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Abstract

Nowadays, achieving operational solutions to boost the flexibility of bulk power systems has become one

of the major challenges in both industry and academia. The outcomes of recent studies demonstrate that

the deployment of large-scale energy hubs can help enhance the flexibility of power systems. However,

centralized management of networked energy hubs may not be compatible with the power system operator

when they are managed by private owners. Motivated by this observation, a privacy-preserving decision-

making structure is proposed in this paper for the collaborative operation of private industrial energy

hubs and renewable power system by considering the high penetration of renewable energy sources. The

proposed structure is drawn up based on the decentralized two-stage robust-stochastic approach and solved

using the Benders decomposition algorithm by relying on the private ownership of various entities. The

main objectives of this study lie in 1) decreasing renewable power curtailment and 2) minimizing the total

operation costs of the private entities. To achieve these objectives, the effects of the multi-energy demand

response program and energy conversion facilities are investigated in the context of the developed model.

The competency and robustness of the proposed collaborative decision-making structure are examined

on the IEEE 30-bus test system using GAMS and DIgSILENT PowerFactory software. Results show

that if industrial energy hubs are successfully deployed in industrial parks, the total operation cost of the

renewable power system decreases by up to 16.33%, renewable power curtailment reduces by 92.9%, and

flexibility of the renewable power system enhances by increasing spinning reserve.

Keywords: Benders decomposition, demand response programs, energy storage systems, energy hub

systems, privacy-preserving collaboration, renewable power curtailment.

Nomenclature

Indices (sets)

d (D) Index of blocks of the piecewise linearization of the quadratic cost function.

g, e (G, E) Indices of thermal units and electrical energy storages.

h (H) Index of industrial energy hubs.

i, j (I) Indices of transmission buses.

k, q (K, Q) Indices of CHP units and P2H storages.
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l, n (L, N ) Indices of electrical and heat loads connected to industrial energy hubs.

m (M) Index of electrical loads connected to renewable power system.

s (S) Index of scenarios.

t (T ) Index of hourly intervals.

w(W), p (P) Indices of WFs and PV parks.

Parameters

ag, bg, cg Fuel consumption cost coefficients of thermal unit g.

COP q Coefficient of P2H storage performance.

Cd
g,in, Cd

g,fi Initial and final amounts of generation cost in block d of the linearized cost
function of thermal unit g.

IE, IH Rate of incentive for electrical and heat demands variation.

KNi,Ξ, KNh,Ξ Bus-Ξ and hub-Ξ incidence matrices.

PDm,t Forecasted electric demand at hour t.

PDini
l,t,s, HDini

n,t,s Initial electrical and heat demands connected to industrial energy hubs.

RUg, RDg Ramping up/down limits of thermal unit g.

tb Iteration numbers for Benders decomposition.

xij Equivalent reactance of line ij.

XGon
g , XGoff

g Minimum on/off times of thermal unit g.

P f
w,t, P

f
p,t Forecasted renewable power output of WF w and PV park p at hour t.

P d
g,in, P d

g,fi Initial and final amounts of power produced in block d of the linearized cost
function of thermal unit g.

P̃w,t, P̃p,t Maximum deviation of WF w and PV park p from forecasted values at hour t.

P̂tb,h,t,s The amount of exchanged power, which is determined in the master problem.

SUg, SDg Start-up/shut-down ramp limit of thermal unit g.

UT 0
g , DT 0

g Duration of periods that thermal unit g has been online/offline prior to the first
interval of the operating horizon.

Zd
g The slope of each block of the linearized cost function of thermal unit g.

∆P d
g Length of each block of the linearized cost function of thermal unit g.

λg, HV Natural gas price and natural gas heat value.

ρk, ρe, ρq Maintenance cost of CHP unit, electrical storage, and P2H storage.

η(·) Efficiency coefficient of various units.

αl, αn Participation rate of electrical and heat demands in multi-energy DRP.

Γt Uncertainty budget of renewable generation.

Πre Penalty prices for wind and solar power curtailments.

σs Probability of each scenario.

(·), (·) Minimum/maximum bounds of variables.

Variables

A(·),t,s Energy level of electrical and P2H storages at hour t in scenario s.

CCHP
k,s , CES

e,s ,
CP2H

q,s

The operation cost of CHP unit k, electrical storage e, and P2H storage q in
scenario s.

CMDR
l,n,s Incentive compensation cost of multi-energy DRP in scenario s.

CRPS , CIEH
h The total operation cost of renewable power system and industrial energy hub h.
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F̂ IEH
tb,h,t,s

Minimized sum of slack variables for industrial energy hub h at iteration tb.

