lower bound fell below 0.01% (0.0001% for LDA). We considered non-informative priors,
i.e., flat Gaussians, flat Gamma, or uniform Dirichlet (full details in Appendix B). For the LDA model [4],
we use standard priors for this model which include a Dirichlet prior over topics with α = 1

|V| , where
|V| denotes the size of the vocabulary and another Dirichlet prior over topics assignments with α = 0.1.
Variational parameters were randomly initialized using the same seed for all methods.

6.1. Evaluation Using an Artificial Data Set

First, we illustrate the behavior of the different approaches in a controlled experimental setting:
We produced an artificial data stream by generating 100 samples (i.e., |xt| = 100) from a Binomial
distribution at each time step. We artificially introduced concept drift by changing the parameter
p of the Binomial distribution: p = 0.2 for the first 30 time steps, then p = 0.5 for the following
30 time steps, and finally p = 0.8 for the last 40 time steps. The data stream was modeled using a
beta-binomial model.

Parameter estimation: Figure 5 shows the evolution of Eq[βt] for the different methods.
We recognize that SVB simply generates a running average of the data, as it is not able to adapt
to the concept drift. The results from PVB strongly depend on the learning rate ν, where the highest
learning rate, which results in the more aggressive forgetting, works better in this example. Recall,
however, that ν has to be hand-tuned to achieve optimal performance. As expected, the choice of the
size of the population M for SVB does not have an impact because the present model has no local
hidden variables (cf. Section 4.1). SVB-PP yields results almost identical to PVB when ρ matches the
learning rate of PVB (i.e., ρ = 1− ν). Finally, SVB-HPP provides the best results, almost mirroring the
true model.
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Figure 5. E[βt] in the beta-binomial model artificial data set: note that PVB-1000-0.1 overlaps with
SVB-PP-0.9 and PVB-1000-0.01 overlaps with SVB-PP-0.99. The exact value is denoted with red circles.

Equivalent sample size of the posterior (ESSpost): Figure 6 (left) gives the evolution of the
equivalent sample size of the posterior, ESSpost,t, for the different methods (For this model, ESSpost,t is
simply computed by summing the components of λt defining the beta posterior.). ESSpost,t of PVB is
always given by the constant M. For SVB, ESSpost,t monotonically increases as more data is used, while
SVB-PP exhibits convergence to the limiting value computed in Equation (13). A different behaviour is
observed for SVB-HPP: It is automatically adjusted. Notice that the values for this model are to be read
off the alternative y-axis. We can detect the concept drift by identifying where ESS rapidly declines.
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Figure 6. The results for the beta-binomial model artificial data set. Left panel: The equivalent sample
size of the posterior, ESSpost,t, for the different methods; the values for SVB-HPP are shown on the
right y-axis. Right panel: The expected values of ρt, Eq[ρt], for batches of size 100 and 1000, respectively.

Evolution of expected forgetting factor: In Figure 6 (right), the series denoted “E[ρ]− 100” shows
the evolution of Eq[ρt] for the artificial data set. Notice how the model clearly identifies abrupt concept
drift at time steps t = 30 and t = 60. The series denoted “E[ρ]− 1000” illustrates the evolution of the
parameter when we increase the batch size to 1000 samples. We recognize a more confident assessment
about the absence of concept drift as more data is made available.

6.2. Evaluation Using Real Data Sets

For this evaluation, we consider four real data sets from four different domains:
Electricity market [45]: The data set describes the electricity market of two Australian states.

It contains 45,312 instances of 6 attributes, including a class label comparing change of the electricity
price related to a moving average of the last 24 h. Each instance in the data set represents 30 min of
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trading; during our analysis, we created batches such that xt contains all information associated with
month t.

The data is analyzed using a Bayesian linear regression model. The binary class label is assumed to
follow a Gaussian distribution in order to fit within the conjugate model class. Similarly, the marginal
densities of the predictive attributes are also assumed to be Gaussian. The regression coefficients are
given Gaussian prior distributions, and the variance is given a Gamma prior. Note that the overall
distribution does not fall inside the conditional conjugate exponential family [26]; hence, we do not
apply SVI (and PVB) in this setting.

GPS [46–48]: This data set contains 17, 621 GPS trajectories (time-stamped x and y coordinates),
totalling more than 4.5 million observations. To reduce the data size, we kept only one out of every ten
measurements. We grouped the data so that xt contains all data collected during hour t of the day,
giving a total of 24 batches of this stream.

