
 

  

 

Aalborg Universitet

Coordinated wind-thermal-energy storage offering strategy in energy and spinning
reserve markets using a multi-stage model

Khaloie, Hooman; Abdollahi, Amir ; Shafie-Khah, Miadreza ; Anvari-Moghaddam, Amjad;
Nojavan, Sayyad ; Siano, Pierluigi; Catalão, João P.S.
Published in:
Applied Energy

DOI (link to publication from Publisher):
10.1016/j.apenergy.2019.114168

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2020

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Khaloie, H., Abdollahi, A., Shafie-Khah, M., Anvari-Moghaddam, A., Nojavan, S., Siano, P., & Catalão, J. P. S.
(2020). Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using
a multi-stage model. Applied Energy, 259, 1-18. Article 114168. https://doi.org/10.1016/j.apenergy.2019.114168

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1016/j.apenergy.2019.114168
https://vbn.aau.dk/en/publications/89130c75-1020-4629-93ae-347aa34a9d2a
https://doi.org/10.1016/j.apenergy.2019.114168


Coordinated Wind-Thermal-Energy Storage Offering
Strategy in Energy and Spinning Reserve Markets

Using a Multi-Stage Model

Hooman Khaloie1,2 , Amir Abdollahi1 , Miadreza Shafie-khah3∗ , Amjad
Anvari-Moghaddam4 , Sayyad Nojavan5 , Pierluigi Siano6 , João P.S. Catalão7

(1)Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman,
Iran

(2) Iran’s National Elites Foundation, Tehran, Iran

(3) School of Technology and Innovations, University of Vaasa, 65200 Vaasa, Finland

(4)Department of Energy Technology, Aalborg University, 9220 Aalborg East, Denmark

(5)Department of Electrical Engineering, University of Bonab, Bonab, Iran

(6)Department of Management & Innovation Systems, University of Salerno, Fisciano,
Italy

(7) Faculty of Engineering of the University of Porto and INESC TEC, 4200-465, Porto,

Portugal

Corresponding Author: Miadreza Shafie-khah, Email: mshafiek@univaasa.fi

Abstract

Renewable energy resources such as wind, either individually or integrated with

other resources, are widely considered in different power system studies, es-

pecially self-scheduling and offering strategy problems. In the current paper, a

three-stage stochastic multi-objective offering framework based on mixed-integer

programming formulation for a wind-thermal-energy storage generation compa-

ny in the energy and spinning reserve markets is proposed. The commitment

decisions of dispatchable energy sources, the offering curves of the generation

company in the energy and spinning reserve markets, and dealing with energy

deviations in the balancing market are the decisions of the proposed three-stage

offering strategy problem, respectively. In the suggested methodology, the par-

ticipation model of the energy storage system in the spinning reserve market

extends to both charging and discharging modes. The proposed framework
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concurrently maximizes generation company’s expected profit and minimizes

the expected emission of thermal units applying lexicographic optimization and

hybrid augmented-weighted ε-constraint method. In this regard, the uncer-

tainties associated with imbalance prices and wind power output as well as

day-ahead energy and spinning reserve market prices are modeled via a set of

scenarios. Eventually, two different strategies, i.e., a preference-based approach

and emission trading pattern, are utilized to select the most favored solution

among Pareto optimal solutions. Numerical results reveal that taking advan-

tage of spinning reserve market alongside with energy market will substantially

increase the profitability of the generation company. Also, the results disclose

that spinning reserve market is more lucrative than the energy market for the

energy storage system in the offering strategy structure.

Keywords: offering strategy, electricity markets, environmental-economic,

energy storage system, multi-stage stochastic programming, ε-constraint

method

Nomenclature

Indices

t Period index.

g Index for thermal units.

ω Scenario index.

q Index for emission group.

Constants

πω Probability of occurrence of scenario ω.

PW,Max Rated wind power output, MW.

STUCg/STDCg Cost pertaining to start-up/shut-down of every thermal unit, e.

MDTg/MUTg Minimum down/up times of every thermal unit, hr.

RURg/RDRg Ramp up/down rate of every thermal unit, MW/hr.

EQo Emission quota of system, lbs.
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P th,Max
g /P th,Min

g Maximum/minimum allowable production power

for every thermal unit, MW.

P dis,Max/P ch,Max Maximum allowed charging/discharging power for ESS, MW.

PSth,S,Max
g Maximum allowable power of every thermal unit

for taking part in spinning reserve market, MW.

Eq,g Rate of emission pertaining to every emission group

and thermal unit, lbs/MWhr.

EMG Emission group including NOX and SO2.

STURLg/STDRLg Start-up/shut-down ramp bound of every thermal unit, MW/hr.

C(L) Cost pertaining to block of L in linearized cost curve of

every thermal unit, e/MWh, where L=1,...,4 .

λEE Price of emission market, e/lbs.

Probcal Probability of being invited by the system operator

to deliver the spinning reserve offer in the balancing market.

ZS,dis/ZS,ch Discharging/charging efficiency of ESS.

EBS,Max Maximum quantity of stored energy in the ESS, MWh.

Variables

ME
t,ω/MS

t,ω/M bal
t,ω Price pertaining to energy/spinning reserve/balancing markets

, e/MW.

BE,th
t,ω /BS,th

t,ω offering curve of thermal units in the energy/spinning reserve

markets, MW.

BE,W
t,ω offering curve of wind units in the energy market, MW.

BE,S,dis
t,ω /BS,S,dis

t,ω offering curve of ESS in the energy/spinning reserve

markets during the discharging mode, MW.

BE,S,ch
t Optimal purchasing power by the ESS from the energy market, MW.

BS,S,ch
t,ω offering curve of ESS in the spinning reserve market

during charging mode, MW.

PW
t,ω Realized output power of wind units, MW.

EGEXP,th
t,ω Scheduled generated power of every thermal unit, MW.

∆+
t,ω/∆−

t,ω Imbalance-up/down, MW.

Ug,t/Dg,t Cost pertaining to start-up/shut-down of every thermal unit

throughout the scheduling horizon, e.
3



Cg,t,ω() Cost function of every thermal unit.

EGE,th
g,t,ω/EGS,th

g,t,ω offering curve of every thermal unit in the energy/spinning reserve

markets, MW.

EGCHg,t/PCH
th
t /PCHW

t Provided charging power for the ESS by

every thermal unit/all thermal units/wind units, MW.

vdist /vcht 0 or 1 variable that represents ESS is working in the

discharging/charging mode.

ug,t/xg,t/yg,t 0 or 1 variable that represents every thermal unit is

online/ in the start-up situation/ in the shut-down situation.

EBS
t,ω Quantity of stored energy in the ESS, MWh.

r+t,ω/r−t,ω Imbalance ratio for over-generation/under-generation

as a multiplier of energy price.

1. Introduction

1.1. Motivation and Aim

Nowadays, the utilization of renewable energy resources has become an in-

separable part of power systems. In fact, the availability of different renew-

able energy resources such as wind and solar as well as considering the policy

of diminishing greenhouse gas emissions and demand growth are among cru-

cial factors for communities to focus on these resources [1]. Renewable energy

resources are divided into five general groups: wind power, solar power, hy-

dropower, biomass, and geothermal [1]. Since early 2000, wind power has a

significant share in the supply of electricity needed by customers [2]. In 2000,

17 gigawatts of worldwide customers were provided by wind turbines, while in

2014, it was increased to 361 gigawatts [2]. This reflects the interest of various

communities in increasing the use of wind energy. The most significant advan-

tages of wind energy are summarized to diminishing greenhouse gas emissions

as well as lessening electricity costs [1]. Despite the benefits of wind power,

there are many challenges for the owners of these resources to participate in the
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deregulated electricity markets. The wind power intermittency is known as the

greatest challenge of wind power producers (WPPs) in the literature [3]. To

this end, generation companies (GenCos) mainly design an integrated strategy

for the offering strategy of stochastic renewable-based energy systems alongside

dispatchable energy resources like thermal units and energy storage systems to

cope with the intermittent nature of their output power.

1.2. Literature Review

The optimal participation problem of wind power resources in the electricity

markets has been taken into consideration by various perspectives. Reference [4]

has presented an integrated operation of a group of wind farms for participating

in the day-ahead (DA) electricity market. The uncertain nature of wind power

and electricity prices are modeled via multiple stochastic scenarios. Authors in

[5] focused on the optimal offering strategy for a typical WPP in a pay-as-bids

market. Authors addressed the optimal offering strategy of WPPs through a bi-

level stochastic optimization problem. The optimal scheduling of a WPP using

information gap decision theory to deal with the wind power and market price

uncertainties has been discussed in [6]. The scheduling of a renewable-based

microgrid in the attendance of demand response programs has been investigated

in [7]. A multi-stage bidding framework for home microgrids has been proposed

in [8]. In [9], a self-scheduling (SS) model for micro grid based on a hybrid price-

based demand response program has been developed while two-point estimate

method has been used to handle the existing uncertainties.

