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TECHNICAL ADVANCE Open Access

On Jones et al.’s method for extending
Bland-Altman plots to limits of agreement
with the mean for multiple observers
Heidi S. Christensen1,2,3, Jens Borgbjerg4, Lars Børty2 and Martin Bøgsted1,2,3*

Abstract

Background: To assess the agreement of continuous measurements between a number of observers, Jones et al.
introduced limits of agreement with the mean (LOAM) for multiple observers, representing how much an individual
observer can deviate from the mean measurement of all observers. Besides the graphical visualisation of LOAM,
suggested by Jones et al., it is desirable to supply LOAM with confidence intervals and to extend the method to
the case of multiple measurements per observer.

Methods: We reformulate LOAM under the assumption the measurements follow an additive two-way random
effects model. Assuming this model, we provide estimates and confidence intervals for the proposed LOAM.
Further, this approach is easily extended to the case of multiple measurements per observer.

Results: The proposed method is applied on two data sets to illustrate its use. Specifically, we consider agreement
between measurements regarding tumour size and aortic diameter. For the latter study, three measurement
methods are considered.

Conclusions: The proposed LOAM and the associated confidence intervals are useful for assessing agreement
between continuous measurements.

Keywords: Accuracy, Limits of agreement with the mean, Continuous measurements, Confidence intervals

Background
Clinical decisions regarding diagnosis or treatment are
often based on one or more measured quantities such as
blood pressure, tumour size, or the diameter of an aorta.
To understand the limitations of using such measure-
ments in clinical practice, it is important to quantify
how much the measurements may vary.
For almost three decades, Bland-Altman plots have

been the standard method for graphical assessment of
agreement between continuous measurements made by
two observers or methods on a number of subjects [1].

In particular, Bland-Altman plots are often used to as-
sess how well a new measurement method compares to
a current standard method. However, if the goal is to as-
sess the variability of measurements made by different
observers it is preferable to consider more than two
observers.
This prompted Jones et al. to suggest an extension of

Bland-Altman’s graphical method for assessing limits of
agreement between two observers to the limits of agree-
ment with the mean (LOAM) for multiple observers [2].
Jones et al.’s LOAM have the advantage that they quan-
tify agreement between measurements on the same scale
as the measurements themselves, in contrast to the
intra-class correlation (ICC) that has no unit of measure
and always takes value between 0 and 1.
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In more detail, consider a study where a continuous
quantity is observed on a subjects by b observers (or
methods). We let yij denote an observation from a ran-
dom variable Yij, which models the measurement per-
formed on the ith subject by the jth observer for i = 1, …,
a and j = 1, …, b. Assuming no preferred observer, Jones
et al. suggested to assess the agreement between mea-
surements made by different observers by investigating
how much the measurements vary around the subject-
specific average [2]. More formally, they were interested
in how much the differences Dij ¼ Y ij − Y i� are likely to

vary, where Y i� denotes the average measurement for
subject i across the b observers. For visualising the data,
Jones et al. propose to consider a plot of the observed
differences dij ¼ yij − yi� against the observed subject-

specific average yi� . We will refer to this as an agreement
plot. For an example of an agreement plot see Fig. 1
below. An agreement plot can, for example, help to de-
tect whether the spread of the differences is associated
to the size of the measurements, or, at least when a and
b are not too large, whether some observers tend to al-
ways make large, small, or more varying measurements.
Further, Jones et al. equipped the agreement plot with

horizontal lines representing the estimated 95% LOAM,
which are given by ±1.96s, where s is the estimate of the
residual standard deviation in a two-way analysis of vari-
ance (ANOVA) including subject and observer as fixed
effects. Thus, s is only a measure of the residue variation
left after accounting for possible subject and observer ef-
fects. On one hand, if there is a non-negligible observer

effect, this should be included in the variability of the
differences dij when constructing the LOAM. On the
other hand, in the (unrealistic) case of no variation due
to observer the 95% LOAM lines suggested by Jones
et al. are biased and inefficiently estimated, as it would
be custom to refit the ANOVA model without the ad-
justment for observer effect and adjust the degrees of
freedom for s accordingly.
In conclusion, although the method has gained an in-