Here, we employ a model with one independent Gaussian mixture model per day of the week,
each mixture with 5 components. This enables us to track changes in the users’ profiles across hours of
the day and to monitor how the changes are affected by the day of the week.

Finance [5]: The data contains monthly aggregated information about the financial profile of
around 50, 000 customers over 62 (nonconsecutive) months. Three attributes were extracted per
customer in addition to a class-label indicating whether the customer will default within the next
24 months.

We fit a naïve Bayes model to this data set, where the distribution at the leaf nodes is a 5-component
mixture of Gaussians. The distribution over the mixture node is shared by all attributes but not between
the two classes of customers.

NIPS [36]: This data set consists of the abstracts of published papers in the NIPS (Neural
Information Processing Systems) conference between 1987 and 2015 (5804 documents in total). The data
was preprocessed by choosing the most relevant individual terms across the whole dataset. This was
done by ordering the words (11,463 in total) by their importance in the dataset, using the TF-IDF (term
frequency-inverse document frequency) metric. The top 10 words after this filtering were “policy",

“image", “kernel", “network", “neurons", “training", “graph", “images", “matrix", and “tree", while the last
5 words in the ranking were “ralf", “ciated", “havior", “references", and “abstract". Only the top 100 words
were kept, according to this criterion. In this way, we removed words that were not significant to
tracking the concept drift in this data set. The documents were grouped by year, yielding a total of
29 batches of documents of different sizes. An LDA model with ten topics was employed to analyze the
vocabulary and to detect changes in the evolution of the major topics of the papers of this conference
every year. Note that the temporal extension of this model involves dealing with dynamics at the
Dirichlet distributions over the topics. As commented in Section 2, there have been many previous
approaches trying to deal with this problem [34–36], but none of them were applicable to general
conjugate exponential family models and, in general, rely on much more complex inference schemes.

To evaluate the different methods discussed, we use the test marginal log-likelihood (TMLL).
Specifically, each data batch is randomly split into a train data set, xt, and a test data set, x̃t, containing
two thirds and one third of the data batch, respectively. Then, TMLLt is computed as TMLLt =

1
|x̃t |
∫

p(x̃t, zt|βt)p(βt|xt)dztdβt (For LDA, |x̃t| refers to the number of words in the test set; we then
compute the so-called per-word perplexity.).

A detailed description of all models, including their structure and their variational families,
is given in Appendix B.

6.3. Discussion of Results

In this first part, we will highlight how the basic versions of SVB-HPP and SVB-MHPP outperform
the rest of the approaches in most of the cases. Figure 7 shows for each method the difference between
its TMLLt and that obtained by SVB (which is considered the baseline method). To improve readability,
we only plot the results of the best performing method inside each group of methods. Figure 8
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shows the development of Eq[ρt] over time for SVB-HPP-Exp, SVB-MHPP-Exp, and SVB-MHPP-Norm.
For SVB-HPP-TExp, we only have one ρt-parameter, and its value is given by the solid line. SVB-MHPP
utilizes one ρ(i) for each variational parameter. (The numbers of variational parameters are 14, 78, 33,
and 10 for the electricity, GPS, financial, and NIPS models, respectively.) In this case, we plot Eq[ρ

(i)
t ]

at each point in time to indicate the variability between the different estimates throughout the series.
We also report the average of the Eq[ρ

(i)
t ] values at every time step. Finally, we compute the aggregated

test marginal log-likelihood measure ∑T
t=1 TMLLt for each method and report these values in Table 1.

Table 1. Aggregated test marginal log-likelihood: maximum values for each data set are boldfaced.

Data Set SVB PVB SVB-PP SVB-HPP SVB-MHPP
(1) (2) (3) (4) ρ = 0.9 ρ = 0.99 Exp Exp Norm

Electricity −44.91 −51.01 −52.19 −51.11 −61.70 −43.92 −44.80 −40.05 −40.02 −39.91
GPS −1.98 −2.10 −2.77 −1.97 −4.49 −1.94 −1.97 −1.97 −1.86 −1.86
Finance −19.84 −22.29 −22.57 −20.40 −20.73 −19.05 −19.78 −19.83 −19.83 −19.82
NIPS −4.07 −4.04 * −4.21 * −4.01 −4.12 −4.02 −4.06 −4.01 −4.00 −4.00

Population variational Bayes (PVB) parameters: (1) M = 10k, ν = 0.1; (2) M = 10k, ν = 0.01; (3) M = |xt|, ν =
0.1; and (4) M = |xt|, ν = 0.01. (*) For NIPS, M = 1k was used in (1) and (2).