The offering strategy problem is not limited to wind power plants. Ther-

mal units as the vital part of supplying customer’s electricity have been widely

studied in the literature of SS problem. According to the provided reports in

[1], more than 80 % of the US electricity is supplied by energy sources such as

petroleum, natural gas, and coal that can be implemented by thermal units. The

impact of possibilistic reserve deployment and forced outages of thermal units

on the SS problem have been studied in [10] while the same problem of a thermal

GenCo has been addressed in [11] based on the information gap decision theory.
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The authors formulated the SS problem as mixed-integer nonlinear program-

ming model while the uncertain parameters (market prices) have been modeled

via information gap decision theory approach. A new framework for optimal SS

of thermal units in the presence of upcoming high-impact low-probability events

is suggested in [12].

From another standpoint, integrated operation of various energy sources like

wind and thermal power plants have been studied in the context of offering s-

trategy [13]. The authors in [13] have benefited from stochastic programming

to address the offering strategy of a wind-thermal power producer. In the afore-

mentioned research works, the uncertain nature of wind power production and

market prices have been considered through a set of realizations. In [14], the

stochastic optimization has been utilized to deal with the uncertainties related

to prices, load, and production power of wind farm and photovoltaic system.

The coordinated wind-thermal-pumped storage offering strategy in energy and

regulation reserve markets has been proposed in [15]. In [15], The authors mod-

eled the inherent risk of uncertain parameters via conditional value-at-risk in

the suggested strategy. It should be noted that in the uncoordinated operation,

a single optimization problem runs for every distinct generation facility, while

in the coordinated one, the decision-making unit runs one unique optimization

problem on behalf of all generation facilities. Accordingly, in the coordinated op-

eration, the constraints and specifications of each generation unit can influence

the decision of other units, and as a result, the decision-making unit optimizes

the problem by considering the limitations on all generation units which ulti-

mately leads to the profitability of all units. The bidding and offering strategies

of a wind-hydro-pumped storage system in energy and ancillary service markets

can also be found in [16]. The previously introduced conditional value-at-risk

tool has also been utilized in [16] while the authors have been benefited from

a novel improved clonal selection algorithm in order to acquire the optimal so-

lution. Furthermore, appropriate economic models for supplying the electricity

needed for a water treatment plant and an irrigation network in the presence of

an integrated wind-hydro system are presented in [17] and [18], respectively.
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Due to the dramatic increase in the utilization of energy storage systems

(ESSs) in all sectors of the power system, the optimal offering strategy problem

of ESSs individually and alongside other resources have been attracted the at-

tention of many researchers worldwide. The impact of the battery life cycle on

the offering strategy of an ESS in the energy, spinning reserve, and regulation

markets has been investigated in [19]. An optimization approach for robust SS

of a compressed air energy storage has been discussed in [20]. Reference [21] fo-

cused on the offering strategy of an integrated wind-storage system on the basis

of linear decision rules. Authors in [22] have developed a two-stage approach

for optimal operation of wind and photovoltaic units in the presence of an ESS

with a focus on on the participation of all available units in the DA energy mar-

ket. A bi-level model for optimal involvement of an electric vehicle aggregator

in sequential electricity markets is proposed in [23] while the associated risk is

modeled via conditional value-at-risk.

The optimal scheduling of renewable energy-driven systems has received con-

siderable attention from researchers in the literature and is not limited to the

aforementioned references. A risk-constrained mechanism for optimal bidding

of a price-taker wind-hydro system in the DA market has been proposed in

[24] while wind power, electricity prices, and natural water flows are taken into

account as the uncertain sources. In [25], the problem proposed in [24] has

been extended to the bidding strategy of a wind hydro-pump storage system

in the presence of bilateral contracts. In [26], two-point estimate method has

been applied to deal with the uncertainties of renewable power productions

and load demand in the optimal scheduling problem of a system consisting of

thermal, solar, wind, and batteries. A risk-based scheduling methodology for

a wind-hydro-thermal generation system with the aim of minimizing total cost

has been presented in [27]. Lastly, in [28], an appropriate offering model for

a price-maker hybrid wind system and electric vehicle aggregators in the DA

market has been introduced.

A risk-based offering strategy for a wind-hydro power producer using worst-

case conditional value-at-risk has been proposed in [29]. Another offering ap-
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proach for a WPP paired with electric vehicles in DA and intraday markets has

been presented in [30]. Moreover, authors in [31] have introduced a novel SS

model for plug-in electric vehicles in the presence of intraday demand response

exchange market. In the context of the virtual power plant’s offering strategy,

the application of robust optimization and bi-level scheduling have been an-

alyzed in [32] and [33], respectively. A dynamic programming-based offering

strategy for a wind-battery system has been provided in [34], while the inves-

tigation of bid structures on the offering strategy of large-scale energy storage

systems has been conducted in [35]. In [36] and [37] two different SS structures

for an electricity retailer and aggregators of prosumers have been developed, re-

spectively, while the proposed model in [37] can dramatically decrease the costs

of both prosumers and aggregators in comparison with routinely introduced

frameworks by retailers. The considered model in [36] benefits from demand re-

sponse programs to effectively increase the profitability of the retailer while the

uncertainty associated with load demand is modeled using stochastic scenarios.

Another useful approach for handling the risk arising from demand response

providers based on the information gap decision theory has been presented in

[38]. Finally, a bi-level strategic offering mechanism for a wind-thermal power

producer in energy and balancing markets has been proposed in [39].

All papers presented above are single objective and aimed at profit max-

imization. The multi-objective model for optimal SS of hydrothermal power

producers has been addressed in [40], respectively. The previously mentioned

papers considered the profit maximization and emission minimization as the

conflicting objectives in the optimization process and the ε-constraint method

has been applied to solve the multi-objective optimization problem. In [41],

the bi-objective SS of a hydrothermal system in the presence of market price

uncertainty and forced outages of generation facilities has been proposed as an

extension of the presented model in [40]. A bi-level multi-objective bidding s-

trategy for a virtual power plant in the energy and regulation markets has been

developed in [42] while the augmented ε-constraint method has been employed

to find the Pareto solution set. Performance of the lexicographic optimization
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(LO) and hybrid augmented-weighted ε-constraint (HAW-Eps) method for the

bi-objective SS of a microgrid has been assessed in [43]. Among the recently

introduced research works on SS and as a traditional approach in power system

problems, a great significant has been given to the multi-objective scheduling of

various generation units regarding cost and emission minimization. The study

presented in [44] solve the cost and emission optimization problem by applying

the ε-constraint method. Also, investigation of the effects of pumped-storage

units on the multi-objective scheduling of hydrothermal units has been analyzed

in [44]. Sun et al. [45] proposed the optimal scheduling of wind and thermal

units in the form of a unit commitment problem. Alternatively, the problem

of hydro-wind-thermal scheduling with the goal of minimizing total operative

costs in an economic dispatch problem has been investigated in [46] and [47]. An

extended non-dominated sorting genetic algorithm, the third version and bee

colony optimization algorithm as optimization techniques have been applied for

solving the hydro-wind-thermal scheduling problem in references [46] and [47],

respectively.

1.3. Novelty of this contribution

This paper presents a novel three-stage multi-objective framework for de-

termining the optimal participation of a wind-thermal-energy storage (WTES)

system in the electricity markets. In the proposed multi-objective framework,

the WTES system tries to maximize its profit as the first objective while at the

same time, the emission minimization is taken into account as the second ob-

jective. To the best of authors’ knowledge and concerning the previous works in

this topic, no relevant research work in the literature proposes a multi-objective

model for the WTES offering strategy problem. In the presented framework, the

WTES system participates in the DA energy and spinning reserve markets. On

the other hand, the uncertainty associated with many of the parameters in the

optimization process is one of the challenges faced by GenCos. To this end, the

uncertain nature of various market prices and output power of the wind farm

in the optimization problem is modeled by a set of realizations. Accordingly,
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the main contributions of this paper in comparison with other research works

in this area are as follows:

• Proposing a three-stage stochastic multi-objective model for the offering

strategy problem of a WTES system on the basis of a mixed-integer pro-

gramming (MIP) formulation. In the suggested model, simultaneously

profit maximization and emission minimization are considered as conflict-

ing objectives in the optimization problem while the uncertain parameters

including energy, spinning reserve and imbalance prices, as well as wind

power production, are modeled via stochastic scenarios.

• Providing a participation model for the ESS in the spinning reserve mar-

ket in both charging and discharging modes, and subsequently, deriving

appropriate offering curves in this market.

• Presenting the physical connection between the ESS system and both

thermal and wind units for charging the ESS system in the mathematical

formulation of the proposed problem.