creasing interest over the years, Jones et al. did not pro-
vide a way to: 1) assess the variation of the LOAM
estimate, 2) integrate variation due to different ob-
servers, and 3) extend the method to multiple observa-
tions per observer.
In this paper, we suggest formalising Jones et al.’s ap-

proach under a simple two-way random effects model
which allows us to formulate a coherent statistical infer-
ence procedure for the LOAM. In addition, we provide
not only an implementation in the statistical program-
ming software R, but also simple formulae which can be
implemented in, e.g., statistical programming languages,
Excel, or automatic web-modules for data collection.

Methods
A revised version of the limits of agreement with the
mean
We propose to derive LOAM assuming a random effects
model for the measurements. Assuming a statistical
model provides a theoretical framework in which the
LOAM can be constructed in a transparent way and fur-

Fig. 1 Agreement plot for tumour size measurements in centimetres with the proposed 95% LOAM (dashed line) and associated 95%
CI (shading)
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thermore enables us to supply estimates and confidence
intervals (CIs) for the LOAM.

Statistical model
In the following we assume the measurements follow a
two-way random effects model given by

Y ij ¼ μþ Ai þ Bj þ Eij; ð1Þ

where μ describes the overall mean, and Ai, Bj, and Eij
are independent random variables following zero-mean
normal distributions with variances σ2

A , σ2
B , and σ2

E ,
respectively.
Under this model, measurements made by different

observers are uncorrelated if they are on different sub-
jects, while they are positively correlated with covariance
σ2A for the same subjects. Further, the covariance be-
tween measurements made by the same observer for dif-
ferent subjects is σ2B . Note that the measurements are
assumed to be homoscedastic, i.e. has common variance,
where the common variance is given by σ2A þ σ2B þ σ2E:
That is, the variance is split into three components: the
inter-subject, inter-observer, and residual variance. Here
we follow the convention of referring to the residual
variance σ2E as the intra-observer variance. Further, note
that we assume a balanced data setup, where each obser-
ver has evaluated all the subjects.

Proposed limits of agreement with the mean
Under the two-way random effects model stated in Eq.
(1), the difference between an individual measurement
and the subject-specific mean, Dij, is normally distrib-
uted with mean zero and variance ðσ2B þ σ2EÞðb − 1Þ=b .
Thus, under this model we expect 95% of these differ-
ences to be within the limits

�1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b − 1
b

σ2
B þ σ2E

� �r
: ð2Þ

We propose the above as the 95% LOAM. To estimate
σ2B and σ2E under the suggested two-way random effects
model, we use the unbiased and consistent ANOVA esti-
mates (see, e.g., Chapter 4 of Searle et al. [3]), given by

σ̂2B ¼ MSB −MSE
a

; σ̂2
E ¼ MSE; ð3Þ

where MSB = SSB/νB and MSE = SSE/νE, with
SSB ¼ a�Pb

j¼1ð�y� j − �y��Þ2 and SSE ¼ Pa
i¼1

Pb
j¼1ðyij − yi� − y� j þ y��Þ2

denoting the sums of squares for the observer and residual
term, and νB = b − 1 and νE = (a− 1)(b − 1). Further, yi� , y∙ j ,
and y∙∙ denote the subject-specific, observer-specific, and
overall average, respectively. Using the estimates of σ2

B and

σ2E from Eq. (3), we obtain the following estimate of the
95% LOAM:

�1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSBþ SSE

N

r
¼ �1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPa
i¼1

Pb
j¼1 yij − yi:

� �2

N

vuut
;

ð4Þ

where N = ab is the total number of measurements. For
comparison, Jones et al.’s estimate of the LOAM is given
by

�1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPa
i¼1

Pb
j¼1 yij − yi: − y: j − y::

� �2

νE

vuut ¼ �1:96 σ̂E;

which does not include variation due to observers.