H(·),t,s Heating stored/supplied by IEHs’ facilities at hour t in scenario s.

Hdir
q,t,s Heat production by P2H storage q in direct mode of action at hour t in scenario

s.

ÔIEH
tb,h

, ÔTotal
tb The optimal operation cost of industrial energy hub h and total operational cost

at iteration tb.

P(·),t,s Power drawn and released by various units at hour t in scenario s.

pdg,t,s The power produced in block d of the piecewise linear cost function of thermal
unit g at hour t in scenario s.

P lo
g,t, P

up
g,t Minimum/maximum available power output of thermal unit g at hour t.

PCw,t,s, PCp,t,s Wind and solar power curtailments of WF w and PV park p at hour t in scenario
s.

PFij,t,s Power flow on line ij at hour t in scenario s.

PDdr
l,t,s, HDdr

n,t,s Final electrical and heat demands profile at hour t in scenario s.

SUCg,t, SDCg,t Start-up/shut-down costs of thermal unit g at hour t.

∆Pup
l,t,s, ∆P dw

l,t,s Electrical demands change after multi-energy DRP implementation at hour t in
scenario s.

∆Hup
n,t,s, ∆Hdw

n,t,s Heat demands change after multi-energy DRP implementation at hour t in sce-
nario s.

δi,t,s Voltage phase angle at bus i at hour t in scenario s.

u(·),t,s Binary variable to indicate status of facilities.

yg,t, γg,t Binary variable to indicate the status of thermal unit g at hour t.

τPtb,h,t,s, ΛP
tb,h,t,s

Dual variables to create the optimality cutting plane and feasibility cutting plane.

ξP1
h,t,s, ξP2

h,t,s Slack variables for the feasibility check.

βw,t,s, βp,t,s Degree of the output power uncertainty of WF w and PV park p at hour t.

rx,t,s, εt,s Auxiliary variables in robust optimization model.

Functions

Fg(Pg,t,s) Fuel cost function of thermal unit g at hour t in scenario s.

1. Introduction

1.1. Motivation and significance

Nowadays, due to lack of proper facilities, such as lines’ capacity, as well as ever-escalating power

consumption, restructured power systems face fundamental challenges to guarantee the stable operation

of the entire power system and satisfy technical constraints [1]. At the generation side, the penetration

of intermittent renewable energy sources (RESs) in power systems has dramatically increased, owing

to concerns about rising energy prices [2], environmental problems [3], and reliability requirements [3].

Although the utilization of high-power RESs, such as wind farms (WFs) and photovoltaic (PV) parks

has been proven to be an effective solution to address the existing concerns, the inherent variability

and non-uniform distribution of these sources have posed remarkable challenges for the safe operation

of renewable-based power systems [4]. According to some strong evidence, due to the aging of power

systems infrastructure, renewable power system operators (RPSOs) are obligated to curtail a significant

percentage of produced renewable power, especially at high penetration levels, to maintain the stability

and reliability of power systems [5].
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On the other hand, running on-site generation in large subscribers sites, e.g., industrial parks, has

received considerable attention in recent years. For example, on-site energy production in the industrial

sector of the U.S. in 2012 accounted for about 4% of the total power produced in the same year [6].

Accordingly, industrial parks have become one of the most influential players in the electrical industry

with the significant development they have had in recent years. The strategic role of industrial parks

in advancing power systems plans was extensively evaluated in recent studies from the perspective of

industrial consumers [7] and RPSO [8]. Most of these studies have emphasized the use of backup power

sources like electrical energy storage (EES) or energy conversion facilities to continuously supply industrial

demands [9]. Therefore, it is obvious that the traditional power systems and the installed protection

equipment are not suitable for compensating the excessive generation/load, yet upgrading the existing

power systems for short periods of operation is not economical.

Thanks to the recent advances in the modernization of interconnected energy systems, energy hub

systems have emerged as a promising platform in the form of multi-vector energy systems to overcome the

technical challenges as well as mitigate the potential risks associated with various players in power systems

[10]. The energy hub systems are composed of multiple input/output ports that create a stable interface

between different energy networks with regards to the advanced energy conversion facilities and energy

storage systems. These systems can provide unique economic and technical benefits for energy market

players and energy network operators and planners [11]. From the power system operators’ point of view,

energy hub systems can boost the flexibility and reliability of power systems, enhance the resiliency of

the system, reduce operation cost, and decrease energy-wasting [12]. In addition, from the perspective of

energy system planners, the establishment of energy hubs in industrial parks, as a major energy consumer

[13], can help to realize the theory of localization of sustainable energy production and consumption [14].

