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Abstract 

In this paper, a risk-based stochastic framework is presented for short-term energy and reserve scheduling of a virtual 

power plant (VPP) considering demand response (DR) participation. The VPP comprises several dispatchable 

generation units, battery energy storage systems (BESSs), wind power units, and flexible loads. The proposed 

scheduling framework is formulated as a risk-constrained stochastic program to maximize the VPP’s profit considering 

uncertainties of loads, wind energy and electricity prices as well as N-1 contingencies. The proposed model considers 

both supply and demand-sides capability for providing and deploying reserves in order to optimize the use of resources 

while satisfying N-1 security and other constraints. Moreover, the effect of risk-aversion on decision making of the VPP 

in the offering/bidding power and required reserve services is investigated by implementing conditional value-at-risk 

(CVaR) in the optimization model. The proposed scheme is implemented on a test VPP and the energy and reserve 

scheduling with and without DR participants is addressed in detail through a numerical study. Moreover, the effects of 

the operator’s risk-averse behavior on the VPP energy and reserve management and its security indices are investigated.    

 

Keywords: Virtual power plant (VPP), demand response (DR), energy storage system, energy and reserve scheduling. 

 

Nomenclature 

)( t, s At time t in scenario s. 
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)( , )(  Upper and lower limits of variable )( . 

t , h
 

Indices of time intervals, t, h = 1, 2,…, T. 

s
 

Index of scenarios, s = 1, 2,…, NS. 

g  Index of DGs, g = 1, 2,…, NG. 

w Index of wind turbines, w = 1, 2,…, NW. 

k Index of BESS, k = 1, 2,…, NK. 

j Index of load groups, k = 1, 2,…, NJ. 

b, n, r Indices of buses 

a1,g, a2,g Cost coefficients of DG unit g. 

t  Duration of time periods (hour) 

Parameters and constants 
DR

tjp ,  
 

Power consumption of the j-th group of the flexible demand (MW). 

c
k ,

d
k  

Charging loss factor and discharge leakage loss factor of BESS unit k. 

DA
tPr ( 

RT
st ,Pr )

 
Day-ahead (real-time) market prices ($/MWh). 

DR
tj,Pr

 
The prices offered to the customers j ($/MWh). 

htjE ,,  
Elasticity of customers j. 

 , β Confidence level and risk parameter. 

up
tg,Pr (

dn
tg,Pr ) Bid of up (down)-spinning reserve submitted by DG unit g at time t ($/MWh). 

up
tj,Pr (

dn
tj,Pr ) Bid of up (down)-spinning reserve submitted by loads j at time t ($/MWh). 

upbuy
t

,Pr (
dnbuy

t
,Pr ) 

Price of capacity bought from reserve market for up (down)-spinning reserve. 

upsell
t

,Pr (
dnsell

t
,Pr ) 

Price of capacity sold to the reserve market for up (down)-spinning reserve. 

RT
st ,Pr ( 

RT
st ,Pr ) Up (down)-regulation market prices ($/MWh). 

dep
tg,Pr  (

dep
tj,Pr )

 
Price of deploying DGs (DR) reserve ($/MWh). 

BESS
tk,Pr  Price associated with operation of BESS unit k. 

tjVOLL ,  
Value of lost load ($/MWh). 

sT
 

Spinning reserve delivery time. 

s  Occurrence probability of scenario s. 

DG
tgC ,  

Operation cost of DG unit g ($). 

tgSUC , ,( tgSDC , )
 

Start-up (Shut-down) cost of DG unit g ($). 
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gRU ,( gRD ) Ramp-up/down rates of DG unit g. 

UTg, (DTg) 
Minimum up (down) time of DG unit g. 

lG ,(
lB ) Conductance (Susceptance) of line l. 

Variables 
buyM

tp ,
 (

sellM
tp ,

)
 

Power scheduled to buy (sell) from (to) the main grid (MW). 

buyM
stp ,

,  (
sellM

stp ,
, )

 
W&S active power bought (sold) from (to) the main grid (MW). 

buyM
stp ,

,
 

Difference between DA
tp  and

buyM
stp
,

, in time t and scenario s.  

sellM
stp ,

,
 

Difference between DA
tp  and sellM

stp ,
, in time t and scenario s.  

),( rnp  , ( ),( rnq )
 

Active (reactive) power flow between bus n and r (MW). 

twp ,  , ( twq , ) Active (reactive) power of wind unit w (MW). 

shed

stj
p

,,
(

shed

stj
q

,,
)
 

Active (reactive) power of load shedding of the  j-th group of customers (MW). 

upsell
tR ,

 (
dnsell

tR ,
)
 

Capacity sold to the spinning reserve market for up/down reserve (MW). 

upbuy
tR ,

 (
dnbuy

tR ,
)
 

Capacity bought from the spinning reserve market for up/down reserve (MW). 

up
tgR , ( dn

tgR , ) Up (down) reserve services provided by DG unit g (MW). 

up
tjR , ( dn

tjR , )
 

Up (down) reserve services provided by customers in group j (MW). 

up
stgr ,, (

dn
stgr ,, )

 
Up (down) spinning reserve deployed by DG unit g (MW). 

up
stjr ,, (

dn
stjr ,, )

 
Up (down) spinning reserve deployed by customers in group j (MW). 

cBESS
tkp ,
, ,(

dBESS
tkp ,
, ) Charging (discharging) power of BESS unit k (MW). 