Confidence intervals
Instead of simply reporting the estimated LOAM given
by Eq. (4), it is more informative to report CIs. However,
as the distribution of the LOAM is quite complicated,
we only supply approximate CIs.
Graybill and Wang propose a method for constructing

(approximate) efficient CIs for linear combinations of
variances [4]. To construct CIs for the LOAM in Eq. (2),
we first use the method by Graybill and Wang to con-
struct a CI for the term inside the square root of the
LOAM. Next, that CI is transformed into a CI for the
upper LOAM by taking the square root and then multi-
plying by 1.96 (see Additional file 1 for details). The
resulting approximate (and asymmetric) 95% CI for the
upper 95% LOAM is given by

1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSBþ SSE − Lð Þ=N

p
; 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSBþ SSE þ Hð Þ=N

p� �
;

ð5Þ

where

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2BSSB

2 þ l2ESSE
2

q
; H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2BSSB

2 þ h2ESSE
2

q
with lx ¼ 1 − 1=F0:975;νx;∞ and hx ¼ 1=F0:025;νx;∞ − 1 for
x = B and x = E (see Graybill and Wang for other choices
of lx and hx [4]). Here Fα; m, n is the α-quantile for the F-
distribution with m numerator and n denominator de-
grees of freedom. A 95% CI for the lower 95% LOAM is
simply obtained by negation of the end points of the CI
for the upper LOAM, that is,

− 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSSBþ SSE þ HÞ=N

p
; − 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSSBþ SSE − LÞ=N

p� �
:

Simulations under the two-way random effects model
in Eq. (1) indicate that the coverage probability for the
approximate CI is in reality quite close to the wanted
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95% even with a low number of observers (see Figure 1
in Additional file 2).

Sample size calculations
When planning an agreement study, it is often desirable
to investigate how many measurements are necessary to
obtain a certain level of precision in terms of a specified
width of the CI for the LOAM. From Eq. (5) it is clear that
the value of L and H determine the width of the CI for the
LOAM; specifically, the CI gets narrower as L and H ap-
proaches zero. In turn, this happens when b is increased,
since lx and hx approaches zero, when νx increases for
both x = B and x = E. Thus, to obtain a higher precision
we have to increase the number of observers, b, while it is
not enough to increase the number of subjects.
Therefore, assume we have a fixed number of subjects

a we want to include in a future study to assess agree-
ment between measurements. To determine the number
of observers necessary to obtain a desired width W of
the 95% CI, we require initial estimates of σ2B and σ2

E , say

σ̂2B;0 and σ̂2
E;0 , which can be obtained from, e.g., a

pilot study. Exploiting the relations SSE ¼ νE σ̂
2
E and

SSB ¼ νB � ðaσ̂2B þ σ̂2EÞ, we can express the width of the
CI in Eq. (5) in terms of the variance estimates rather
than the sum of squares. Further, we let the estimates be
given by the initial estimates σ̂2B;0 and σ̂2

E;0 , and set the
width equal to W. That is, we want to solve the follow-
ing equation with respect to b:

W ¼ 1:96ffiffiffiffi
N

p ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νB aσ̂2B;0 þ σ̂2E;0
� �

þ νE σ̂
2
E;0 þ H0

r
−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

νB aσ̂2B;0 þ σ̂2E;0
� �

þ νE σ̂
2
E;0 − L0

r Þ;

ð6Þ

where

L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2Bν

2
Bðaσ̂2B;0 þ σ̂2E;0Þ

2 þ l2Eν
2
Eðσ̂2E;0Þ

2
q

;

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2Bν

2
Bðaσ̂2B;0 þ σ̂2E;0Þ

2 þ h2Eν
2
Eðσ̂2E;0Þ

2
q

:

ð7Þ

Note that νB, νE, lB, lE, hB, and hE all depend on b. The
equation can then be solved numerically with respect to
b to find the number of observers needed to obtain an
expected width W of the 95% CI for the 95% LOAM.