Implementing this mechanism not only increases the flexibility of the interconnected energy systems but

also enables industrial consumers to actively participate in wholesale energy markets and take advantage of

existing opportunities in different layers of energy networks [15]. On this basis, the industrial energy hubs

(IEHs) could be networked to form a multi-vector community at the sub-transmission and transmission

levels. In these circumstances, each IEH is managed by a private owner, which aims to supply local

demands using the existing facilities in energy hubs or via bilateral energy exchange with wholesale

energy markets at the lowest operating cost. The private IEHs are recognized as independent entities,

and these entities should cooperate with the power system in a privacy-preserving way [16]. Moreover, the

technical constraints must not be sacrificed to the existed distributed mechanisms. Accordingly, ensuring

the optimal collaborative operation of multiple private IEHs and power systems without compromising

privacy provisions is a challenging problem, especially when the various uncertainties are considered in

the scheduling process [17]. Therefore, it is necessary to draw up a holistic decentralized decision-making

structure for the coordinated operation of private IEHs and power systems to determine the optimal

energy dispatch among various players in the wholesale energy markets. By doing so, the power system

operator and industrial energy hub operators (IEHOs) can separately pursue their own goals within the

framework of the restructured energy systems.

In the following, various studies on the optimal operation of networked energy hubs are briefly reviewed
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and then the technical contributions of this paper are presented.

1.2. Related literature

Due to the scope of this paper, there exists a large body of related studies that were focused on optimal

operation of networked energy hubs in power systems by incorporating RESs. In general, the related lit-

erature is categorized according to whether optimization programs were provided based on a traditionally

centralized dispatch approach or a decentralized framework. In terms of the centralized energy dispatch

of networked energy hubs, authors of [18] presented a centralized optimal energy management strategy for

the coordinated operation of grid-connected energy hubs and the regional power system with the aim of

decreasing wind power curtailment. In the same work, the decision-making about the integrated operation

of the power system and energy hubs was made by a common master controller in a centralized manner.

A robust operation strategy for networked energy hubs was presented in [19] considering the uncertainty

of renewable power production and demand response programs (DRP). The main aim of that work was

to reduce the total operation cost of multiple energy hubs during the scheduling interval. In [20], a cost-

effective centralized program was developed for microgrids embedded with energy hubs with regards to

the stochastic programming method and DRPs. In a different approach, a multi-objective optimization

program was developed in [21] with the aims of minimizing the total operation cost of multiple energy hubs

as well as reducing greenhouse gas emissions. In this work, the produced power by RESs was considered as

an uncertain parameter and was modeled by a scenario-based method. A temporally-coordinated optimal

operation strategy was developed in [22] for optimal energy management of a multi-energy system in both

day-ahead and intra-day markets. A multi-step linearization method for the interconnected energy hubs

was examined in [23], which minimized the total operational cost of the networked energy hubs during the

scheduling period. In [24], an energy dispatch model was investigated for analyzing the performance of a

multi-energy system in both the grid-connected and islanded modes. Moreover, in [25], a two-level opti-

mization problem was proposed for determining optimal bidding/offering strategy of multiple networked

energy hubs in the day-ahead electricity market considering different sources of uncertainty. The problem

was developed in the form of the centralized dispatch approach, which was managed by the power system

operator.

In addition to the utilized centralized decision-making schemes, there have been considerable efforts

in the research community to integrate energy hubs into power systems in decentralized and privacy-

preserving manners. In these kinds of studies, various distributed methods, such as the alternating direc-

tion method of multipliers (ADMM) and decomposition methods, were established to define decentralized

optimization problems for sustainable exploitation of networked energy hubs. For example, in [26], a dis-

tributed energy management framework was derived from the ADMM method to determine the optimal

scheduling of networked energy hubs. Authors of [27] proposed an auction-based regulation service mecha-

nism for economic dispatch of the large-scale energy hubs in the context of the wholesale electricity market.

The proposed mechanism was solved in a decentralized manner using the ADMM technique. In [28], a

distributed robust optimization method was proposed for making private coordination between energy

hubs and the power system considering the market price uncertainty. In that work, robust optimization
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was considered to realize the worst-case of uncertain parameters in multi-carrier energy systems. In [29],

the leader-follower theory was applied in the framework of Benders decomposition for the optimal dispatch

of networked energy hubs. This theory can establish privacy-preserving collaborations among individual

energy hub operators and the power system operator. Finally, in [30], distributed energy management

methods based on the decomposition algorithm were proposed for the robust optimal energy dispatch of

grid-connected energy hubs considering the uncertainty of renewable power generation. Likewise, authors

of [31] developed a distributionally robust unit commitment algorithm for optimal energy management of

the large-scale energy hubs with the aim of minimizing the total operation cost.