For the electricity data set, we can see that the two proposed methods (SVB-HPP and SVB-MHPP)
perform the best, as shown in Table 1. According to Figure 7 (electricity plot), all models are comparable
during the first nine months, which is a period where our models detected no or very limited
concept drift. However, after this period, both SVB-HPP and SVB-MHPP detected substantial drift
and were able to adapt better than the other methods, which appeared unable to adjust to the complex
concept drift structure in the latter part of the data. SVB-HPP and SVB-MHPP continued to behave at
a similar level, mainly because when drift happened, it typically involved a high proportion of the
parameters of the model (see the electricity plot in Figure 8).

For the GPS data set, we can observe how the SVB-MHPP perfoms quite well (see Table 1),
particularly towards the end of the series (see the GPS plot in Figure 7). We can see in Figure 8
(GPS plot), that a significant proportion of the model parameters drifted (i.e., Eq[ρ

(i)
t ] ≤ 0.05) at

all times, while another proportion of the parameters showed a quite stable behavior (ρ-values
above 0.9). This complex pattern is not properly captured by SVB-HPP, which ends up assuming
no concept drift. PVB with M = |xt| and ν = 0.1 does well here, but it strongly depends on the
hyperparameters, as in fact any other hyperparameter combination yields poorer results (see Table 1).

The financial data set shows a different behavior. As can be seen in Figure 7 (Finance plot),
during the first months, no major differences among the methods were found. However, after
month 30, SVB-PP with ρ = 0.9 is superior. Looking at the E[ρ(i)t ]-values of SVB-MHPP in Figure 8
(Finance plot), we observe that there is remarkable concept drift in some of the parameters over the
first few months. However, only a few parameters exhibit noteworthy drift after the first third of the
sequence. Apparently, the simple SVB-PP approach has the upper hand when drift is constant and
fairly limited, at least when the optimal forgetting factor ρ has been identified.
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Figure 7. Results of the TMLLt improvement over SVB for the competing methods for the four real
data sets.

In the case of the NIPS data set, we see again that HPP approaches capture drift in the data.
As can be seen in Figure 7 (NIPS plot), SVB-HPP hardly detects any drift in the first 20 years and
performs quite similarly to SVB (i.e., relative performance close to zero). However, in the last 10 years,
SVB-HPP clearly outperforms SVB because it detects two strong drifts at years 23 and 29. Therefore,
at these time steps, the whole LDA model is almost reestimated from scratch. In this case, SVB-MHPP
is able to capture more fine-grained drifts in the data, as can been deduced from the E[ρ(i)t ]-values of
SVB-MHPP in Figure 8 (NIPS plot). Mainly, it detects changes in some topics while other topics remain
constant over time. This allows SVB-MHPP to outperform SVB-HPP during some periods.

We have also observed that there are no major differences between SVB-MHPP-Exp and
SVB-MHPP-Norm. Therefore, it seems that the inclusion of alternative priors does not have a big impact
on the performance, at least if the variance parameter of the truncated normal is fixed automatically
using an empirical Bayes approach. However, this is something that may require further investigations.
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Figure 8. Evolution of Eq[ρt] for SVB-HPP and SVB-multiple hierarchical power prior (MHPP).

We conclude this section by highlighting that the performances of SVB-PP and PVB strongly
depends on the hyperparameters of the model, cf. Table 1. As an example, consider SVB-PP and how
its performance varies by changing the ρ parameter. Similarly, PVB’s performance is sensitive both
to ν (see in particular the results for the GPS data) and M (financial data). These hyperparameters
are hard to fix, as their optimal values depend on data characteristics (see McInerney et al. [25] and
Broderick et al. [27] for similar conclusions). We, therefore, believe that the fully Bayesian formulation
is an important strong point of our approach.

7. Conclusions

In this paper, we have introduced a novel Bayesian approach for learning general latent variable
models from nonstationary data streams. For this purpose, we introduce implicit transition models
as a general method for transitioning the parameters of a latent variable model. We also show that
previous approaches like exponential forgetting and power priors can be seen as specific cases of this
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general transition model. However, these approaches are only able to model slowly changing data
streams. Our approach is able to handle both abrupt and gradual drifts in the data stream by explicitly
modeling the rate of change of the data stream. For this purpose, we introduce a novel hierarchical
prior which allows the model to adapt to the different drifts that one can encounter in a data stream.
We then develop an efficient variational inference scheme that optimizes a novel lower bound of the
likelihood function.