• Implementing the LO and HAW-Eps procedures to solve the multi-objective

WTES offering strategy problem. The LO helps the ε-constraint method

to more effectively specify objective functions’ range in comparison with

the traditional ε-constraint technique, while the HAW-Eps merely obtain-

s efficient Pareto solutions. Indeed, applying these two methods jointly

guarantees to reach the optimal Pareto solution set while the traditional

ε-constraint procedure cannot ascertain the effectiveness of the obtained

solutions. Also, a practical approach, i.e., a preference-based method, is

utilized to choose the best possible solution.

• Designing a new pattern based on the emission trading for the WTES

system to adopt the most suitable strategy while the emission quota is

taken into consideration.
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1.4. Paper Organization

The rest of the paper is categorized as follows: The problem description is

presented in the second section. The problem formulation for the WTES sys-

tem based on the three-stage stochastic optimization framework is presented in

Section 3. The suggested approach for solving the multi-objective optimization

model is proposed in section 4. The emission trading approach is presented

in section 5. Section 6 describes the solution procedure of the suggested the

multi-objective optimization problem. Section 7 is dedicated to the numerical

results, and finally, the related conclusions are drawn in section 8.

2. Problem Description

In the deregulated electricity markets, GenCos or power producers are in

charge of maximizing their profits in the form of an offering strategy problem.

The considered GenCo in this paper consists of thermal, wind, and energy stor-

age units. The GenCo faces various challenges that are not limited to addressing

uncertainties, but optimization of the offering strategy with conflicting objec-

tives. In this context, GenCo should not only maximize its profits but must

simultaneously minimize the emission arising from thermal units. Hence, the

survey of coordinated trading of wind and thermal units with ESS in the p-

resence of an additional objective function (OF), i.e., emission minimization of

thermal units, seems necessary and challenging. In addition, the participation

of thermal units and ESS in the spinning reserve market can be named as an-

other profitable source for GenCos which in this study, contrary to the reviewed

works, the effects of this partnership on both OFs of the GenCo, i.e., profit

maximization and emission minimization, will be thoroughly investigated.

Dealing with energy deviations in the balancing market is the main concern

of GenCos with intermittent energy resources. A power producer chooses its

target markets depending on a variety of factors, including experience, insight,

technical specifications of units, and its investment programs [48]. Consider a

WPP who is going to participate in the energy market of day k. For this pur-
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pose, the WPP should submit its production offer to the DA energy market in

day k-1. After the market closures, the independent system operator clears the

DA market. Assuming the acceptance of the WPP’s offer in the DA market, the

WPP must deliver the same amount of offered energy on day k. The mismatch

between the offered energy and the delivered energy is known as the biggest

challenge of WPPs. Accordingly, if the WPP experiences negative energy devi-

ation in the balancing market, i.e., the delivered energy is lower than the offered

energy in the DA market, the WPP is penalized based on the negative imbalance

ratio (r−t,ω). Otherwise, the WPP experiences positive energy deviation, i.e., the

delivered energy is greater than the offered energy in the DA market, and as

a result, the surplus energy is purchased at a different price in the balancing

market based on the positive imbalance ratio (r+t,ω). To grasp the reason for

such a mechanism, we should point out that multiplying these imbalance ratios

by the DA market prices ((r
−/+
t,ω ) ×ME

t,ω) determines the corresponding prices

for penalizing and purchasing the negative and positive energy deviations, re-

spectively. It is worth mentioning that the negative imbalance ratios are values

greater or equal to 1 (r−t,ω ≥ 1), while the positive imbalance ratios are values

lower or equal to 1 (r+t,ω ≤ 1) [49].

2.1. Decision Making Framework

The offering strategy problem of a WTES system in the DA energy and

spinning reserve markets is formulated as a three-stage stochastic programming

problem. The utilization of stochastic programming to cope with uncertainties

is extremely prevalent in power system problems. In this model, all uncertain

parameters are characterized by a set of scenarios. The order of the decision-

making process of the WTES system in the proposed three-stage stochastic

programming is as follows:

1. Stage 1: In the first stage, GenCo’s decisions are split into two groups.

The first group includes the GenCo’s decision regarding the operation

scheduling of thermal units and ESS. In particular, the on or off status

of thermal units and the charging and discharging modes of ESS for the

12



whole scheduling horizon will be determined in this stage. In the second

group, the decisions regarding the charging power for the ESS from three

different sources, namely, thermal and wind units as well as the DA energy

market will be made. The first stage decisions are made prior to the ization

of stochastic variables, which are known as here-and-now decisions.

2. Stage 2: The second stage decisions are pertained to designing the offer-

ing curves that should be submitted by the system in the DA energy and

spinning reserve markets. Decisions of the second stage are contingent

on the decisions of the first stage. These decisions are entitled as special

here-and-now decisions.

3. Stage 3: The third stage decisions of stochastic programming appertains

to the balancing market and the energy deviations of the system in this

market. At this stage, the imbalance costs caused by deviation of wind

turbines and the revenue arising from reserve deployment will be calcu-

lated. It should be noted that the third stage decisions will be made after

the realization of all stochastic variables (DA energy market, spinning re-

serve market, balancing market, and wind power). These decisions are

denominated as wait-and-see decisions.

The classification of the decision variables in the proposed three-stage s-

tochastic programming has been listed in Table 1.

———————————

Table 1 is placed here

———————————

3. Problem Formulation

The multi-objective offering strategy problem of a WTES system has two

separate OFs. The first OF is intended to maximize the system’s expected profit

from participation in the energy and spinning reserve markets. The second OF

is aimed at minimizing the expected emission of thermal units. In the following

subsections, each of the mentioned OFs will be introduced.
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3.1. First Objective Function: Maximizing the Expected Profit of WTES System

As stated above, the first OF is the maximization of the system’s expected

profit in the desired time horizon (DA scheduling horizon). In this regard,

the system’s optimal participation in each of the selected markets, that are

the outputs of the offering strategy problem, will be obtained. The considered

system in this paper consists of several thermal units, a wind farm, and an ESS.

Due to the intermittent nature of wind power, the system only takes advantage

of the wind farm to offer in the energy market [49]. Thermal units and ESS

are also able to participate in the energy and spinning reserve markets. The

considered ESS in this paper can be used in either charging or discharging

mode to participate in the energy and spinning reserve markets. The ESS can

be treated as a producer (discharging mode) or a consumer (charging mode)

in the energy market. In addition to participating in spinning reserve market

during discharging mode, the ESS can also act as a responsive load in the

discharging mode for participating in the spinning reserve market [50]. The

first OF, maximizing the expected profit of the WTES system, based on the

three-stage stochastic programming is formulated as follows:

Max FWTES
1 =

NΩ∑
ω=1

πω × [

NT∑
t=1

{
(
ME

t,ωB
E,th
t,ω

)
+
(
ME

t,ωB
E,W
t,ω

)
+
(
ME

t,ωB
E,S,dis
t,ω

)
−
(
ME

t,ωB
E,S,ch
t

)
+
(
MS

t,ωB
S,th
t,ω

)
+
(
MS

t,ωB
S,S,dis
t,ω

)
+
(
MS

t,ωB
S,S,ch
t,ω

)
+ Probcal ×

(
BS,th

t,ω +BS,S,dis
t,ω +BS,S,ch

t,ω

)
×M bal

t,ω

+
(
ME

t,ωr
+
t,ω∆+

t,ω

)
−
(
ME

t,ωr
−
t,ω∆−

t,ω

)
−

NG∑
g=1

Cg,t,ω

(
EGE,th

g,t,ω + EGCHg,t + Probcal × (EGS,th
g,t,ω)

)
}]

−
T∑

t=1

NG∑
g=1

(Ug,t +Dg,t) (1)

where the first line of FWTES
1 represents the income of WTES system from

participating in the energy market. The first, second, and third parentheses

of this line relate to the involvement of thermal units, wind farm, and ESS in

14



the energy market, respectively. The first parenthesis in the second line of (1)

indicates the cost incurred by the WTES system for purchasing the charging

energy for the ESS from the energy market while the next three parentheses

express the earned income by WTES system from participating in the spinning

reserve market. The third line models the expected income of the WTES system

due to spinning reserve deployment in the balancing market. The fourth line

of (1) shows the system’s revenue/cost arising from the energy deviations in

the balancing market. The first parenthesis in this line represents the system’s

income due to the over-generation between the real and scheduled generation

while the second parenthesis relates to the under-generation between the ac-

tual and scheduled production, which is a cost term. Finally, the fifth and

sixth lines denote the generation costs, start-up, and shut-down costs incurred

by each thermal unit, respectively. It must be stressed that a series of piece-

wise linearized blocks are utilized to approximate the quadratic cost function of

thermal units, which would be helpful to benefit from the advantages of linear

programming [51].