BESS
tkE ,

 
Energy of BESS unit k (MWh). 

nh
tP &

 
 

Profit of here and now stage ($). 

sw
tEP &

  Expected profit of wait and see stage ($). 

st , , stV ,  
Voltage angle and amplitude. 

s ,   Auxiliary variable and value-at-risk for calculating the CVaR ($). 

)(, ,,, stgtg uu  Commitment status of DG unit g, {0, 1}. 

tgy , , ( stgy ,, ) Start-up indicator of DG unit g, {0, 1}. 

tgz , , ( stgz ,, )
 

Shut-down indicator of DG g, {0, 1}. 

up
stj ,,
 

Binary variable, it is 1 if customer j is curtailed in time t in scenario s. 

dn
stj ,,  Binary variable, it is 1 if customer j is recovering in time t in scenario s. 

)(, ,stt 
 

Binary variable for VPP total power exchanging, 1 denotes for buying power and 0 for selling 
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power. 

cBESS
tk

,
, , ( dBESS

tk
,

, )
 

Binary variable denoting the charging (discharging) decisions of BESS unit k. 

1. Introduction 

The concept of a virtual power plant (VPP) was proposed to integrate and control different energy resources such as 

distributed generations (DGs), renewable energy generations, battery energy storage systems (BESSs), and controllable 

loads into a coordinated uniform power utility [1]. As an agent in the retail market, a VPP aggregates the capacity of 

many distributed energy resources (DERs) and creates a single operating profile, in order to participate in electricity 

market or to provide system support services [2]. By participating in electricity markets in a smart structure, a VPP can 

benefit from demand response (DR) or dynamic pricing program to shift or reshape the energy demand profile, 

contribute to reserve provision, and reduce peak periods [3]. A VPP can act as both power provider and customer and 

can offer to sell or bid to purchase its net power in the wholesale energy market. VPP’s participation in the energy 

market and methods for determining its offering/bidding strategies have been proposed in several research works [4]. 

However, the uncertainties of market prices, renewable resources and customers’ demand as well as contingency-based 

uncertainties introduce risk on the decision-making problem of a VPP that needs to be more investigated, especially 

when DR actions are considered.  

   Recently, energy management strategies have been presented for scheduling of a VPP considering DR. For 

instance, in [5], an energy management strategy has been presented for an unbalanced distribution system with a VPP 

including various DERs and participants in DR programs. A multiple optimization method has been deployed, but the 

uncertainties in the market prices and DG units are not considered. In [6], a novel approach has been proposed for VPP 

energy management in which uncertainties of market prices and renewable power outputs have been well characterized, 

but the risks of uncertainties in the optimization problem have not been addressed. Moreover, in [7], a mathematical 

model has been proposed for a bidding strategy of a VPP that participates in regular electricity market and intraday DR 

exchange market. In that study, uncertainties of renewable generation, energy prices, and customers’ demand have been 

addressed without considering the risks associated with the uncertainties on the VPP’s bidding strategy.  

  The uncertainties associated with the output power of renewable resources, electricity prices and customers’ 

demand introduce a risk into VPP energy management problems. To address the risk in decision-making process, some 

efforts have been recently made by applying different risk measuring tools to provide valuable information to decision-

makers. For instance, a risk-constrained two-stage stochastic program has been presented in [8] for energy management 
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of a VPP, in which the risk-aversion of the VPP under uncertainties is provided by employing the conditional value at 

risk (CVaR) measure. In [9], an energy management problem has been presented for scheduling of  VPP considering 

correlated DR to minimize the VPP operating cost while maintaining the power quality of the system. A risk-

constrained two-stage stochastic program has been formulated to address uncertainties in day-ahead (DA) and real-time 

(RT) electricity prices, RESs generation processes, and the correlated DR relationship. In addition, in [10], a stochastic 

bi-level approach has been presented for optimal scheduling of VPP in DA energy market wherein uncertainties in wind 

generation and market prices are modeled with confidence bounds and scenarios, respectively. In addition, in [11], a 

centralized dispatch model of VPP has been introduced to improve the competitiveness of distributed energy resources 

in electricity market. To neutralize the side effect of RESs penetration, a bidding strategy optimization model 

considering DR and the uncertainty of RESs for VPP has been proposed. Also, scenario analysis method is applied to 

deal with the influence of elastic demand and potential risk, which are associated with utility users’ consumption 

patterns and VPP's bidding preference, respectively. In none of [8]-[11], the reserve market trading as an important 

practical aspect in VPP scheduling has been ignored.  Moreover, in none of them contingency-based uncertainties that 

can effect on the optimal offering strategy of the VPP has not been considered. 