Inference on the variance components
In order to assess the extent of the inter-subject, inter-
observer, and intra-observer variations, we suggest to
consider a 95% CI for σA, σB, and σE, respectively.
If the ANOVA estimate σ̂2B > 0, we simply estimate σB

by σ̂B ¼
ffiffiffiffiffi
σ̂2B

q
. Using the statistical delta method (see

Additional file 3), we obtain the following approximate
95% CI for σB:

σ̂B � 1:96
aσ̂B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aσ̂2B þ σ̂2E
� �2

2νB
þ σ̂2E
� �2
2νE

s
: ð8Þ

Results from a small simulation study investigating
how well the actual coverage of the approximate confi-
dence interval matches the desired coverage probability
and how this depends on b and the true values of σB and
σE can be found in the additional files (see Figure 2 in
Additional file 2). In general, the approximation im-
proves as b increases.
It might happen the estimate σ̂2

B is negative due to nega-
tive correlation between observations made by the same
observer on different subjects which will indicate a mis-
specification of the two-way random effects model formu-
lated in Eq. (1). Negativity can also arise by sampling
variation of the unbiased ANOVA estimates, we have used
in this paper. Although it is tempting to suggest setting σ̂2B
to zero in such a case, this would introduce bias in the es-
timation. We therefore suggest to report the negative esti-
mates, and recommend the researcher to comment on the
possibility of negatively correlated measurements, and if
that does not seem realistic, to assess whether the CIs are
too wide to provide any clinically meaningful conclusion.
It should be assessed whether more observers should be
included to improve the precision of the estimate or
whether the model is wrongly specified.
As the distribution of σ̂2

E is known in closed form, an
exact asymmetric 95% CI can easily be constructed for
σE (see Additional file 3) and is given by

σ̂E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νE

χ20:975;νE

s
; σ̂E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νE

χ20:025;νE

s0@ 1A; ð9Þ

where σ̂E ¼
ffiffiffiffiffi
σ̂2
E

q
and χ2α;νE is the α-quantile of a χ2-dis-

tribution with νE degrees of freedom.
To provide some context for the scale of σ̂B and σ̂E; it

may also be constructive to consider σ̂A ¼
ffiffiffiffiffiffi
σ̂2A

q
, where

σ̂2A ¼ ðMSA −MSEÞ=b is the ANOVA estimate of σ2A
where MSA = SSA/νA with νA = a − 1 and SSA ¼ b

Pa
i¼1

ðyi� − y��Þ2 . The estimate of σA may be accompanied by
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an (approximate) 95% CI, which can be constructed
using the statistical delta method (see Additional file 3):

σ̂A � 1:96
bσ̂A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bσ̂2A þ σ̂2

E

� �2
2νA

þ σ̂2E
� �2
2νE

s
: ð10Þ

Performing an agreement analysis
To investigate agreement between observers, we propose
first to make the agreement plot with the estimate and
CI for the 95% LOAM from Sections 2.1.2–2.1.3, and to
calculate the empirical means and standard deviations
for the measurements conditional on observer or subject.
Inspection of the agreement plot and the empirical means
across subject, conditional on observer can be used to re-
veal whether any observers tend to make unusually large
or small measurements. Further, the agreement plot and
the conditional empirical standard deviations can be used
to check whether the assumption of homoscedasticity of
the random model is fulfilled. If the model in Eq. (1) is fit-
ted using statistical software it is often possible to extract
residuals and predictions of the observer and subject ef-
fects which can be used to check the model assumptions
further. Specifically, one may, e.g., consider plots of the re-
siduals against the fitted values, observer number, and
subject number, respectively, to further investigate the ho-
moscedasticity assumption. Further, a normal quantile-
quantile plot of the residuals as well as of the predictions
of the observer and subject effects, respectively, can be
used to investigate the normality assumptions. However, if
the number of observers or subjects is low, an inspection
of how the predictions are distributed may be pointless.
See, for example, Section 4.3 in Pinheiro and Bates for a
more detailed explanation and illustration of model diag-
nostics [5]. If it is concluded that the model assumptions
are unreasonable, one could consider an appropriate
transformation of the data or formulate a variance model
to handle heteroscedasticity of the outcome [5] or one
could consider using a generalised, linear, and mixed
model to handle non-normal distribution of outcomes [6].
If the model seems reasonable, we report the estimate