By examining the above-mentioned studies, it can be seen that the principal focus of the technical

literature was on the optimal exploitation of multiple networked energy hubs aimed at reducing the total

operation cost of the multi-carrier energy systems. Nevertheless, ignoring the challenges posed by the high

penetration of RESs is the major gap in the aforementioned studies. It is worthwhile to mention that, to

the best of our knowledge, no prior study in this field investigated the effects of new energy conversion

facilities, such as power-to-heat (P2H) storage, on improving the performance of the integrated renewable

energy systems in the presence of flexible demands and high-power and large-scale RESs. In addition,

very few studies in the literature have addressed the unique benefits of multi-energy DRP in advancing

the desired objectives of the energy system operators. Overall, we argue that the previous literature lacks

detailed models to address the various flexibility options, so further studies are needed to design a holistic

decision-making framework with respect to all available flexibility options.

1.3. Technical contributions and paper structure

This work aims to fill the knowledge gaps mentioned in the previous sub-section by applying a purely

mathematical-technical perspective. To this end, a privacy-preserving structure is presented for optimizing

RPSO/IEHOs collaborations in an iterative manner by considering high penetration of WFs and PV parks.

The main objectives of the distributed optimization problem are to minimize the total operation cost of

the renewable power system and IEHs, reduce renewable power curtailment, and enhance the flexibility of

the integrated renewable energy system via realizing optimal coordination between different players. To

clarify the main contributions of this paper, the features of the proposed model are compared with other

published papers in Table 1. Eventually, the technical contributions of this study are as follow:

(1) A scalable and efficient structure with low complexity is proposed to determine the optimal day-

ahead operation of the renewable power system in coordination with private IEHs within the privacy-

preserving decision-making framework. In this regard, a decentralized two-stage robust-stochastic

security-constrained unit commitment (SCUC) model is developed for the collaborative operation

of networked IEHs and the renewable power system to facilitate the coordinated operation of RPSO

and IEHOs as well as to preserve the operational privacy of these parties.

(2) A generalized Benders decomposition algorithm is employed to solve the proposed distributed robust-

stochastic model, which is in line with the prevalent leader-followers (RPSO-IEHOs) relationships

in the energy management of the integrated renewable energy system. In the formed decomposition-

based program, RPSO and IEHOs seek common goals with respect to privacy provisions.
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Table 1: Comparison of the contributions of related literature with the proposed structure.

References Operation
mode

Privacy Coordinator Resources P2H
storage

DRPs Uncertainty
modeling

[18] Centralized Sharing all data Central
supervisor

ECF + EES
+ RESs

! ! IGDT

[19] Centralized Sharing all data Central
supervisor

ECF + EES
+ RESs

× ! Robust

[20] Centralized Sharing all data Central
supervisor

ECF + RESs × ! Stochastic

[21] Centralized Sharing local
data

Central
supervisor

ECF + EES
+ RESs

× × Stochastic

[23] Centralized Sharing all data Central
supervisor

ECF + EES × × Deterministic

[25] Centralized Sharing all data Central
supervisor

ECF + EES
+ RESs

× ! Stochastic

[26] Decentralized Sharing power
trading amount

PSO ECF + EES
+ RESs

× × Deterministic

[27] Decentralized Sharing power
trading amount

PSO ECF × × Deterministic

[28] Decentralized Sharing power
trading amount

PSO ECF + EES
+ RESs

× × Robust

[29] Decentralized Sharing power
trading amount

ESO ECF + EES × × Deterministic

[30] Decentralized Sharing power
trading amount

ESO ECF + EES
+ RESs

× × Robust

[31] Decentralized Sharing power
trading amount

ESO ECF + EES
+ RESs

× × Robust

Proposed
model

Decentralized Sharing power
trading amount

RPSO ECF + EES
+ RESs

! ! Hybrid
robust-stochastic

*Note: ECF-Energy conversion facilities; PSO-Power system operator; ESO-Energy system operator

(3) A hybrid robust-stochastic strategy is implemented to handle the enforced operational uncertainties

associated with the renewable power output of WFs and PV parks and the energy demands of local

industrial consumers, and also to create less conservative and more trustworthy approaches. In

this regard, the robust optimization technique is employed to model uncertainties associated with

WFs and PV parks output powers, and the two-stage stochastic approach is used to handle the

uncertainties caused by the energy demands of local industrial consumers.

(4) In addition to the above points, the proposed joint optimization structure is extended based on the

multi-energy DRP, EES, and P2H storage, as the flexibility options, to minimize the total operation

cost, immunize the power system in confronting the challenges of high-power RESs, as well as

enhance operational flexibilities of the renewable power system by increasing spinning reserve.