An optimal risk-averse offering strategy for a VPP trading in joint energy and reserve markets has been modeled in 

[12] using a two-stage stochastic programming approach. Although, the uncertainties associated with RES generation, 

loads as well as DA and real-time (RT) market prices are taken into consideration, the effects of participants in DR 

programs has not addressed in that study and the risks’ effect on reserve services is not investigated. Also, that study 

has not addressed contingency-based uncertainties including random forced outages of generating units. Moreover, in 

[13], DA self-scheduling problem of a VPP trading in both energy and reserve markets has been modeled. In that study, 

the uncertainty associated with the VPP considered by the system operator to deploy reserves has been considered, but 

the effect of risk-aversion on the profit variability as well as the impacts of N-1 contingencies on the VPP scheduling 

are not investigated. Also, the problem of energy and reserve scheduling for autonomous microgrids has been addressed 

in [14] and [16], in which, the objective is to determine the optimal hourly energy and reserve scheduling with 

considering risk aversion and system security to maximize the operator’s expected profit. 
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In contrast to previous studies, which were mainly focused on only energy management of the VPP, the current 

work develops the risk-averse stochastic programming to consider joint energy and reserve trading in a VPP scheduling 

in which DR based services can be purchased from several DR providers. Moreover, trading energy and reserve 

capacity sold (bought) to (from) the main grid as well as the effect of energy storage systems is covered in the proposed 

method. The objective of the proposed scheduling model is to maximize the VPP expected profit and optimal trading 

power with the main grid to ensure VPP power quality and satisfying N-1 security and other network constraints. 

Compared to the recent works in this area, there are main differences between this work and the others. First, a proper 

model of optimal energy bids and the reserve scheduling under various risk-averse behavior of VPP operator are 

determined where the demand side resources participate in reserve provision. As an extension of the concepts developed 

in prior works, in the proposed framework of this paper in addition of normal operation uncertainties including hourly 

load, RESs’ output-power, DA and RT market prices and calls for reserve service, contingency-based uncertainties 

including random forced outages of VPP's components are also taken into accounts in the scheduling model. In 

addition, in this study the sensitivity of the profit and the VPP operator decision making in cases with and without the 

participation of responsive loads to DR price-based programs have been studied. Different cases for responsive loads 

are considered, and the effects of participation of customers in a price-based DR program on the offering/bidding 

strategies of VPP as well as DR effects on the reserve scheduling in different conditions has been investigated. As a 

whole, the main novel contributions of the work are three fold as follows: 

 A risk-averse probabilistic framework is presented for modeling VPP’s scheduling problem considering both 

normal operation uncertainties and N-1 contingencies. The proposed framework is formulated as a multi-

objective optimization problem (MOOP) and Benders decomposition (BD) technique is employed to decompose 

the MOOP into a master problem which does not include N-1 security and reliability constraints and, and sub-

problems where the solution of the master problem is checked for feasibility under different working scenarios.  

 Impact of risk-averse behavior on the VPP profit and its optimal offering and bidding strategies is investigated 

through incorporation of CVaR metric into the problem formulation.  

 Optimal energy bids and the reserve scheduling under various risk-averse behavior of VPP are determined where 

the demand side resources participate in reserve provision. The economic benefits of DR providers in providing 

reserve services and increasing profit of VPP are evaluated through a comparative study. 

The rest of the paper is organized as follows. The proposed scheduling framework to characterize the normal 

operation uncertainty and N-1security, as well as the scenario generation and reduction methods is described in Section 
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2. The proposed stochastic model is formulated in Section 3 as a MOOP model. The numerical results of applying the 

proposed MOOP model on test VPP are presented in Section 4, and conclusions are provided in Section 5. 

 

2. Description of the Proposed Scheduling Framework 

     This paper considers a commercial VPP, which consists of dispatchable DG units, battery energy storage systems 

(BESSs), wind power generators, and several groups of local electrical that is connected to the main grid. The VPP acts 

as a commercial aggregator that maximizes its revenue by exchanging energy with the main grid and selling energy to 

local customers. From the main grid perspective, the VPP acts similar to a large energy storage plant that plays both 

roles of a producer and a consumer. As an independent system operator, the VPP needs to optimally schedule its energy 

and reserve resources and to trade energy with the main grid. In this context, the VPP is exposed to risk of uncertain 

parameters such as wind energy, demand loads, market prices and outputs of DGs and BESSs which are limited by 

network conditions. Therefore, in such a risky condition, a proper risk-averse optimal scheduling model is needed to 

determine the offering/bidding strategy of the VPP participating in joint energy and reserve markets. In this model, it is 

assumed that the VPP is considered as a price-taker; i.e., its bids would not affect the market clearing prices. In 

addition, the local customers are equipped with energy management systems and exhibit elastic behavior in response to 

the VPP offering prices by adjusting their demand to reduce their consumption costs. To model the elastic behavior of 

the customers, economic DR model presented in [13], is used in this paper. The outcomes of the proposed model 

provide the optimal scheduling of DG units, the offering/bidding power to the main grid, up and down spinning reserve 

(SR) services allocated by DG units and DR actions, and also the offering price and load reduction (LR) for the 

customers. 