and CI for the LOAM. The clinician can then compare
the estimated LOAM and associated CI to a clinically
acceptable difference between measurements evaluated
on the same subject. Whether or not the agreement be-
tween measurements is satisfactory depends both on the
scale and clinical purpose of the measurements.
Next, we may calculate CIs for σB and σE, and use

these along with the point estimates (σ̂2B and σ̂2E) to com-
pare the order of magnitude of the inter-observer vari-
ation with the intra-observer variation. In the rare case
where the observer variation is negligible, the observer
effect could in principle be removed from the random

model, requiring that the CIs for the LOAM are adjusted
accordingly (see Additional file 4).
The agreement analysis may be supplemented with an

estimate and CI for the ICC, which is another measure
for agreement based on the variance components. Vari-
ous forms of ICCs are listed in McGraw and Wong for a
range of models [7]. The two-way random effects model
proposed in this paper corresponds to Case 2A in
McGraw and Wong, with subject as row effect and ob-
server as column effect, and ICC(A, 1) can then be used
to assess absolute agreement of the measurements [7].
The plug-in estimate of ICC(A, 1) is easily calculated
using the estimated variance components:

dICC A; 1ð Þ ¼ σ̂2A
σ̂2A þ σ̂2B þ σ̂2

E

:

We refer to Table 7 in McGraw and Wong for an ap-
proximate CI for ICC(A,1) [7].

Multiple measurements on each subject per observer
The proposed LOAM and their estimates and CIs can
easily be extended to the case where each observer per-
forms multiple measurements on every subject. If each
observer performs c measurements on each subject, we
extend the two-way random effects model to:

Y i jk ¼ μþ Ai þ Bj þ Ei jk ;

where Yijk is the kth measurement performed by the jth

observer on the ith subject for i = 1, …, a, j = 1, …, b, and
k = 1, …, c. Note that, conditional on observer and sub-
ject, the c repeated measurements are assumed to be in-
dependent and identically distributed.
Mimicking the arguments for the single measurement

case, but now considering the differences Dijk ¼ Y ijk −

Y i��; we propose the following 95% LOAM:

�1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b − 1
b

σ2B þ
bc − 1
bc

σ2E

r
:

Again σ2A; σ
2
B; and σ2E are estimated by the ANOVA es-

timates (see, e.g., Chapter 4 of Searle et al. [3]), which
are given by

σ̂2A ¼ MSA −MSE
bc

; σ̂2B ¼ MSB −MSE
ac

; σ̂2E ¼ MSE;

where now MSA = SSA/νA, MSB = SSB/νB, and MSE =
SSE/νE with SSA ¼ bc

Pa
i¼1ð�yi�� − �y⋯Þ2; SSB ¼ ac

Pb
j¼1

ð�y� j� − �y⋯Þ2;SSE ¼ Pa
i¼1

Pb
j¼1

Pc
k¼1ðyi jk − �yi�� − �y� j� − �y⋯Þ2;

and νE = abc − a − b + 1, while νA = a − 1 and νB = b − 1 is
unchanged.
Note that the overall, subject-specific, and observer-

specific averages (y⋯; yi��, and y� j�) are now also averaging

across the multiple measurement index. With these
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definitions of SSB, SSE, νB, and νE and with N = abc, the
LOAM estimate and CIs still have the form given by Eq.
(4)–(5). For the sample size calculation summarised in
Eq. (6)–(7), we furthermore replace a with ac.
Further, CIs for σA, σB, and σE are obtained by Eq.

(8)–(10), except that a is replaced with ac, b is replaced
by bc, and the definition of σ̂2A; σ̂

2
B; σ̂

2
E; νA; νB , and νE has

changed to the above.
Note that all formulas for the multiple measurement

case reduce to those for the single measurement case,
when c = 1.
As for the single measurement setup, the observations

may be visualised using an agreement plot, where the
observed differences dijk ¼ yijk − yi�� are plotted against

the subject-specific averages yi��.