(5) In order to validate the feasibility of the optimization algorithm, insightful analysis and realistic

experiments are carried out using the unique options of the DIgSILENT PowerFactory [32]. In this

regard, the role of the IEHs in increasing renewable power system flexibility is analyzed when the

planned outage is applied to one of the generation units.

The structure of this paper is organized as follows. Section 2 explains the proposed structure and

presents the two-stage stochastic mathematical model for the optimal operation of the renewable power

system in coordination with IEHs. The robust optimization method for handling the uncertainty of re-

newable power generation is presented in Section 3. In Section 4, the decentralized approach for the
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collaborative operation of multiple networked IEHs and renewable power system is explained. The nu-

merical simulation and results for evaluating the proposed structure are provided in Section 5. Finally,

conclusions and future works are drawn in Section 6. The schematic overview of the whole paper is shown

in Fig. 1.

Goal1

Plan2

Actions3

Validation4

STEP 1
Developing a privacy-preserving decision-making 

structure for the coordinated operation of IEHs and 

renewable power system to minimize the total operation 

costs of each player and reduce the rate of renewable 

power curtailment

STEP 2
Determining a decentralized two-stage robust-stochastic 

model for the collaborative operation of private entities 

via Benders decomposition algorithm in line with the 

prevalent leader-followers manner

STEP 3
 Defining renewable power system structure considering 

WFs and PV parks,

 Deploying IEHs into industrial parks,

 Modeling various entities to execute privacy-preserving 

model,

 Presenting the mechanism of various flexibility options.

STEP 4
 Performing the robust-stochastic model using GAMS 

in the form of several case studies by considering 

uncertain parameters,

 Monitoring status of the test system using 

PowerFactory under various conditions.

Fig. 1: Conceptual diagram of the proposed strategy.

2. Formulation of the proposed structure

In this section, the proposed distributed optimization model is formulated to ensure the optimal

collaborative operations of networked IEHs with the renewable power system in the presence of various

flexibility tools. The proposed model is composed of several independent entities, which are operated

by separate decision-makers. The main entity has to do with RPSO as well as the private owners of

IEHs are considered as the rest of the independent entities. The graphical description of the proposed

structure is shown in Fig. 2. As can be seen, an integrated renewable energy system comprises a set H

of H = |H| IEHs, power transmission system interfaces, WFs, PV parks, and local industrial consumers.

In the proposed structure, IEHs and local industrial consumers are managed by IEHOs, and the rest of

the system, i.e., WFs, PV parks, and conventional thermal units, are managed by RPSO. Each IEH is

equipped with combined heat and power (CHP) units, EES, and P2H storage. An IEH has two input ports,

i.e., electricity and gas connectors, and two output ports, i.e., electricity and heat connectors. The input

ports are related to the purchased energies from the renewable power system and natural gas network,

and output ports are used for trading electricity and thermal energy with industrial consumers and the

renewable power system. In other words, IEHOs interact with RPSO via bi-directional communications for

creating an economical and secure operation using the constrained transmission system. On the contrary,

IEHOs have one-way collaboration with natural gas (at input ports) and district heating (at output ports)
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Fig. 2: Structure of decentralized operation for multiple networked IEHs.

networks. In the developed decentralized structure, the privacy of operation data is preserved since the

RPSO will not need all operation data of IEHs. To preserve the private ownership of IEHOs, the conflicts

of exchanging electrical power between RPSO and IEHOs are resolved by the Benders decomposition

algorithm in an iterative procedure. In this regard, the integrated two-stage robust-stochastic optimization

model is decomposed into a master problem and a set of sub-problems considering the uncertainties of

wind and PV generation as well as electricity and heat demands in the industrial customers’ side. The

master problem is handled by RPSO to determine day-ahead robust SCUC, and sub-problems are solved

independently by IEHOs for optimizing the operation of IEHs by relying on the two-stage stochastic

programming. The details of the day-ahead robust-stochastic SCUC formulation for each decision-maker

are described in the following sub-sections. At first, the two-stage stochastic SCUC problem is developed

for the proposed privacy-preserving model, which will be updated in Section 3 to implement the hybrid

robust-stochastic concept.

2.1. Decision-making of RPSO

The objective of RPSO’s decision-making process is to minimize the total operation cost of supplying

electrical loads outside of IEHs’ services territories by thermal units and curtailing renewable power in

optimal coordination with IEHOs over the entire day-ahead scheduling horizon. The objective function

formed to model this process, which is given in (1), contains two stages. The first stage includes the costs
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of start-up and shut-down of thermal units. This stage is independent of the stochastic process, therefore

the start-up and shut-down costs are applied to all scenarios. The second stage of the objective function

corresponds to the operation cost of thermal units and renewable power curtailment costs for WFs and

PV parks. The second stage decision variables in the proposed two-stage stochastic programming model

depend on the fluctuations in electricity and heat demands in the industrial customers’ side, which are

defined by different scenarios.