As future work, we aim to provide a sound approach to semantically characterize concept drift
by inspecting the E[ρ(i)t ] values provided by SVB-MHPP and to investigate the effects in variational
approximation introduced by the use of the double lower bound approximation.
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Appendix A. Proofs

Proof of Theorem 1. (The proof follows [30].) To solve the constrain optimization problem, we define
the following Lagrangian:

J(q) = KL (q(βt) || pu(βt)) + λ(
∫

q(βt)dβt − 1) + γ(KL (q(βt) || pδ(βt|x1:t−1))− κ)

where the second component corresponds to the constrain imposing that q must be a valid density and
that the last term is the constraint given in Equation (18).

Taking a derivative w.r.t. to q(βt) and regrouping, we have

∂J(q)
∂q(βt)

= (1 + γ) ln q(βt)− ln pu(βt) + γ ln pδ(βt|x1:t−1) + 1 + λ + γ

By setting the partial derivative to zero and regrouping, we have

ln q(βt) =
1

1 + γ
ln pu(βt) +

γ

1 + γ
ln pδ(βt|x1:t−1)−

1 + λ + γ

1 + γ

If we exponentiate both arguments, we get the first Karush–Kuhn–Tucker condition:

q(βt) = pu(βt)
1

1+γ pδ(βt|x1:t−1)
γ

1+γ e
1+γ

1+λ+γ (A1)



Mathematics 2020, 8, 1942 23 of 27

The rest of Karush–Kuhn–Tucker conditions are

KL (q(βt) || pδ(βt|x1:t−1)) ≤ κ (A2)

γ(KL (q(βt) || pδ(βt|x1:t−1))− κ) = 0 (A3)∫
q(βt)dβt = 1 (A4)

γ ≥ 0. (A5)

If KL (pu(βt) || pδ(βt|x1:t−1)) ≤ κ, then we have that q(βt) = pu(βt) and γ = 0 satisfy
Equations (A1)–(A4). If not, there must exist a γ? > 0 satisfying that KL (q(βt) || pδ(βt|x1:t−1)) =

κ because we have that q(βt) is smooth w.r.t. to γ; when γ → ∞, we have that
KL (q(βt) || pδ(βt|x1:t−1)) → 0; and when γ → 0, we have that KL (q(βt) || pδ(βt|x1:t−1)) > κ. Then,
Equations (A1)–(A4) are also satisfied by this γ? value. Finally, we can deduce Equation (19) by setting
ρt =

γ
1+γ . �

Proof of Lemma 1. Translate the recursive Bayesian updating approach of power priors into an
equivalent two time slice model, where β0 is given a prior distribution p(β0) and p(β1|β0) is a
Dirac delta function. The distribution p(β1|x0, x1, ρ) in this model is equivalent to p(β|x1, x0, ρ), which,
in turn, is equivalent (up to proportionality) to p(x1|β1) p̂(β1|x0, ρt). Note that the last term can
alternatively be expressed as p̂(β1|x0, ρt) ∝ pδ(β1|x0)

ρ p(β1)
1−ρ ∝ pδ(x0|β1)

ρ p(β1). �

Proof of Theorem 2. It follows from Equations (30) and (31) that

L̂HPP −LHPP = Eq[ln p̂(βt|λt−1, ρt)].

According to Equation (21), if we ignore the base measure, we can write

Eq[ln p̂(βt|λt−1, ρt)] = Eq[(ρtλt−1 + (1− ρt)αu)t(βt)− ag(ρtλt−1 + (1− ρt)αu)].

Since ag is convex [49], we have

ag(ρtλt−1 + (1− ρt)αu) ≤ ρtag(λt−1) + (1− ρt)ag(αu),

which combined with Equation (21) gives

Eq[ln p(xt, Zt|βt)] +Eq[(ρtλt−1 + (1− ρt)αu)t(βt)

− ρtag(λt−1)− (1− ρt)ag(αu)] +Eq[p(ρt|γ)]
−Eq[ln q(Zt|φt)]−Eq[q(βt|λt)]−Eq[q(ρt|ωt)] ≤ L.