2.1 Market Framework 

     The market model of this paper is considered as a structure of joint DA and RT electricity market, that is 

common in European electricity pools such as the Nord and Dutch pools [16]. In DA market, the VPP schedules its 

energy and reserve resources and determines the offering/bidding power for each hour of the coming day before the 

gate closure (e.g. 12:00 pm). The VPP’s energy imbalance due to unpredictable fluctuations in power production or 

consumption should be compensated in the RT balancing market on the basis of a regulation price. The RT balancing 

price, (
RT
st ,Pr ), is represented by a pair of positive and negative regulation price that can be calculated as a proportion of 

the DA market price as follow [17]: 
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DA
stt

RT
st

DA
stt

RT
stRT

st

,,

,,

,

Pr)1(Pr

Pr)1(Pr
Pr




 (1) 

where, 

t  and  


t are positive constants that show relationship between the DA price and up-regulation and 

down-regulation prices, respectively. In particular, the power shortage is purchased at an up-regulation price, which is 

usually higher than the DA price, while, the power surplus is sold at a down-regulation price, which is usually lower 

than the DA price [17]. Therefore, the dual pricing policy for balancing markets that are widely used in European pool 

markets [3] is applied in the proposed framework of this paper.  

2.2 Characterization of Uncertainty 

     The VPP may face two categories of uncertainties during scheduling process. Normal operation uncertainties 

including hourly load, wind power production, DA and RT market prices, and contingency-based uncertainties 

including random forced outages. To accurate model of these uncertainties a large enough set of scenarios is considered. 

In this paper, normal probability distribution functions (PDFs) are used for modeling the load, DA and RT electricity 

prices, and Weibull PDFs are used for modeling the wind power productions [19]. Moreover, for the security-

constrained formulation, as in [20], without loss of generality, in this paper only outages involving the tripping of a 

dispatchable DG or BEES are taken into account as contingency-based uncertainties. By considering single outages for 

these elements and set of indices 
DG and 

BEES for representing DG and BEES outages. Therefore, there is a set of 

outages as   BESSDG  0 , in which the "  0  " shows the case of no outage. 

Here, Monte-Carlo simulation (MCS) is used for scenario generation based on random sampling from PDFs of 

normal uncertainties[21], and then K-means algorithm [22] is applied to reduce the number of scenarios into a limited 

set of N1 representing well enough the uncertainties. For each generated normal scenario, N2 scenario is generated for 

contingency-based uncertainties. Finally, the obtained scenarios are combined by employing the scenario tree and as the 

result, a total number of N1×N2 scenarios are obtained that should be considered for stochastic scheduling.  

 Due to the existence of the uncertainties, the VPP decision making strategy has risky conditions. Therefore, to 

investigate the risk of VPP profit variability, uncertainties should be controlled in a proper way and also a suitable risk 

measure should be incorporated into the risk-neutral problem. In this context, CVaR is incorporated to the optimization 

model to evaluate the risk of profit associated with the VPP’s decisions in different conditions. 



9 

 

3. Formulation of the MOOP     

     In this section, the MOOP for VPP energy management strategy is formulated to maximize the expected profit of 

the VPP participating in energy and reserve markets, simultaneously. The aim of MOOP is to determine the optimal 

energy and reserve volumes while guaranteeing that reserves are sufficient to tackle the plausible realizations of the 

normal operation uncertainties and N-1 contingencies. Therefore, the MOOP is developed as a two-stage stochastic 

programming problem. The first stage considering here-and-now (H&N) decisions would model the optimal scheduling 

of the VPP while the second stage considering wait-and-see (W&S) decisions represents the real-time operation of the 

VPP. The H&N constraints involve variables that do not depend on any specific scenario, while the W&S constraints 

describe relationships pertaining only decision variables that depend on scenario realizations.  

      In the H&N decisions, the status (on/off) of generating units and economic dispatch are defined as a MILP problem. 

Therefore, the H&N decisions decisions need to be made before realization of the system scenarios. This stage variables 

are consist of commitment states of the generating units ( tgu , ), their scheduled active power ( tiP , ), start-up and shut-

down costs of generating units ( tiSUC , , tiSDC , ), up and down spinning reserve allocated by generating units  (
up

tgR ,  

and
dn

tgR , ), capacity sold to the spinning reserve market for up/down reserve (
upsell

tR ,
 and 

dnsell
tR ,

), capacity bought 

from the spinning reserve market for up/down reserve  (
upbuy

tR ,
 and 

dnbuy
tR ,

), power scheduled to buy from the main 

grid (
buyM

tp ,
), power scheduled to sell to the main grid (

sellM
tp ,

), active and reactive power flow between bus n and r (

),( rnp  and ),( rnq ), active (reactive) power of wind unit w ( twp ,  and twq , ), load demand after implementing DR 

programs ( DR
tjD , ), spinning and non-spinning reserves allocated by load demands ( up

tjR , , dn
tjR , ), charging (discharging) 

power of BESS unit k  ( cBESS
tkp ,
, and dBESS

tkp ,
, ) during each scheduling hour.  