Min :

CRPS =
∑
t∈T

∑
g∈G

(SUCg,t + SDCg,t) +
∑
s∈S

σs ·

(∑
g∈G

Fg(Pg,t,s) + Πre(
∑
w∈W

PCw,t,s +
∑
p∈P

PCp,t,s)

)
(1)

2.1.1. Thermal units modeling

In this paper, the quadratic fuel cost function of thermal units is accurately approximated by a

set of piecewise blocks to avoid complicating the optimization problem. The linearization process of the

quadratic cost function using the least-squares criterion is illustrated in Fig. 3. The analytic representation

of the linearization process is presented in (2)-(10) [33]. According to these equations, the fuel cost of

thermal units can be defined by (10).

,

d

g fiC

,

d

g inC

2

, , ,( )g g t g g t g g t gF P a P b P c  

,g g tP u

,

d

g inP ,
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g fiP

,g g tP u

,

,

d

d

g
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g
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d
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Fig. 3: Piecewise linear approximation of thermal units’ quadratic cost function.

0 ≤ pdg,t,s ≤ ∆P dg · ug,t, ∀g, t, s, d, (2)

∆P dg =
Pg − Pg
D

, ∀g, d, (3)

P dg,in = (d− 1) ·∆P dg + Pg, ∀g, d, (4)

P dg,fi = P dg,in + ∆P dg , ∀g, d, (5)

Pg,t,s = Pg · ug,t +
∑
d∈D

pdg,t,s, ∀g, t, s, (6)

Cdg,in = ag ·
(
P dg,in

)2
+ bg · P dg,in + cg, ∀g, d, (7)
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Cdg,fi = ag ·
(
P dg,fi

)2
+ bg · P dg,fi + cg, ∀g, d, (8)

Zdg =
Cdg,fi − Cdg,in

∆P dg
, ∀g, d, (9)

Fg(Pg,t,s) = ag · P 2
g + bg · Pg + cg · ug,t +

∑
d∈D

(Zdg · pdg,t,s), ∀g, t, s. (10)

The technical constraints of thermal units are presented by (11)-(26) [34]. The thermal units ramp-

rates constraints for continuous intervals are indicated by (11)-(18). The power produced by each thermal

unit is limited by upper and lower bounds as expressed by (11). The upper bound of the accessible power

output of thermal units is constrained by (12), i.e., shut-down ramp rate, and (13), i.e., ramp-up and

start-up ramp rates. In addition, the lower bound of the accessible power output of thermal units is

enforced by (15) and (16). Constraints (17) and (18) specify on/off states of all units.

P log,t ≤ Pg,t,s ≤ P
up
g,t , ∀g, t, s, (11)

Pupg,t ≤ P̄g · (ug,t − γg,t+1) + SDg · γg,t+1, ∀g, t, (12)

Pupg,t ≤ Pg,t−1 +RUg · ug,t−1 + SUg · yg,t, ∀g, t, (13)

Pupg,t ≥ 0, ∀g, t, (14)

P log,t ≥ Pg · ug,t, ∀g, t, (15)

Pg,t−1 − Pg,t ≤ RDg · ug,t + SDg · γg,t, ∀g, t, (16)

yg,t − γg,t = ug,t − ug,t−1, ∀g, t, (17)

yg,t + γg,t ≤ 1, ∀g, t. (18)

Inequities (19)-(26) express minimum up/down times limits of each thermal unit. Constraints (19)-

(22) are applied to satisfy the minimum up time constraint in the initial, middle, and final periods of the

scheduling horizon, respectively. Likewise, the minimum down time limits can be formulated as (23)-(26).

µg∑
t=1

(1− ug,t) = 0, ∀g, (19)

µg = min
{
T , (XGong − UT 0

g ) · ug,0
}
, ∀g, (20)

ν+XGon
g −1∑

t=ν

ug,t ≥ XGong ·yg,ν , ∀g, ν = [µg + 1, ..., T −XGong + 1], (21)

T∑
t=ν

(ug,t − yg,t) ≥ 0, ∀g, ν = [T −XGong + 2, ..., T ], (22)

ςg∑
t=1

ug,t = 0, ∀g, (23)
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ςg = min
{
T , (XGoffg −DT 0

g ) · (1− ug,0)
}
, ∀g, (24)

ν+XGoff
g −1∑

t=ν

(1− ug,t) ≥ XGoffg ·γg,ν , ∀g, ν = [ςg + 1, ..., T −XGoffg + 1], (25)

T∑
t=ν

(1− ug,t − γg,t) ≥ 0, ∀g, ν = [T −XGoffg + 2, ..., T ]. (26)

where µg and ςg represent the numbers of initial periods that thermal unit g must be online and offline.