Data and software
The statistical programming language R, version 3.6.1 [8],
was used to analyse the data in the paper. An R-package,
R-scripts, and the aortic data for the LOAM calculations
in the present paper can be obtained from the GitHub re-
pository: https://github.com/HaemAalborg/loamr.

Results
Example 1
In a study b = 5 thoracic radiologists measured the diam-
eter (in centimetres) of a = 40 lung tumours from com-
puted tomography scans [9]. This study was also used as
an example in Jones et al. [2]. Table 1 shows the empir-
ical mean and standard deviation of the measurements
across subject, conditional on radiologist, and Fig. 1 dis-
plays the agreement plot. Estimates and CIs of the 95%
LOAM, ICC, σA, σB, and σE are listed in Table 2. Neither
the agreement plot nor the conditional empirical mean
indicate any observer systematically making unusually
small or large measurements. Further, there is no indica-
tion of heteroscedasticity in relation to change in obser-
ver or to the size of the tumour.
The estimated 95% LOAM are ±1.1 cm (95% CI: 1.0

cm to 1.8 cm); the estimate is identical with the 95%
LOAM calculated by Jones et al.’s method when round-
ing to one decimal place. The inter-observer standard

deviation estimate is 0.3 cm (95% CI: 0.1 cm to 0.5 cm),
while the intra-observer standard deviation estimate is
0.6 cm (95% CI: 0.5 cm to 0.6 cm). Although on a scale
comparable to the intra-observer variation, the inter-
observer variation is smaller, supporting the practice
where lung nodule measurements are performed by dif-
ferent radiologists. We may also note that the inter-
subject variation (unsurprisingly) is larger than both the
inter- and intra-observer variation.

Example 2
Borgbjerg et al. consider three methods (OTO, LTL, and
ITI) for assessing the maximum antero-posterior ab-
dominal aortic diameter [10]. A total of b = 12 radiolo-
gists measured the aortic diameter c = 2 times on a = 50
still abdominal aortic images to assess which of the three
methods were most reliable.
Using the methods described in Section 2.2 for mul-

tiple measurements, we calculate estimates and CIs for
the 95% LOAM, σA, σB, and σE (see Table 3) and make
an agreement plot (see Fig. 2). The inter-subject vari-
ation is large compared to both the inter- and intra-
observer variation. The inter-observer variation is of the
same order of magnitude as the intra-observer variation
and should not be excluded. The LTL method has the
largest estimated LOAM, meaning that measurements
made by this method tend to vary more. Conversely, the
ITI method has the smallest LOAM suggesting that this
method has the highest reproducibility when taking into
account both the inter-observer and intra-observer vari-
ation However, the wide CIs for the LOAM indicate that
more observers may be needed to assess this properly.
We found significantly less intra-observer variation for
the LTL and ITI compared to the OTO method. This
finding is in line with the conclusion by Borgbjerg et al.
which suggests that it is advantageous to employ either

Table 1 Empirical mean and standard deviation (SD) of the
tumour measurements, calculated across subjects, conditional
on radiologist

Radiologist Mean (cm) SD (cm)

1 3.9 1.6

2 3.7 1.5

3 4.4 1.6

4 4.4 1.6

5 4.1 1.6

Table 2 Estimates and 95% confidence intervals (CIs) of the
upper 95% LOAM, intra-class correlation (ICC), σA, σB, and σE for
the tumour measurements

LOAM (CI)
in cm

ICC (CI) σ̂A (CI)
in cm

σ̂B (CI)
in cm

σ̂E (CI)
in cm

1.1 (1.0, 1.8) 0.8 (0.7, 0.90) 1.5 (1.1, 1.8) 0.3 (0.1, 0.5) 0.6 (0.5, 0.7)

Table 3 Estimates and 95% confidence intervals (CIs) for the
upper 95% LOAM, σA, σB, and σE for the aortic diameter
measurements