      In the W&S decisions of the optimization process the MOOP solved for working scenarios. The decision variables 

of this stage are W&S active power bought from the main grid (
buyM

stp ,
, ), W&S active power sold to the main grid (

sellM
stp ,

, ), power generations of DG units in scenario ( stgP ,, ), deployed reserves of DG units (
up

stgr ,,  and
dn

stgr ,, ), load 

demand after implementing DR programs ( DR
stjD ,, ), deployed reserves of DR (

up
stjr ,,  and 

dn
stjr ,, ), active  and reactive 

power of load shedding of the  j-th group of customers (
shed

stj
p

,,
 and 

shed

stj
q

,,
), voltage angle and amplitude ( st , and stV , ), 

for scenario and 24-hours.  
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3.1 Objective Function  

The objective of the VPP is to maximize the expected profit which is composed of three terms representing the 

profit associated with H&N and W&S decisions, and also the profit variability which is measured by CVaR. 

CVaREPPMax
SN

s

cw
sts

nh
t

T

t

 


 )(

1

&
,

&

1

 (2) 

 

dnsell
t

dnsell
t

upsell
t

upsell
t

dnbuy
t

dnbuy
t

upbuy
t

upbuy
t

N

j

dn
tj

dn
tj

up
tj

up
tj

N

g

dn
tg

dn
tg

up
tg

up
tg

N

k

d
k

BESS
tk

BESS
tk

BESS
tk

BESS
tk

N

g

tgtg
DG

tg

N

j

DR
tj

DR
tj

DA
t

buyM
t

DA
t

sellM
t

nh
t

RR

RR

RR

RR

Ep

zSDCySUCC

p

ppP

J

G

K

G

tgtg

J

,,,,

,,,,

1

,,,,

1

,,,,

1

,,,,

1

,,,

1

,,

,,&

PrPr

PrPr

PrPr

PrPr

)Pr(Pr
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PrPr
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(4) 

 

Particularly, nh
tP &  denotes VPP’s profit in H&N stage and comprises scenario independent components as follow: 

The first term represents revenue of energy trading between the VPP and main grid in DA and the second term denotes 

revenue of selling energy to customers. The third term provides start-up and shut-down costs of DG units and their 

operating costs that is obtained as follow:  

tgtg
DG

tg puC ,g2,,g1,, aa   (5) 
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The fourth term stands for the operational cost of BESSs depending on their lifecycle costs and the fifth and the 

sixth terms denote the cost of reserve allocated by generation and demand side, respectively. Also, the seventh and the 

eighth terms state the cost of provided reserve from the main grid and the revenue from providing reserve to the main 

grid, respectively. Likewise, 
cw

tEP &
in (4) denotes VPP's profit in W&S stage that includes scenario dependent 

components as follow: 

The first term stands for the revenue which made through power exchange with the main grid, the second and the 

third lines denote the costs of deploying reserves from generation and demand side, respectively, and the fourth term 

represents the penalty cost of involuntary load shedding.  

Finally, the last term in (2) denotes the CVaR multiplied by risk-aversion parameter β to show the relationship 

between the profit and the risk of the VPP’s operator. It should be noted that, CVaR represents approximately the 

expected profit of the (1-α)×100 scenarios yielding the lowest profits and defined as follow [23]: 

s

N

s

s

S

CVaR 


 





1
)1(

1
 (6) 

CVaR is incorporated in the model to take the risk associated with the volatility of the profit into account [24]. Also, 

the weighting factor β models the tradeoff between the expected profit and the profit variability which is measured by 

CVaR. If risk is not considered (risk-neutral case), the value of β is set to 0, and its higher values show the more risk 

averse VPP.  

3.2 Constraints of Here and Now Stage 

Power balance constraints: Active and reactive power balance between supply and demand at node n of the VPP is 

represented by the following constraints (7) and (8), respectively. 





BN
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nDR

tj
n

tw
n

tg pppp
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tj
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n

tg qqqq
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,

,,, (8) 

where, trnp ),,(  and trnq ),,( can be obtained by using linearized power flow equations explained in (9) and (10), 

respectively [16]. 
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     To satisfy network constraints, the active and reactive power flow in (11) and the voltage magnitude and phase angle 

in (12) are also considered.  
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Constraints of DG units: DG units used in this study are only termed as gas-fired micro-turbines. The output of 

these units is constrained between a minimum and maximum value considering also the scheduled down and up SRs by 

(13) and (14), respectively. Also, feasible operational region of such generation units can be provided by start-up cost 

limit (15), shut down cost limit (16), power capacity limit (17) and ramping up/down limits (18)-(19), [14]. 

g
dn

tgtgtg PRup  ,,,  
(13) 

g
up

tgtgtg PRup  ,,,  
(14) 

)( 1,,,  tgtggtg uuCUSUC
 (15) 

)( ,1,, tgtggtg uuCDSDC    (16) 

tggtgtgg uPpuP ,,,   (17) 

tggtggtgtg yPyRUpp ,,1,, )1(    (18) 

tggtggtgtg zPzRDpp ,,,1, )1(   (19) 

 

Moreover, for each DG unit g, the minimum-up time constraint (20) and the minimum-down time constraint (21) should 

be satisfied [14]. Furthermore, the scheduled up and down reserves are limited by (22)-(23), [25]. 

tgg

UTt

th

tg yUTu

g

,

1

, .