Finally, by exploiting the mean field factorization of q and by using the exponential family form of
pδ(βt|λt−1) and pu(βt), we get the desired result. �

Proof of Corollary 1. The first equality follows immediately from Equation (30) because the difference
does not depend on λt and φt. The second equality holds because the difference between the natural
gradients of L and LHPP is equal to

∇nat
λt
L(λt, φt|xt, αu)−∇nat

λt
LHPP(λt, φt, ωt|xt, λt−1) =

∇nat
λt

Eq[ln p(βt|αu)]−∇nat
λt

Eq[ln p̂(βt|λt−1, ρt)]

According to Equation (19), the above difference is null if we make the αu parameter of the L term
equal to Eq[ρt]λt−1 + (1−Eq[ρt])αu. �
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Proof of Lemma 2. Firstly, by ignoring the terms in L̂ (Equation (31)) that do not involve ωt, we get

L̂(ωt) = Eq[ρt](Eq[ln(pδ(βt|λt−1))−Eq[ln pu(βt)]) +Eq[p(ρt|γ)]−Eq[q(ρt|ωt)]

= Eq[ρt](Eq[ln(pδ(βt|λt−1))−Eq[ln pu(βt)]) + γTEq[t[ρt]]− (ωT
t Eq[t[ρt]]− ag(ωt)) + cte

As we have assumed that the sufficient statistics function t(ρt) for p(ρt|γ) and q(βt|λt) contains the
identity function (t1(ρt) = ρt), we have

L̂(ωt) =

(
Eq[ρt]

Eq[t 6=1(ρt)]

)T (
(Eq[ln(pδ(βt|λt−1))−Eq[ln pu(βt)]) + γ1 −ω1

γ 6=1 −ω 6=1

)
− ag(ωt) + cte

where the subindex 6= 1 refers to those subindexes different from 1.
Using the standard equality of exponential family distributions, Eq[t(ρt)] = ∇ωt ag(ωt), we have

∇ωt L̂ = ∇2
ωt ag(ωt)

(
Eq[ln(pδ(βt|λt−1))− ln pu(βt)] + γ1 −ωt,1

γ 6=1 −ωt, 6=1

)
.

We can now find the natural gradient by premultiplying ∇ωt L̂ by the inverse of the Fisher
information matrix, which for the exponential family corresponds to the inverse of the Hessian of the
log-normalizer:

∇̂ωt L̂ = (∇2
ωt ag(ωt))

−1∇ωt L̂

=

(
Eq[ln(pδ(βt|λt−1))− ln pu(βt)] + γ1 −ωt,1

γ 6=1 −ωt, 6=1

)
.

Then, by introducing q(βt|λt) − q(βt|λt) inside the expectation, we get the difference in
Kullbach–Leibler divergence KL (q(βt|λt) || pu(βt))− KL (q(βt|λt) || pδ(βt|λt−1)). �

Appendix B. Probabilistic Models Used in the Experimental Evaluation

We provide a (simplified) graphical description of the probabilistic models used in the experiments.
We also detail the distributional assumptions of the parameters, which are then used to define the
variational approximation family.

Appendix B.1. Electricity Model

x1,t x2,t x3,t

yt

(µi, γi) ∼ NormalGamma(1, 1, 0, 1e− 10)

γ ∼ Gamma(1, 1)

bi ∼ N (0,+∞)

xi,t ∼ N (µi, γi)

yt ∼ N
(

b0 + ∑
i

bixi,t, γ

)



Mathematics 2020, 8, 1942 25 of 27

Appendix B.2. GPS Model

zt

Dayt

xt yt

p ∼ Dirichlet(1, . . . , 1)

pk ∼ Dirichlet(1, . . . , 1)

(µ
(x)
j,k , γ

(x)
j,k ) ∼ NormalGamma(1, 1, 0, 1e− 10)

(µ
(y)
j,k , γ

(y)
j,k ) ∼ NormalGamma(1, 1, 0, 1e− 10)

Dayt ∼ Multinomial(p)

(zt|Dayt = k) ∼ Multinomial(pk)

(xt|zt = j, Dayt = k) ∼ N (µ
(x)
j,k , γ

(x)
j,k )

(yt|zt = j, Dayt = k) ∼ N (µ
(y)
j,k , γ

(y)
j,k )

Appendix B.3. Financial Model

zt

De f aultt

x1,t x2,t x3,t

p ∼ Dirichlet(1, . . . , 1)

pk ∼ Dirichlet(1, . . . , 1)

(µi;j,k, γi;j,k) ∼ NormalGamma(1, 1, 0, 1e− 10)

De f aultt ∼ Binomial(p)

(zt|De f aultt = k) ∼ Multinomial(pk)(
xi,t|zt = j, Dayt = k

)
∼ N (µi;j,k, γi;j,k)
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