Method LOAM (CI)
in mm

σ̂A (CI)
in mm

σ̂B (CI)
in mm

σ̂E (CI)
in mm

OTO 3.2 (2.8, 4.3) 7.2 (5.7, 8.6) 1.1 (0.7, 1.6) 1.2 (1.2, 1.3)

LTL 3.4 (2.8, 5.1) 6.9 (5.5, 8.3) 1.5 (0.8, 2.1) 1.0 (1.0, 1.1)

ITI 2.9 (2.4, 4.3) 6.8 (5.4, 8.1) 1.2 (0.7, 1.8) 0.9 (0.9, 0.9)
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the ITI or LTL method when repeated measurements
are performed by the same observer [10].

Discussion
In this study, we have defined the LOAM under the as-
sumption of a two-way random effects model, with addi-
tive observer and subject effects. This allowed us to
formulate a simple statistical inference procedure which
can be easily implemented. The theory could be altered
to cover various situations where the assumptions of the
paper are not fulfilled.
First, we include observers as a random effect, mean-

ing that we consider the observers in a study to be a ran-
dom sample from a larger population of observers that
we want to make inference about. It is, however, not un-
likely to have a study where the considered observers
constitute the whole population of interest, in which
case it may be more appropriate to include observers as
a fixed effect. The LOAM presented in this paper is
based on the variance of the difference between an indi-
vidual measurement and the subject-specific mean.
Under a model with observers as fixed effect, such a
LOAM will no longer measure variation due to change
of observer. Depending on the purpose of the agreement
study, the estimated observer effects could then be in-
cluded in a reformulation of the LOAM or considered
separately. However, we believe that many studies are
performed to investigate agreement not only between
the specific observers but rather within a larger popula-
tion of observers, encouraging the choice of model in
this paper.
Second, one could imagine a situation where it is rele-

vant to include an interaction term between subjects
and observers, that is, modelling that observers may
react differently upon the subjects. For single measure-
ments this interaction effect is confounded with the re-
sidual error, but for multiple measurements this effect

could in principle be modelled and the LOAM adjusted
accordingly.
Third, the methods and formulae of this paper rely on

the assumption of a balanced data setup, where all ob-
servers have evaluated all the subjects the same number
of times. However, in practice it is not unlikely to en-
counter an unbalanced data set as measurements may
get lost or not all observers were able to perform all
measurements. An unbalanced setup is definitely more
complicated to handle but some advances can be made.
A new expression for the LOAM may be found under a
two-way random model allowing unbalanced data, while
existing methods for finding estimates of the variance
components can be used to estimate the adjusted LOAM
(see, e.g., [3, 11]). However, it is in general not possible
to obtain closed form expressions for the confidence in-
tervals for the LOAM and variance components.
Fourth, as indicated in Section 2.1.5 it might happen

that the estimate σ̂2B is negative due to negative correl-
ation between observations made by the same observer
on different subjects which will indicate a misspecifica-
tion of the two-way random effects model formulated in
Eq. (1). It is possible to generalise the theory by consid-
ering marginal modelling [12]. It was further indicated
in Section 2.1.5 that negativity can also arise by sampling
variation of the unbiased ANOVA estimates, we have
used in this paper. Various approaches have been sug-
gested to remedy this problem as well [13].
Pursuing these generalisations will, however, make

modelling and implementation much more involved,
and thereby violate our goal to formulate an easily
implementable framework.

Conclusions
Our results show it is possible to formulate measures for
the agreement with the mean between multiple

Fig. 2 Agreement plots for each of the three methods (OTO, LTL, and ITI) used to measure the aortic diameter along with the estimate (dashed
line) and the 95% CI for the 95% LOAM (shading)
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observers, equip them with confidence intervals, and ex-
tend them to multiple observations per observer, thereby
providing a natural extension of Bland-Altman’s graph-
ical method. We believe, we have provided an easily ac-
cessible and useful statistical toolbox for researchers
involved in assessing agreement between methods or in-
dividuals performing clinical measurements.
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