 (20) 

)()1( 1,,

1

, 





 tgtgg

DTt

th

tg uuDTu

g

 (21) 

tg
s

g
up

tg uTRDR ,,0 

 

(22) 

tg
s

g
dn

tg uTRUR ,,0 

 

(23) 

 

DR providers' constraints: The economic model for the participation of customers in DR programs is developed based 

on DR model in [16], in which the LR value depends on the demand elasticity of customers and electricity prices. When the 

customers j participate in DR program, its demand can be calculated as follow [16]: 
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where, int
,tjP  is the initial value of demand associated with customers j and int,

,PrDR
tj is the initial value of prices offered to the 

customers j. Also, it is considered that demand side resources may contribute to upward and downward reserves through 

appropriate coordination of the curtailment and the recovery periods.  Providing up and down reserves from DR providers are 

limited by constraints (25)-(26), [25]. 
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Constrict (25) states that the upward reserve scheduled by group of customers j are limited either by the minimum 

upward demand modification rate or by the load drop rate. Also, constraint (26) denotes that the downward reserve as a 

result of scheduled load recovery is limited either by the minimum downward demand modification rate or by the load 

pick-up rate. 

 

Operation Constraints of BESS: The energy charging of BESS at time t is modeled by the state-transition equation 

as [19]. 
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where, cBESS
tkp ,
, and dBESS

tkp ,
, are both positive and limited by certain upper bounds, 
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, and 
dBESS
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, as follow: 
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To avoid any overcharging or over discharging, each BESS should be operated within its upper and lower limits as 

follow: 

BESS
tk

BESS
tk

BESS
tk EEE ,,,  (31) 

 

Constraints of Main Grid's Power Exchange and Reserve Services: The surplus/shortage power of the VPP should 

be traded with the main grid as the scheduled power in DA market. The trading power between the VPP and the main 

grid is limited as follows: 

t
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(33) 

Moreover, the VPP can sell (buy) reserve capacity to (from) the reserve market. The amounts of reserve capacity 

sold to the reserve market for up and down reserves are limited by (34)-(35), while the reserves capacity bought from 

the market for up and down services are limited by (36)-(37), respectively. 
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3.3 Constraints of Wait and See Stage 

Power balance constraints:  Constraints (38) and (39) represent respectively, active and reactive power balance at 

node n in the wait and see decisions stage. 
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where, strnp ,),,(  and strnq ,),,( are obtained by equations (40) and (41) respectively [16]. 
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     It should be mentioned that in order to satisfy the system constraints, the VPP operator can use inelastic load 

shedding as the last option. The amount of mandatory load shedding of customer j should be limited as given in 

constraint (42). 

DR
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(42) 

Constraints of DG units: These constraints include the minimum and maximum limitation of output power of DGs 

in (43) as well as the ramp up and ramp down limits given in (44)-(45) for the actual generation in each individual 

scenario. 
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Risk measure constraints: The risk metric is considered with respect to the expected profit of each scenario as 

expressed in (46). Also, the auxiliary variable is nonnegative. 
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0s  (47) 

 

Constraints of demand-side reserve deployment: Constraints (48)-(50) enforce the requirement that a customer 

cannot reduce and increase its consumption simultaneously. Moreover, the left hand side of (48) denotes that a load 

reduction should be over a minimum amount of curtailment [25].  
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A. Linking Constraints between the First and Second Stages 

Linking constraints couple the first stage decisions with possible realizations of stochastic processes. Constraints 

(51)-(53) couple the decisions of the scheduled power output of DGs with the actual power generation and deployed 

reserves. Likewise, constraints (54)-(56) couple decisions related to the scheduled power of demand side-resources with 

the actual power and deployed reserves of them.  
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4. Solution Methodology 

In this section, the proposed method to solve the MOOP including the objective function (2) subject to constraints 

(1) and (3)-(46) is discussed. Prior to solving this problem, the two categories of uncertainties including normal 

operation uncertainties and contingency-based uncertainties are modeled as stochastic processes. Subsequently, a set of 

1000 scenarios is generated for each stochastic parameter of two categories using MCS method according to their 

probability distributions. The sets of generated scenarios are combined to build a scenario tree with 1012 scenarios. Then 

to achieve tractability, K-means algorithm as a proper scenario-reduction technique is applied to reduced scenario tree 

to 1000 scenarios. In the next step, these reduced scenarios are applied to a two stage optimization model to maximize 

the expected profit of the VPP as well as to minimize the total customers’ consumption costs with the optimal 
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scheduling of supply and demand-side energy and reserves resources, exchange power with the main grid while 

guaranteeing N-1 security of the VPP. In the first stage of the MOOP, decisions of here and now stage are made, while 

in the second stage, the feasibility and optimality of the first stage decisions under system contingencies are examined. 

In this study, Benders decomposition (BD) technique [26] is implemented for promoting the computational tractability 

of the MOOP.   