3.2. Second Objective Function: Minimizing the Expected Emission of WTES

System

The second OF is to minimize the pollution produced by thermal units

during the scheduling horizon, which is expressed according to the following

equation:

Min FWTES
2 =

NΩ∑
ω=1

πω × [

EMG∑
q=1

NG∑
g=1

Eq,g ×
(
EGE,th

g,t,ω + EGCHg,t + ProbcalEGS,th
g,t,ω

)
]

(2)

where the produced pollution arises from there sources. The first source is

the generated emission by thermal units while contributing to the energy market,

i.e., EGE,th
t,ω . The produced emission arising from providing the charging power

for ESS (EGCHg,t) and spinning reserve deployment in the balancing market

(ProbcalEGS,th
g,t,ω) are the second and third sources of emission, respectively. In
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this paper, the SO2 and NOX are considered as the source of pollutions due to

their great importance in the environment [52]. It is worthwhile to note that the

emission function of thermal units is approximated with a piecewise linearized

segment [52].

3.3. Constraints

The constraints of the proposed WTES offering strategy are classified into

the following categories.

3.3.1. Modeling Imbalances

In order to model the imbalances in the suggested offering strategy problem,

constraints (3)-(5) are used. As stated above, imbalances arise when there is a

difference between actual production and the submitted bid to the energy mar-

ket. Constraints (3) calculates the whole energy deviations of WTES system

in the balancing market. The first parenthesis expresses the total available and

actual generated power by the WTES system, while the second parenthesis in-

dicates the offered energy by the WTES system in the energy market. Equation

(4) restricts the upper bound of the positive deviation, which is equivalent to

the total available and actual generated power by the WTES system in each

scenario. Similarly, constraint (5) restricts the maximum value of the negative

deviation.

∆+
t,ω −∆−

t,ω =
(
BE,th

t,ω +BE,S,dis
t,ω + PW

t,ω − PCHW
t

)
−
(
BE,W

t,ω +BE,th
t,ω +BE,S,dis

)
, ∀t,∀ω (3)

0 ≤ ∆+
t,ω ≤ B

E,th
t,ω +BE,S,dis

t,ω + PW
t,ω − PCHW

t , ∀t,∀ω (4)

0 ≤ ∆−
t,ω ≤ PW,Max +

NG∑
g=1

P th,Max
g .ug,t + P dis,Max.vdist , ∀t, ∀ω (5)
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3.3.2. Modeling Operational Constraints of Wind Farm

In this subsection, the operation constraints pertaining to the wind farm

will be introduced. Constraints (6)-(9) model the maximum and minimum

value of the offered energy by the wind farm in the energy market, provided

charging energy for the ESS, and the total scheduled energy by the wind farm,

respectively.

0 ≤ BE,W
t,ω ≤ PW,Max, ∀t,∀ω (6)

0 ≤ PCHW
t ≤ PW,Max, ∀t (7)

0 ≤ PCHW
t ≤ P ch,Max, ∀t (8)

0 ≤ PCHW
t +BE,W

t,ω ≤ PW,Max, ∀t, ∀ω (9)

3.3.3. Modeling Operational Constraints of Thermal Units

Equalities (10) and (11) calculate the total energy and spinning reserve offers

by thermal units. Constraints (12)-(14) are employed to model the limitations

related to the maximum and minimum value of produced and offered energies

by thermal units. It is worth to note that the maximum capacity of units offer

in the spinning reserve market would be defined based on their ramp-up rate,

which is equivalent to RURg × 1
6 . This issue comes from the fact that the

spinning reserve should be ready to deliver in ten minutes [53]. The upper

bound of the provided charging power for ESS by thermal units is limited using

(15). The start-up and shut-down costs incurred by each thermal units are

modeled by equations (16) and (17), respectively. The restrictions associated

with the minimum up and down times of thermal units are enforced by (18) and

(19), respectively. Furthermore, the logical relationship between the status of

thermal units and start-up and shut-down variables are modeled via constraint

(20). Equality (21) calculates the total expected production power by thermal
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units. Finally, the constraints associated with the unit’s ramp-up and ramp-

down limits are modeled by restrictions (22) and (23). It should be noted that

the technical limitations pertaining to the start-up and shut-down ramps are

considered in these constraints. It has to be noted that the prohibited operating

zones of thermal units are not considered in the proposed model, whereas it can

be easily adapted from the suggested model in [54]. It should be noted that the

forced outage of thermal units is not considered in this paper, while appropriate

modeling of them can be found in [55].

NG∑
g=1

EGE,th
g,t,ω = BE,th

t,ω , ∀t, ∀ω (10)

NG∑
g=1

EGS,th
g,t,ω = BS,th

t,ω , ∀t, ∀ω (11)

P th,Min
g .ug,t ≤ EGE,th

g,t,ω + EGCHg,t ≤ P th,Max
g .ug,t, ∀g,∀t,∀ω (12)

0 ≤ EGS,th
g,t,ω ≤ P th,S,Max

g .ug,t, ∀g,∀t,∀ω (13)

P th,Min
g .ug,t ≤ EGE,th

g,t,ω + EGS,th
g,t,ω + EGCHg,t ≤ P th,Max

g .ug,t, ∀g,∀t,∀ω

(14)

0 ≤ EGCHg,t ≤ P ch,Max.ug,t, ∀g,∀t (15)

0 ≤ Ug,t ≥ STUCg.xg,t, ∀g,∀t (16)

0 ≤ Dg,t ≥ STDCg.yg,t, ∀g,∀t (17)

t∑
n=t−MUTg+1

xg,t ≤ ug,t, ∀g,∀t (18)
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 t∑
n=t−MDTg+1

yg,t

+ ug,t ≤ 1, ∀g,∀t (19)

yg,t−1 − ug,t + xg,t − yg,t = 0, ∀g,∀t (20)

EGE,th
t,ω + EGCHg,t + ProbcalEGS,th

g,t,ω = EGEXP,th
g,t,ω , ∀g,∀t,∀ω (21)

EGEXP,th
g,t,ω ≤ EGEXP,th

g,t−1,ω +RURg.ug,t−1 + STURLg.xg,t, ∀g,∀t, ∀ω (22)

EGEXP,th
g,t−1,ω ≤ EG

EXP,th
g,t,ω +RDRg.ug,t + STDRLg.yg,t, ∀g,∀t,∀ω (23)

3.3.4. Modeling Operational Constraints of ESS

Equations (24)-(32) are utilized to model the operational constraints of the

ESS during the scheduling horizon. Equality (24) computes the total provided

charging energy for ESS by the thermal units. Constraints (25) and (26) restrict

the energy and spinning reserve offers of ESS during the discharging mode within

its maximum discharging power. The total energy and spinning reserve offers

of ESS also should not be higher than the maximum discharging power of ESS,

which is modeled via (27). Equation (28) ensures that the total charging power

of ESS does not exceed the maximum charging power of ESS in every time

interval and scenario. Constraint (29) limits the spinning reserve offer of ESS

during the charging mode. Restriction (30) models the operation mode of ESS

at each time step. Eventually, the state of charge of ESS is calculated applying

equation (31) while its maximum and minimum limitations are imposed by

equation (32).

NG∑
g=1

EGCHg,t = PCHth
t , ∀t (24)

0 ≤ BE,S,dis
t,ω ≤ P dis,Max.vdist , ∀t, ∀ω (25)
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0 ≤ BS,S,dis
t,ω ≤ P dis,Max.vdist , ∀t,∀ω (26)

0 ≤ BE,S,dis
t,ω +BS,S,dis

t,ω ≤ P dis,Max.vdist , ∀t,∀ω (27)

0 ≤ BE,S,ch
t,ω + PCHth

t + PCHW
t ≤ P ch,Max.vcht , ∀t,∀ω (28)

0 ≤ BS,S,ch
t,ω ≤ BE,S,ch

t , ∀t, ∀ω (29)

vdist + vcht ≤ 1, ∀t (30)

EBS
t,ω = EBS

t−1,ω+

ZS,ch
(
BE,S,ch

t + PCHth + PCHW −BS,S,Ch
t,ω × Probcal

)
−(

1

ZS,dis

)(
BE,S,dis

t,ω +BS,S,dis
t,ω × Probcal

)
, ∀t,∀ω (31)

0 ≤ EBS
t,ω ≤ EBS,Max, ∀t, ∀ω (32)

3.3.5. Modeling offering Curves

In order to extract the offering curves of the WTES system in the energy

and spinning reserve markets, two conditions must always be met: the non-

decreasing and the non-anticipativity constraints. Restrictions (33)-(35) and

(36)-(38) provide the non-decreasing condition for submitting offering curves

in the energy and spinning reserve market, respectively. Analogously, the non-

anticipativity constraint of the energy and spinning reserve curves is ensured by

equations (39)-(41) and (42)-(44), respectively.