The start-up and shut-down costs are expressed as constant values as (27) and (28), respectively.

SUCg,t ≥ sucg · yg,t; SUCg,t ≥ 0, ∀g, t, (27)

SDCg,t ≥ sdcg · γg,t; SDCg,t ≥ 0, ∀g, t. (28)

2.1.2. Renewable power system technical constraints

The technical and operational constraints (29)-(35) must be applied to the safe operation of the

renewable power system [34]. Constraint (29) ensures the curtailment rate of each WF/PV park cannot

exceed the forecast values. The linearized DC-power flow model is used to calculate the amount of power

flows from bus i to bus j, which is presented in (30). The power flow in each line and voltage angle of

each bus is restricted by its minimum and maximum limits, which are expressed by (31) and (32). It

should be noted that the value of the voltage angle in the slack bus must be equal to zero. This critical

constraint is expressed by (33). The electrical demands of the renewable power system should be met

by the output power of the thermal units, WFs, PV parks, as well as the power exchanged with IEHs

considering the power flow limits between the system buses. Hence, the power balance constraint at bus

i can be described by (34). The amount of transferred power from the renewable power system to IEHs

and vice versa should be limited by (35). Note that, Ph,t,s is considered as a free variable. The positive

amount shows the imported power from the renewable power system into the IEHs and the negative

amount demonstrates the delivered power from IEHs into the renewable power system.

0 ≤ PCx,t,s ≤ P fx,t, ∀x ∈ {w, p}, t, s. (29)

PFij,t,s =
δi,t,s − δj,t,s

xij
, ∀i, j, t, s, (30)

−PFij ≤ PFij,t,s ≤ PFij , ∀i, j, t, s, (31)

−π ≤ δi,t,s ≤ +π, ∀i, t, s, (32)

δslack,t,s = 0, ∀t, s, (33)∑
g∈G

KNi,g · Pg,t,s +
∑
w∈W

KNi,w · (P fw,t − PCw,t,s) +
∑
p∈P

KNi,p · (P fp,t − PCp,t,s)−∑
h∈H

KNi,h · Ph,t,s −
∑

m∈M
KNi,m · PDm,t =

∑
j∈I

KNi,j ·PFij,t,s, ∀i, t, s,
(34)

Ph ≤ Ph,t,s ≤ Ph, ∀h, t, s. (35)
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2.2. Decision-making of individual IEHs

Each IEH (∀h) possesses EES, CHP unit, and P2H storage as the energy conversion facilities, for sup-

plying local electricity and heat demands in industrial parks while interacting with RPSO. In the proposed

decentralized approach, the energy hub model can be easily developed to include other energy conversion

facilities. In the decision-making process of each IEH, the aim is to minimize the total operation cost

of each IEH over the entire day-ahead scheduling horizon, considering the uncertainty of local industrial

consumers’ demands. The objective function of private IEHs is formulated in (36) as follows:

Min :

CIEHh =
∑
s∈S

σs[
∑
k∈K

CCHPk,s +
∑
q∈Q

CP2H
q,s +

∑
e∈E

CESe,s +
∑

(l,n)∈
(L,N )

CMDR
l,n,s ], ∀h.

(36)

The first term of (36), i.e., CCHPk,s , indicates the fuel and maintenance costs of CHP units, which can

be calculated by (37) [35]. The second term, i.e., CP2H
q,s , refers to the maintenance cost of P2H storages,

which can be defined by (38). The EES degradation cost, i.e., CESe,s , due to frequent charge and discharge,

is considered in the third term. The accumulated degradation cost of EESs in IEHs are characterized by

(39) [29]. Eventually, the final term, i.e., CMDR
l,n,s , of (36) represents the multi-energy DRP compensation

cost, where the incentive compensation costs paid to the industrial customers to perform the multi-energy

DRP can be defined as (40) [36]. These cost functions are determined by the optimal scheduling of private

IEHs in the optimal coordinated operation with the renewable power system. It should be noted that

Hq,t,s and Pe,t,s are considered as free variables in (38) and (39).