In order to accelerate the implementation of the MOOP, each stage of the problem is divided into a master problem 

and a sub-problem. In the master problem of the first stage, the vector of active power and outputs of committed DG 

units as well as reserves of different resources are obtained based on forecasted values of different input data. In the 

sub-problem, the system security is checked by running AC-power flow from feasibility viewpoint. If sub-problem fails 

to find a feasible solution, a feasibility and optimality cut based on the BD technique is created and included to the 

master problem to recalculate the decision parameters. The decisions of the first stage enter to the second stage where 

the problem for working scenarios is solved. In this stage, optimal decisions are made properly through a unit 

commitment algorithm and optimal power flow procedure by considering system’s objectives and constraints. In the 

sub-problem of this stage, the system N-1 security constrains are checked by running AC-power flow and reliability is 

considered by index of allowed mandatory load shedding. Similar to the first stage, the feasibility and optimality cut are 

created and enter to the master problem to obtain decision variables. The iterative process continues till the violations 

are eliminated and a converged optimal solution is found. 

5. Case Study and Numerical Results 

5.1  Case Study Description 

The presented scheduling approach is carried out on a 15-bus VPP test system depicted in Fig. 1, [19]. As shown, 

the VPP comprises three dispatchable DG units, four wind turbines, three BESS and 13 load buses. The total generation 

capacity is 8.1 MW including 2.7 MW of wind power and 5.4 MW of DGs. The forecasted values of total demand, 

output power of wind turbines as well as DA electricity prices are considered as depicted in Fig. 2. Also, the expected 

values of up and down regulation prices are assumed to be 1.1 and 0.9 of DA prices, respectively [8]. It is assumed that 

the forecasted errors of wind power, load and DA electricity prices follow normal distributions with standard deviations 

equal to 5%, 8%, and 10% of the forecasted values, respectively [27].  
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Fig. 1. One-line diagram of the examined15-bus VPP system. 

 

 
(a) 

 
(b) 

Fig. 2. The forecasted values of (a) wind output power and demand, and (b) DA electricity price. 
 

Furthermore, technical data of DG and BESS units are depicted in Tables 1 and 2, respectively [9], [19]. For 

simplicity, the minimum up/down-time of all DGs are assumed to be 3 and 2 hours, respectively. Additionally, the VPP 

is connected to the main grid through a line that its maximum capacity of power is set as 2.4 MW. The MOOP model is 

solved using CPLEX solver under GAMS [28] on a PC with 4 GB of RAM and Intel Core i7 @ 2.60 GHz processor. 

The optimality gap of different cases of the optimization algorithm is set to 0.0, and computation times in all studies are 

less than 2 minutes with 39356 iterations in total. 

Table 1 Technical data of DG units 
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20 70 150 20 3 0.4 DG1 

20 70 320 25 1 0.2 DG2 

20 70 220 35 1.4 0.1 DG3 

 
 

Table 2 Technical data of BESS units 

 
dBESS

tkP
,

,  (kW)   

)kW( 
cBESS

tkP
,

, 

c
k ,

d
k   

)kWh( 
BESS
kE )kWh( 

BESS
kE BESS Unit 

50 50 91.4% 100 40 
1BESS 

100 100 91.4% 200 80 
2BESS 

150 150 91.4% 300 120 
3BESS 

 

5.2 Results and Discussions 

     In this section, the proposed scheduling model is applied to the VPP and its offering/bidding strategies are 

discussed and compared in different cases. In this comparison, the effect of risk-aversion parameter β on the profit of 

VPP is investigated by varying its values from 0 to 20. Moreover, the rate of participation of customers in DR program 

is assumed to be 50%. The simulations are conducted using the reduced 1000 scenarios in which the confidence level α, 

is considered to be 0.95. As shown in Table 3, for the same risk aversion level, participation of customers in DR, 

increases the expected profit of the VPP and reduces CVaR term. Also, by increasing risk-aversion β, the VPP profit 

decreases and the CVaR increases in both cases. When β varies from 0 to 20, the VPP profit in the cases with and 

without DR reduces by 11% and 7.2%, but their associated CVaR increases by 81% and 93%, respectively. These 

results indicate that a relatively high decrease in the VPP profit should be used to reduce efficiently the risk of profit 

variability. Moreover, a higher profit reduction is observed in the case of using DR that is due to the increased number 

of unfavorable scenarios with more negative profits. 

To show the effect of DR participant and risk aversion on the VPP energy management, scheduled power of DGs, 

BESSs, Energy exchanged with the main grid as well as wind output power are compared in different cases in Fig. 3. In 

order to prevent crowding data in the figures, two cases with and without DR are investigated for only risk-neutral 

(β=0) and risk-averse (β =20) behaviors. 