BE,th
t,ω ≤ BE,th

t,ω̃ , ∀ω, ω̃ : [ME
t,ω ≤ME

t,ω̃], ∀t (33)

BE,W
t,ω ≤ BE,W

t,ω̃ , ∀ω, ω̃ : [ME
t,ω ≤ME

t,ω̃], ∀t (34)

BE,S,dis
t,ω ≤ BE,S,dis

t,ω̃ , ∀ω, ω̃ : [ME
t,ω ≤ME

t,ω̃], ∀t (35)
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BS,th
t,ω ≤ B

S,th
t,ω̃ , ∀ω, ω̃ : [MS

t,ω ≤MS
t,ω̃], ∀t (36)

BS,S,dis
t,ω ≤ BS,S,dis

t,ω̃ , ∀ω, ω̃ : [MS
t,ω ≤MS

t,ω̃], ∀t (37)

BS,S,ch
t,ω ≤ BS,S,ch

t,ω̃ , ∀ω, ω̃ : [MS
t,ω ≤MS

t,ω̃], ∀t (38)

BE,th
t,ω = BE,th

t,ω̃ , ∀ω, ω̃ : [ME
t,ω = ME

t,ω̃], ∀t (39)

BE,W
t,ω = BE,W

t,ω̃ , ∀ω, ω̃ : [ME
t,ω = ME

t,ω̃], ∀t (40)

BE,S,dis
t,ω = BE,S,dis

t,ω̃ , ∀ω, ω̃ : [ME
t,ω = ME

t,ω̃], ∀t (41)

BS,th
t,ω = BS,th

t,ω̃ , ∀ω, ω̃ : [MS
t,ω = MS

t,ω̃], ∀t (42)

BS,S,dis
t,ω = BS,S,dis

t,ω̃ , ∀ω, ω̃ : [MS
t,ω = MS

t,ω̃], ∀t (43)

BS,S,ch
t,ω = BS,S,ch

t,ω̃ , ∀ω, ω̃ : [MS
t,ω = MS

t,ω̃], ∀t (44)

Fig. 1 illustrates the schematic of the proposed WTES system participating

in the energy and spinning reserve market using three-stage stochastic program-

ming.

———————————

Fig. 1 is placed here

———————————

4. Multi-objective solution method

4.1. Modified ε-constraint method

In real engineering problems, the decision makers often confront further than

one OF that has to be optimized. The ε-constraint [40] and weighted sum [56]

methods are among common approaches to solve the multi-objective problems
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in the context of the power system. In the weighted sum technique, the OFs are

merged while in the ε-constraint approach, one OF is considered as the princi-

pal OF and other OFs appear as the constraints in the problem formulation.

Researchers have noted many advantages of the ε-constraint method versus the

weighted sum approach in the literature of multi-objective optimization prob-

lems [57]. The main advantages of epsilon constraint are as follows:

1. Unlike the weighted sum method which is only capable of producing ef-

ficient extreme solutions, the ε-constraint method also has the ability to

create non-extreme efficient solutions in linear problems [57].

2. Contrary to the weighted sum technique, the scaling of OFs in the ε-

constraint method is not a problem [57].

3. It is possible to control the number of solutions obtained from ε-constraint

technique only by changing the grid points associated with each of the OFs

[57].

In accordance with the outlined advantages, the ε-constraint method has

been implemented in some power system problems including self-scheduling

problems [40] and [41] which indicate the performance of the suggested ap-

proach. On the other hand, researchers have consistently taken two points into

account to improve the performance of the traditional ε-constraint. The re-

searchers’ first concern is that the range of OFs is not optimal over the efficient

set, and secondly, the productivity of the attained results by the ε-constraint

technique cannot be ensured. In order to prevail over these shortcomings, the

LO and HAW-Eps methods are suggested in this paper. Hence, the proposed

method for solving multi-objective optimization problem is contained the joint

LO and HAW-Eps technique. It’s worth mentioning that the effectiveness of the

joint LO and HAW-Eps technique for obtaining the optimal Pareto solutions in

multi-objective programming problems has been proved in [58].

Consider a multi-objective optimization problem with n OFs. The generic
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form of HAW-Eps technique would be formulated as follows:

Min/Max f1(x) +

(
dir1
w1

) n∑
i=2

wi

(
r1s

k
i

ri

)
(45)

subject to.

eki = fi(x)− diriski

si ∈ R+ (46)

eki = fmax
i −

(
fmax
i − fmin

i

qi

)
× k

k = 0, 1, ..., qi i = 2, 3, ..., n (47)

where in (28), f1(x) is the selected principal OF among n OFs of the multi-

objective optimization problem. It is worth noting that in the proposed multi-

objective solution method, namely, HAW-Eps, there is no difference between the

various objective functions in terms of being selected as the principal objective

function. In order to determine the direction of each OF (minimization or

maximization), diri is considered in the problem formulation. This parameter

can be assigned values of +1 or −1. diri = +1 is related to the functions

aimed at maximizing and diri = −1 is dedicated to the functions aimed at

minimizing. Si denotes the extra variables used for the constraint of the multi-

objective optimization problem. The term wi refers to the weights of each OF

in the optimization process. In fact, this parameter reflects the comparative

significance of OFs for the decision maker. Also, the range of every OF is

represented by ri which is calculated from the payoff table. As stated above,

the productivity of the attained solutions through the ε-constraint technique is

the first drawback of this approach, which the LO is introduced as the remedy

to this matter [57]. In fact, the LO is applied to calculate the payoff table

(matrix). The way to create this table by providing an example would be as

follows.

Consider a multi-objective optimization problem with three OFs Maxf1(x),

Maxf2(x) and Maxf3(x). The payoff table for this problem consists of 3 rows
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and columns. In general, the payoff table pertaining to a multi-objective op-

timization problem with n OFs would be a n*n matrix. Therefore, the payoff

table of the aforementioned example would be as follows:

Φ =


f∗1 (x∗1) f∗2 (x∗1) f∗3 (x∗1)

f∗1 (x∗2) f∗2 (x∗2) f∗3 (x∗2)

f∗1 (x∗3) f∗2 (x∗3) f∗3 (x∗3)

 (48)

where f∗1 (x∗1), f∗2 (x∗2) and f∗3 (x∗3) are the optimal values of OFs f1(x), f2(x)

and f3(x) from a single objective optimization process, respectively. Hence,

the single-objective optimization results of each of the OFs constitute the main

diagonal of the payoff matrix. The fundamental difference in the calculation

of the payoff matrix in the conventional approach and the LO relates to the

calculation of non-main diagonal elements of this matrix. According to this

matrix, there is a main OF in each row. The first row is related to the first

OF (f1(x)), the second row corresponds to the second OF (f2(x)) and so forth.

Based on the LO, the optimal values of OFs (e.g., f2(x) and f3(x)) in rows with

a different main OF (f1(x)) would be calculated as follows:

f∗2 (x∗1) = Maxf2(x) s.t. Maxf1(x) = f∗1 (x∗1)

f∗3 (x∗1) = Maxf3(x) s.t. Maxf1(x) = f∗1 (x∗1) (49)

Finally, by constructing the payoff matrix, the upper and lower bounds of

the ith OFs (fi(x)) will be obtained from the ith column of the payoff matrix.

Consequently, the range ofith OF ri would be calculated as follows:

ri = fmax
i − fmin

i (50)

It should be noted that in order to prevent any scaling difficulty, r1si
ri

is

considered in the latter term of (45). Eventually, in the ultimate step, the

decision maker should divide the range of n − 1 OFs to the identical intervals

24



(qi). By iteratively varying parameter ei, the Pareto optimal solutions will be

obtained. In other words, by selecting the appropriate number of grid points qi

for each OF fi(x), the optimization problem will be solved for qi + 1 times, and

thus, qi + 1 efficient solutions will be obtained for each fi(x). In this regard,

the multi-objective optimization problem will be divided into
∏n

i=2(qi + 1) sub-

problems, and as a result,
∏n

i=2(qi + 1) efficient solutions as the Pareto optimal

solutions will be acquired.

4.2. Decision maker’s attitude to pick the most favored solution

After achieving the final result set, one of the most common questions that

may arise for the decision-maker is: which of the obtained solutions is the most

favored solution among the Pareto optimal solutions? A variety of approaches,

such as the fuzzy technique [40], VIKOR [59], and a preference-based approach

[60] have been used by researchers to pick the most favored solution among all

set of solutions. In the fuzzy technique, a linear membership function is assigned

to all OFs for measuring the optimal degree of each Pareto optimal solution.