 

Table 3 The VPP profit and CVaR in different values of risk-aversion β 
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Risk-averse 

parameter β 

Expected Profit ($) CVaR ($) 

No DR With DR No DR With DR 

0.0 8365 8811 -473 -533 

0.1 8365 8810 -468 -527 

0.2 8363 8809 -464 -524 

0.5 8354 8802 -438 -502 

1 8166 8653 -199 -312 

2 8061 8565 -114 -232 

5 7892 8323 -50 -135 

10 7843 8241 -43 -125 

20 7749 7838 -34 -100 

 

Generally, demand loads must be satisfied even when the electricity prices are very high or the wind power 

generation is low. The DG units supply most of demand, especially during peak periods (i.e. 11:00-14:00 and 19:00-

22:00), however, the surplus generation can be sold to the main grid or stored in BESSs. Also, the shortage generation 

should be provided by such resources. Therefore, BESSs are charged during off-peak hours when the DA prices are low 

(e.g. 2:00–5:00) and are discharge in peak times. However, by implementing DR actions, the responsive loads adjust 

their consumptions based on the electricity prices and more amount of LR occurs during peak hours, and as the result, 

trading energy with the main grid reduces. Moreover, as observed, in risk-averse cases, the energy exchanged with the 

main grid decreases compared to the risk-neutral case. In fact, the VPP with a more risky behavior tries to provide more 

energy from the reliable DG units instead of high uncertain electricity market.  

  The charging and discharging energy of BESSs within the scheduling horizon with and without DR actions is 

depicted in Fig. 4. By increasing β, the amount of charging and discharging reduces. That is because with a higher level 

of risk aversion (especially for β > 1), the VPP tries to supply more energy from reliable DG units instead of other 

uncertain energy resources. Therefore, in addition to a lower energy trading with the main grid, the amount of charging 

and discharging energy of BESSs decreases. 
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(a) 

 
(b) 

 
(c) 

 

(d) 

Fig. 3. Scheduled power of the VPP’s elements, (a) Without DR and β=0 (b). With DR and β=0, 

 (c) Without DR and β=20, and, (d) With DR and β=20. 
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(a)  

 
(b) 

Fig. 4. Total charge and discharge energy of BESSs, (a) no DR, (b) with DR. 

 

Fig. 5 illustrates the amount of total energy exchanged with main grid in cases with and without DR in different 

risk-aversion values of β. As it can be seen, energy trading with the main grid reduces when the VPP behaves more 

conservative. In fact, the VPP trades lower energy with the main grid to hedge against profit volatility while meeting its 

demand from more reliable DG units.  

 
(a) 

 
(b) 

Fig. 5. Expected energy traded with the main grid versus β, (a) Case without DR, (b) Case with DR. 
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Also, it is observed that in a specific value of risk aversion, the amount of energy transaction with the main grid in 

the case with DR support is lower than that of without DR. This is because when customers participate in DR, a part of 

surplus/shortage VPP production is compensated by adjusting energy consumption of responsive loads. The total 

amount of up and down-SR in different risk levels is shown in Fig. 6. It is worth noting that the reserve service is 

mainly provided by DG units and the main grid if no DR is considered; however, such a reserve capacity can be 

reinforced by DR support. It is also observed that in both cases, the total amount of required reserve decreases when the 

uncertainties are highly handled.  In fact, in correspondence of lower levels of risk aversion, the VPP should allocate 

more reserve to avoid non-desirable profit distributions due to various worst scenarios. But, in correspondence of higher 

risk aversion, the available resources are scheduled in such a way that the probability of mismatch between supply and 

demand mitigates and therefore, the required reserve decreases. In other word, in a more risk-averse case, the VPP is 

willing to sacrifice high profits in the best scenarios in the hope of avoiding low profits or even losses in the worst 

scenarios. 

 

      
(a)  

 
(b) 

Fig. 6. Total scheduled up- and down-SRs, (a) Case without DR, (b) Case with DR. 
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is because when considering a higher risk aversion, DG units are scheduled in order to mitigate the probability of 

mismatch between supply and demand. In such condition, the number of worst scenarios reduces and as the result, 

lower reserve is required to be scheduled to accommodate the uncertainties of the VPP. Moreover, when DR is called to 

provide up and down-SRs, the commitment of DG units decreases. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Hourly up and down SR (a) without DR and in risk-neutral case, (b) without DR and in risk-averse case, 

 (c) with DR and in risk-neutral case, and, (d) with DR and in risk-averse case. 
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6. Conclusions 

This paper presented a stochastic framework for joint energy and reserve scheduling of a VPP considering DR 

participation. The VPP optimized its hourly scheduling strategy through a risk-constrained stochastic optimization 

model, in order to maximize the total profit. To capture profit variations imposed by uncertainties related to wind 

generation, demand and electricity prices, CVaR term was incorporated into the model. The proposed model was 

applied to the 15-bus VPP and different cases were investigated. Numerical results demonstrated that as the risk 

aversion increases, the expected profit of the VPP decreases, while the value of CVaR augments. In the risk-averse 

case, the VPP could provide more energy from reliable DG units rather than the main grid, and therefore, trading energy 

with the main grid as well as providing SRs decreases, significantly. Furthermore, simulation results showed that 

participation of customers in price-based DR program could lead to more negative profits in the worst scenarios; hence, 

the VPP schedules more reserve to mitigate the impacts of uncertainties in this condition. Moreover, supplement of 

scheduled reserves depends on the VPP risk perspective meaning that a higher risk-aversion behavior yields a lower 

required reserve capacity. 
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