Whatever the obtained values from these membership functions are greater, the

optimal degree of those specific solutions will also be greater. By contrast, the

VIKOR technique specifies the most favored solution by ranking all obtained

Pareto solutions in terms of being the closest to the ideal. In the current pa-

per, the authors have benefitted from a preference-based approach according to

the presented mechanism in [60]. Based on this approach, the ultimate deci-

sion maker’s strategy will be implemented based on priority, preferences, and

preconditions. To this end, the power producer (decision-maker), based on the

prospect, past experiences, different operating conditions, market rules, and so

on, selects boundaries for the OFs. In this regard, lower bounds are devoted to

the maximizing OFs and upper bounds are assigned to the minimizing OFs by

the decision-maker, and ultimately, the most favored solution is selected on the

basis of these boundaries. For better clarification, the following example would

be of interest.

Assume that the presented Pareto set in Fig. 2 concerns with a bi-objective
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optimization problem with OFs G1 and G2. The decision-maker aims at mini-

mizing both OFs while the relevant upper bounds forG1 andG2 in the preference-

based technique are considered equal to e7 and e6, respectively. According to

these restrictions, Pareto solution 3 is selected as the most favored solution as

it overcomes both limitations imposed by the decision-maker.

———————————

Fig. 2 is placed here

———————————

5. Emission trading

In many countries, the emission quotas pertaining to each GenCo are limited.

For example, in the US, the environmental protection agency is in charge of the

legislation in the area of greenhouse gas emission. According to the presented

reports in [61], the emission quotas of power plants are determined by various

factors such as the type of fuel consumption, the location of the power plants and

long-term clean power plans by the environmental protection agency. In many

cases, achieving maximum profit through the offering strategy problem leads

to the procurement of extra emission quotas by the GenCo. This occurs when

the emission quota is lower than the produced emission by the GenCo (EQo <

EG). From a different point of view, depending on the market conditions,

participation in the energy market may not be as profitable as selling a portion

of the emission quota. In this case, the generated emission is lower than the

assigned emission quota to the GenCo (EQo > EG). Consequently, after solving

the multi-objective WTES offering strategy problem and achieving to the Pareto

optimal solution set, the GenCo will face two situations in any of Pareto optimal

solution: generation over emission quota and generation under emission quota.

As stated above, the total expected GenCo’s income in each Pareto optimal

solution will be calculated as follows:

TPF = PF +
[
λEE ×

(
EQo − EG

)]
(51)
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Where TPF is the GenCo’s total expected profit ($), PF indicates the

system’s profit in any of Pareto optimal solutions ($), EQo refers to the emission

quota of the GenCo (lbs) and in the end, EG is the produced emission by the

system in any of Pareto optimal solutions (lbs). Eventually, the Pareto optimal

solution with the greatest quantity of TPF is selected as the final optimal

solution among the total Pareto optimal solutions.

6. Solution procedure

In this section, the solution procedure of multi-objective WTES offering

strategy with the implementation of LO and HAW-Eps method following the

presented flowchart in Fig. 3 will be as the following steps:

1. The first step is related to dealing with the uncertain parameters in the

WTES offering strategy problem. In the current paper, authors benefit

from a scenario-based approach to address the uncertain nature of param-

eters in the multi-stage WTES offering strategy problem. The uncertain

parameters consist of energy, spinning reserve, up and down imbalance

ratios (balancing market) and finally, wind power. For this purpose, the

roulette wheel process [62] is employed to generate an arbitrary level of

stochastic scenarios for each uncertain parameter. It is worth to note

that the normal [63] and Rayleigh [64] distributions are assigned as suit-

able probability density functions for extracting the behavior of electricity

prices and wind speed, respectively. In this regard, a large number of sce-

narios are generated based on the statistical characteristic of each param-

eter (scenario generation stage). Constructing the scenario tree based on

a large number of scenarios will cause the problem to become intractable.

To this end, the initial scenarios pertaining to each uncertain parameter

are reduced to five representing scenarios using SCENRED tool [65] in

GAMS (scenario reduction stage). This tool allows stochastic program-

ming researchers to reduce their initial scenario set to a smaller scenario

subset to avoid the computational explosion. SCENRED consists of two
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scenario reduction algorithms, namely, forward and backward algorithm-

s. The initial scenario set is reduced to the desired number using each of

these algorithms, and subsequently, the final preserved scenarios and their

updated probabilities are the outputs of the aforementioned algorithms. It

has to be noted that the forward algorithm due to the lower computation

time has been employed in this paper.

2. In the second step, the LO is applied to calculate the payoff matrix for

the multi-objective WTES offering problem.

3. In the third step, equation (50) based on the payoff matrix is utilized to

calculate the range of each OF fi(x) (i=2, 3,..., n).

4. In the next step, equation (47) is employed to divide the range of n-1 OFs

to qi identical intervals.

5. The fifth step is concerned with obtaining the Pareto optimal solutions by

solving
∏n

i=2(qi + 1) optimization sub-problems. It must be stressed that

applying the HAW-Eps method in this stage will ensure the efficiency of

the obtained solutions.

6. finally, the last step is to pick the most favored Pareto optimal solution

among the all Pareto optimal solutions by applying the suggested approach

in subsection 4.2.

———————————

Fig. 3 is placed here

———————————

7. Numerical results

In this section, the system under study is initially introduced. Then, the

input data and case studies intended to assess the effectiveness and applicability

of the suggested model will be presented in detail.

The system under study contains a wind farm, fourteen thermal units, and

an ESS. The capacity of the wind farm and ESS is 360 MW and 50 MWh,
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respectively, whereas the total installed capacity of the thermal units is equal to

794 MW. The cost and emission information of thermal units with their permis-

sible output power are presented in Table 2. It is worthwhile to note that this

information has been extracted from [52]. According to previously published

work in this area, the SO2 and NOX are considered as the primary sources

of emission in this study [52]. The technical specification of thermal units in-

cluding ramp up/down limits, minimum up/down times, shut-down ramp limit,

start-up ramp limit as well as their start-up and shut-down costs are shown in

Table 3. It can be noticed that the units’ shut-down cost (STDC(g)) are equal

to 0.1×STUC(g). As stated in subsection 3.3.3, the maximum unit’s offer in

the spinning reserve market is determined as RURg × 1
6 [12]. Also, the val-

ue of Probcal is assumed to be 0.05 [19]. The characteristics of the ESS and

wind turbines have been exhibited in Table 4. The efficiency data of ESS in ei-

ther charging or discharging mode is used from [22] while the maximum energy

volume of ESS has been adopted from [19].

————————————————————

Table 2, Table 3 and Table 4 are placed here

————————————————————

As already mentioned in the solution procedure section, there are four sources

of uncertainty in the suggested problem. First, abundant scenarios for each pa-

rameter is generated. Afterward, in order to avoid any computational burden,

the generated scenarios pertaining to each parameter are reduced to five sce-

narios using SCENRED. The data for the first six months of 2018 is considered

for the statistical analysis in the scenario generation process. The data on the

electricity market and wind speed can be found in [66] and [67], respectively.

For instance, the data on energy and spinning reserve prices have been shown

in Fig. 4 [66]. Lastly, the probability of reduced scenarios for each uncertain

parameter is listed in Table 5.

——————————–

Fig. 4 is placed here

——————————–
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The proposed bi-objective WTES offering strategy problem is formulated

as a MIP problem and solved with GAMS software using CPLEX12. It is

worthwhile to mention that the authors are currently working on a book in the

context of offering strategy in which the integration of various energy sources and

application of diverse uncertainty modeling techniques will be investigated while

all GAMS codes pertaining to this paper and other analyses will be available

for readers [68].

This problem will be analyzed under three different case studies each includes

two different decision-making schemes:

1. First scheme: In the first scheme, the comparative significance of both

OFs is equivalent (w1, w2= 1). Thus, in the proposed multi-objective

optimization framework, the WTES system makes no distinction between

the goals of profit maximization and emission minimization.

2. Second scheme: Since system’s primary goal is to attain the maximum

profit by participating in the electricity markets, the significance of maxi-

mizing profits in the second scheme is considered three times higher than

the emission minimization, thus, w1=3 and w2=1.

It has to be noted that the different aspects of each case study are characterized

in Table 6. The first case study addresses the bi-objective offering strategy

of a wind-thermal system in the energy market. In the latter case study, the

multi-objective offering strategy problem is developed for a WTES system, in

which only thermal units participate in the spinning reserve market. Finally,

the third case study examines the previous case by taking into account the

involvement of the ESS in the spinning reserve market. Finally, as expressed in

subsection 4.2, the decision maker should determine the limitations of each OF

in every decision-making scheme to choose the final decision in the bi-objective

optimization problem. The maximum prearranged limits for the emission of

the WTES system in the first and the second decision-making schemes are

55×103 lbs and 215×103 lbs, respectively, while the minimum restrictions for

the system’s profit are selected e 240×103 and e 345×103 for the first and the

30



second decision-making schemes, respectively.

———————————

Table 6 is placed here

———————————

Tables 7, 8, and 9 show a set of optimal Pareto solutions for case studies one,

two, and three correspondings to the first decision-making scheme, respective-

ly. The first three columns present the number, expected profit and expected

emission of each Pareto optimal solution. The next two columns indicate the

total submitted offers from the system to energy and spinning reserve markets

through the 24-hour scheduling horizon. According to the reported solutions

in these tables, decreasing the system’s expected profit will lead to a lower lev-

el of participation in the energy market. The first row with highlighted cells

represents the final decision of the system for whole case studies based on the

prearranged values. The expected profits of the system in the first to third case

studies are e 243637.717, e 249915.654, and e 262167.583, respectively, indi-

cating the performance of the third case study in comparison with other cases.

The offering strategy in the third case study of first decision-making scheme

results in an increase of e 18529.866 and e 12251.929 compared to the first and

second cases, respectively. From a different point of view, the second and third

case studies will also result in a lower level of pollution compared to the first

case. The reason behind the variation of the system’s emission in the first case

study in contrast to the second and third cases is the participation of thermal

units in the spinning reserve market.

————————————————————

Table 7, Table 8 and Table 9 are placed here

————————————————————

The results of the second decision-making scheme are listed in Tables 10, 11,

and 12. Analogous to the first case study, the highlighted rows of the tables

demonstrate the picked solution for all case studies. It is worth to note that the

increment in the system’s expected profit will raise the generated pollution by

the system. Another point of attention is that the amount of total submitted
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offers by the system under study in both the energy and spinning reserve markets

will increase in the second decision-making scheme compared to the first one.

—————————————————————–

Table 10, Table 11 and Table 12 are placed here

—————————————————————–

The status of thermal units within the scheduling horizon for the selected

solutions of the whole case studies are shown in Table 13 and Table 14. Accord-

ing to Table 13, in the first decision-making scheme, units G6 − G9 and G14

are off for the entire scheduling period. This issue stems from the fact of having

high production cost for units G6−G9 and exorbitant start-up and shut-down

costs for unit G19. By changing the producer’s decision-making approach from

the first scheme to the second one, unit G14 starts to produce electricity at

the first hour and remains online for the rest of the scheduling period. Also,

by altering the offering strategy of the system from the first case study to the

second/third case study, units G1-G5 generate power during hours 1-5 in con-

trast with the first case study. It should be noted that the variation in the

commitment program of units in each case study is distinguished by highlighted

cells.

——————————————————-

Table 13 and Table 14 are placed here

——————————————————-

The expected energy offers in the spinning reserve market for the selected so-

lutions have been shown in Fig. 5. From Fig. 5 (a), two things can be concluded:

first, by increasing the significance of the profit function for the decision maker,

the participation of thermal units in the spinning reserve market will dramat-

ically grow and second, at hour 20, the system’s involvement in the spinning

reserve market will diminish due to its lowest spinning reserve price. Fig. 5 (b)

and Fig. 5 (c) provide the expected involvement of WTES system in the spin-

ning reserve market for two different decision-making schemes of the third case

study. As can be seen from these figures, changing the decision-making scheme

does not have an effect on the amount of submitted energy offers by the ESS in
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the spinning reserve market, and the attitude of thermal units in this market

only suffers changes.

——————————

Fig. 5 are placed here

——————————

The optimal involvement of ESS in the energy market and its state of charge

for the second and the third case studies have been depicted in Fig. 6. As can

be seen in Fig. 6 (a), the ESS system purchase energy at hours 1 and 3 as a

result of experiencing the lowest energy prices at these hours. The ESS system

sells the stored energy during hours 8, 14, 19 and 20 due to the facts that the

peak of energy market prices occur during these hours (hours 19 and 20) or ESS

experiences extremely high energy price in a specific scenario (hours 8 and 14).

In the second decision-making scheme (Fig. 6 (b)), the ESS would supply most of

its charging power at hour 3 through the thermal units instead of buying it from

the energy market. In other words, providing the charging energy at this hour

through the thermal units is more profitable than purchasing it from the energy

market. Fig. 6 (c) illustrates the optimal operation of ESS in the third case

study. Fig. 6 (c) and Fig. 5 (b/c) permit concluding that the mere participation

of ESS in the spinning reserve market is more profitable than offering in the

energy market.

———————————

Fig. 6 is placed here

———————————

The offering curves of the WTES system in the energy and spinning reserve

markets for two distinct hours are presented in Fig. 7 and Fig. 8, respectively.

It must be stressed that these curves are related to the first decision-making

scheme. In fact, thermal units will diminish their participation in the energy

market whenever the option of spinning reserve market is available. Another

important point that can be deduced from Fig. 7 (a) is that the ESS offers in

the energy market at hour 8 due to the fact of experiencing an extremely high

energy price (67.21 e/MWh) in a scenario. Fig. 9 presents the variation of
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the system’s expected profit for different values of ESS production capacity in

the third case study of the first scheme. As can be observed from this curve,

the suggested offering strategy in the third case study can significantly raise

the expected profit of the system by increasing the production capacity of ESS.

Specifically, in the suggested approach, every five megawatts increment in the

production capacity of ESS will lead to a e 1299 increase in the total expected

profit of the system while in the proposed method of [22], each extra 5 MW

production capacity will result in a e 14 increase in the expected profit.

————————————————————

Fig. 7, Fig. 8, and Fig. 9 are placed here

————————————————————

One of the most critical issues encountered by the researchers in the multi-

objective stochastic programming problems is the number of scenarios arising

from the uncertain parameters. To this end, a further study based on the larger

number of reduced scenarios, i.e., ten scenarios, has been accomplished, and

subsequently, the results are compared with the previous studies. It has to be

noted that this additional study is carried out on the third case study of the

second decision-making scheme. The suggested model is solved with CPLEX12

under GAMS environment in an ASUS K series laptop computer powered by a

core i5 processor and 4 GB of RAM. Table 15 reports the results of the third

case study for the second decision-making scheme under two different analyses,

namely, five and ten representative scenarios for each uncertain source. The

reported results demonstrate that increasing the number of scenarios will result

in a 1.26% gain and a 0.87% decrease in the expected profit and emission,

respectively, while the solution time for the payoff table and each sub-problem

significantly raises. Another point of attention is that altering the number of

scenarios from five to ten considerably augment the number of variables and

equations as well as CPLEX iterations to reach the optimal solution. Another

key point is that since a multi-objective optimization problem consists of many

sub-problems to obtain the Pareto solution set, decision-makers may ignore

slight changes in the output variables due to substantial computational time.
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———————————

Table 15 is placed here

———————————

As already mentioned in the second decision-making scheme, the primary

purpose of GenCos from participating in the multi-auction electricity markets

is to attain their expected profit to its maximum possible value through the

offering process. Due to the importance of maximizing profit versus minimizing

emissions for a power producer, emission trading as a new pattern can also be

used to acquire the most-favored solution in the multi-objective offering strategy

problem when this option is available for the WTES system. The results of

applying this technique in terms of various emission prices (λEE) are exhibited

in Table 16. It has to be noted that the emission quota of the WTES system

is assumed to be EQo= 215×103 lbs. The highlighted cells in each column

illustrate the optimal solutions of the multi-objective WTES offering strategy

problem through emission trading paradigm for that special emission price.

———————————

Table 16 is placed here

———————————

8. Conclusion

In this paper, a stochastic three-stage bi-objective offering framework for a

wind-thermal-energy storage system based on mixed-integer programming for-

mulation was proposed. In the proposed framework, the uncertain nature of

various parameters was modeled via a scenario-based approach. A powerful

and effective method based on the joint utilization of lexicographic optimiza-

tion and hybrid augmented-weighted ε-constraint was applied to solve the bi-

objective wind-thermal-energy storage offering problem. In this regard, the

hybrid augmented-weighted ε-constraint method aids the decision-makers to

import the comparative importance degree of objective functions in the opti-

mization process. By achieving the Pareto optimal solution set, two suggested
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strategies were used to select the final solution. Three different case studies

which each of them represents diverse offering frameworks under two distinct

decision-making schemes were carried out to examine all aspects of the designed

offering structure. After achieving the results, it can be concluded that:

1. Utilizing the third offering structure (case study 3) not only leads to a

significant increase in the expected profits of the system in both decision-

making schemes.

2. The first stage decisions of the proposed offering problem, especially the

status of thermal units, will be influenced by the system’s decision-making

attitude.

3. The mere participation of energy storage system in the spinning reserve

is considerably more profitable than participating in the energy market.

4. The emission trading pattern will allow us to determine the most favored

solution after attaining the Pareto solution set regarding various emission

quotas. This approach is economically beneficial for those societies with

this capability.

For future research, the authors would expand the proposed offering strategy

for a price-maker wind-thermal-energy storage producer, which will augment

challenges to the problem.
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Figure 1: Schematic of the proposed three-stage offering strategy for the WTES system
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Figure 3: Schematic of the proposed solution procedure for the multi-objective offering strat-

egy problem
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Figure 4: Historical data of energy and spinning reserve market prices
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Figure 5: Expected participation of system in the spinning reserve market
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51



35

40

45

50

55

60

65

70

0 50 100 150 200 250 300 350 400

P
ri

c
e
 [

€
/M

W
h

]

Energy [MWh]

Hour 8

Wind1/2/3 Thermal 1 Thermal 2/3 EES 2 EES 3

(a) Hour 8

30

35

40

45

50

55

60

65

0 50 100 150 200 250 300 350 400

P
ri

c
e
 [

€
/M

W
h

]

Energy [MWh]

Hour 12

Wind1/2/3 Thermal 1 Thermal 2/3 EES 2/3

(b) Hour 12
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Note : thermal 2/3 refers to the offering energy of thermal units in case study two/three

and so on for other parameters.
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Table 1: Classification of decision variables in the proposed three-stage stochastic program-

ming

Fist stage decisions Second stage decisions Third stage decisions

(here-and-now decisions) (special here-and-now decisions) (wait-and-see decisions)

BE,S,ch
t , PCHth

t , PCHW
t BE,th

t,ω , BE,W
t,ω , BE,S,dis

t,ω ∆+
t,ω, ∆−

t,ω

ug,t, xg,t, yg,t, v
dis
t , vcht BS,th

t,ω , BS,S,dis
t,ω , BS,S,ch

t,ω

Table 2: Information on emission and cost curve of thermal units

Units Piece wise linearization parameters (MW) Cost pertaining to each block (e/MW) Emission ratios (lbs/MWh)

Pmin P (1) P (2) Pmax C(1) C(2) C(3) C(4) ENOX,g ESO2,g

G1-G5 2.4 6 9.6 12 48.41 48.78 51.84 55.4 2.513 1.005

G6-G9 15.8 16 19.8 20 54.58 55.42 67.82 68.28 1.834 0.734

G10-G13 15.2 38 60.8 76 36.46 36.96 38.89 40.97 6.889 2.755

G14 140 227.5 280 350 35.08 35.66 36.09 36.72 18.371 7.348

Table 3: Technical specifications of thermal units

RURg & RDRg STUCg STDCg MUTg MDTg

Unit STURLg & STDRLg (e) (e) (hr) (hr)

(MW/hr)

G1-G5 12 87.4 8.74 4 2

G6-G9 20 15 1.5 1 1

G10-G13 35 715.2 71.52 8 4

G14 180 2298 229.8 4 4

Table 4: Information on wind turbines and ESS

Parameter Value unit Parameter Value unit

vci 3 m/s ZS,dis 0.95 %

vr 15 m/s P dis,Max 50 MW

vco 25 m/s P ch,Max 50 MW

ZS,ch 80 % EBS,Max 50 MWh
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Table 5: Probability of reduced scenarios in the proposed offering problem

Uncertain parameter No. of scenarios

S1 S2 S3 S4 S5

Energy market 0.250 0.192 0.187 0.174 0.197

Spinning reserve market 0.177 0.186 0.163 0.280 0.194

Wind Power 0.257 0.188 0.178 0.218 0.159

Imbalance ratios 0.136 0.204 0.345 0.175 0.140

Table 6: Features of each case study

Case Generation units Target Markets OFs Uncertainty Sources

studies WT TU ESS WT TU ESS Prof EMS ENM SPRM WP BM

Case 1
√ √

× ENM ENM ×
√ √ √

×
√ √

Case 2
√ √ √

ENM ENM+SPRM ENM
√ √ √ √ √ √

Case 3
√ √ √

ENM ENM+SPRM ENM+SPRM
√ √ √ √ √ √

Note : OFs-Objective Functions; WT-Wind Turbines; TU-Thermal Units; ESS-Energy

Storage System; Prof- Profit; EMS-Emission; ENM-Energy Market; SPRM-Spinning Reserve

Market; WP-Wind Production; BM=Balancing Market; Res Dep-Reserve Deployment
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Table 7: Pareto solutions of case study 1 for the first decision-making scheme

No. of F1 (e) F2 (lbs) Total PE Total PS

Pareto (MWh) (MWh)

1 243637.717 53709.581 9626.620 0

2 241055.662 50562.623 9274.909 0

3 237169.819 45966.021 8776.962 0

4 232428.017 41369.419 8294.880 0

5 226974.682 36772.817 7812.735 0

6 220749.192 32176.215 7302.057 0

7 213432.952 27579.613 6547.369 0

8 205811.414 22983.010 6070.741 0

9 197689.200 18386.408 5662.513 0

10 188732.879 13789.806 5117.485 0

Table 8: Pareto solutions of case study 2 for the first decision-making scheme

No. of F1 (e) F2 (lbs) Total PE Total PS

Pareto (MWh) (MWh)

1 249915.654 50216.421 9275.983 787.764

2 248769.569 48809.869 9109.785 799.680

3 244415.141 44372.608 8638.483 799.680

4 239274.283 39935.347 8147.810 799.680

5 233643.939 35498.087 7722.287 706.400

6 227353.701 31060.826 7309.770 706.400

7 220358.157 26623.565 6769.568 673.080

8 212463.541 22186.304 6360.549 673.080

9 203236.793 17749.043 5886.178 673.080

10 192143.822 13311.782 5369.203 643.080
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Table 9: Pareto solutions of case study 3 for the first decision-making scheme

No. of F1 (e) F2 (lbs) Total PE Total PS

Pareto (MWh) (MWh)

1 262167.583 50216.421 9242.883 1559.764

2 261021.498 48809.869 9083.885 1571.680

3 256667.070 44372.608 8614.983 1571.680

4 251526.213 39935.347 8154.710 1571.680

5 245895.868 35498.087 7691.587 1478.400

6 239605.631 31060.826 7210.670 1478.400

7 232610.086 26623.565 6734.068 1445.080

8 224715.470 22186.304 6254.249 1445.080

9 215488.723 17749.043 5784.579 1445.080

10 206121.241 13311.782 5323.637 1193.540
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Table 10: Pareto solutions of case study 1 for the second decision-making scheme

No. of F1 (e) F2 (lbs) Total PE Total PS

Pareto (MWh) (MWh)

1 358933.622 248723.438 17866.110 0

2 358809.176 248216.513 17846.400 0

3 357551.834 243619.911 17607.335 0

4 356150.944 239023.309 17384.925 0

5 354629.384 234426.707 17160.105 0

6 352943.769 229830.105 16970.151 0

7 351335.332 225233.503 16961.793 0

8 350068.601 220636.900 16695.302 0

9 347630.871 216040.298 16590.437 0

10 347040.454 211443.696 16255.550 0

Table 11: Pareto solutions of case study 2 for the second decision-making scheme

No. of F1 (e) F2 (lbs) Total PE Total PS

Pareto (MWh) (MWh)

1 367905.042 233349.286 17380.685 1404.404

2 367186.420 230737.563 17242.639 1445.808

3 365854.369 226300.302 16996.484 1482.770

4 364408.279 221863.041 16801.980 1522.960

5 362807.703 217425.781 16577.312 1522.960

6 361099.986 212988.520 15995.154 1466.360

7 359174.153 208551.259 15783.163 1496.360

8 357108.009 204113.998 15555.498 1496.360

9 355055.080 199676.737 15561.055 1323.040

10 353429.820 195239.476 15360.131 1323.040
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Table 12: Pareto solutions of case study 3 for the second decision-making scheme

No. of F1 (e) F2 (lbs) Total PE Total PS

Pareto (MWh) (MWh)

1 380156.971 233349.286 17357.185 2176.404

2 379438.349 230737.563 17222.339 2217.808

3 378106.298 226300.302 16996.184 2254.770

4 376660.208 221863.041 16766.480 2294.960

5 375059.632 217425.781 16579.812 2294.960

6 373351.916 212988.520 15997.654 2238.360

7 371426.083 208551.259 15785.663 2268.360

8 369359.938 204113.998 15557.998 2268.360

9 367307.010 199676.737 15550.355 2095.040

10 365681.749 195239.476 15374.631 2095.040
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Table 15: Impact of a larger scenario set on the computational statistics as well as the expected

profit and emission

Number of reduced scenarios

5 scenarios 10 scenarios

F1 (e) 373351.916 378082.910

F2 (lbs) 212988.520 211116.566

# Single equations 96578 360939

# Single variables 32897 143267

# Discrete variables 1056 1056

# Iterations 8404 49586

Payoff table calculation time (s) 28 1141

Sub-problem solution time (s) 10 595
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