CCHPk,s =
∑
t∈T

(
λg

ηk ·HV
· Pk,t,s) + (ρk · Pk,t,s), ∀k, s, (37)

CP2H
q,s =

∑
t∈T

ρq ·Hq,t,s, ∀q, s, (38)

CESe,s =
∑
t∈T

ρe · Pe,t,s, ∀e, s, (39)

CMDR
l,n,s =

∑
t∈T

[(
IE × (∆Pupl,t,s + ∆P dwl,t,s)

)
+
(
IH × (∆Hup

n,t,s + ∆Hdw
n,t,s)

)]
, ∀l, n, s. (40)

The operational constraints governing IEHs are described below.

2.2.1. CHP units constraints

The heat and electric power produced by CHP units have mutual dependence, which is determined

by the special feasible operation region (FOR) for each unit. The feasible region model associated with

the considered CHP units in this article is shown in Fig. 4. The operational boundary (ABCD) of CHP

units can be formulated by linear constraints, as given in (41)-(43) [37]. In these constraints, M is a large

number, e.g., 1000. Moreover, constraints (44) and (45) ensure that the power and heat production of

CHP units are at acceptable levels.
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Fig. 4: FOR model for CHP units.

Pk,t,s − Pk,A −
Pk,A − Pk,B
Hk,A −Hk,B

· (Hk,t,s −Hk,A) ≤ 0, ∀k, t, s, (41)

Pk,t,s − Pk,B −
Pk,B − Pk,C
Hk,B −Hk,C

· (Hk,t,s −Hk,B) ≥ −(1− uk,t,s) ·M, ∀k, t, s, (42)

Pk,t,s − Pk,C −
Pk,C − Pk,D
Hk,C −Hk,D

· (Hk,t,s −Hk,C) ≥ −(1− uk,t,s) ·M, ∀k, t, s, (43)

Pk ≤ Pk,t,s ≤ Pk , ∀k, t, s, (44)

0 ≤ Hk,t,s ≤ Hk , ∀k, t, s. (45)

2.2.2. P2H storages constraints

The operational constraints related to P2H storages are defined as (46)-(51). The dynamic energy

balance of the P2H storage in each hour is expressed by (46). The capacity limit of the P2H storage

is given by (47). The initial (t = 0) and final (t = T ) state of charge of the P2H storage is limited to

(48). The allowable ranges of charging/discharging thermal energy in this storage are limited by (49).

The generated thermal energy by the P2H storage can be delivered to the industrial customers or district

heating networks, as stated in (50). Here, constraint (51) demonstrates the allowable limit for input power

from the renewable power system into the P2H storage.

Aq,t,s = (1− ηq) ·Aq,t−1,s +Hq,t,s − βloss · SUq,t,s + βgain · SDq,t,s, ∀q, t, s, (46)

Aq ≤ Aq,t,s ≤ Aq, ∀q, t, s, (47)

Aq,0,s = Aq,T ,s, ∀q, s, (48)

0 ≤ Hq,t,s ≤ Hq, ∀q, t, s, (49)

Hdir
q,t,s = COPq · Pq,t,s, ∀q, t, s, (50)

0 ≤ Pq,t,s ≤ Pq, ∀q, t, s. (51)
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2.2.3. EES system constraints

The operation of each EES is defined by the following relationships. Based on (52), the electrical

energy level of each EES in a scheduling interval is calculated. The capacity level of each EES should be

restricted in its minimum and maximum limits, which is modeled by (53). According to (54), the state

of charge of each EES must be equal to Ae,0,s at the end of the scheduling period. The charge/discharge

limitation of each EES is imposed by (55).

Ae,t,s = Ae,t−1,s + ηe · Pe,t,s, ∀e, t, s, (52)

Ae ≤ Ae,t,s ≤ Ae, ∀e, t, s, (53)

Ae,0,s = Ae,T ,s, ∀e, s, (54)

0 ≤ Pe,t,s ≤ Pe , ∀e, t, s. (55)

2.2.4. Multi-energy DRP constraints

DRP is one of the most flexible tools for the management of IEHs behavior to interact effectively

with the renewable power system by exploiting the economic opportunities available in the industrial

customers’ side. In this paper, multi-energy DRP is performed to minimize the total operation cost of

the integrated renewable energy system, reduce renewable power curtailments, and enhance the flexibility

of the renewable power system by creating optimal coordination between RPSO and each IEHO in an

iterative manner. DRPs are divided into two categories: the price-based DRP and the incentive-based

DRP. In this study, multi-energy DRP is considered based on the incentive-based manner, which is

performed using direct load control (DLC) program. Hence, the incentive compensation costs are paid to

the participating customers in the form of the DLC program. Based on (56) and (57), the DLC program

is performed on the electrical and heat demands with respect to the percentage of participation of each

consumer in the multi-energy DRP. After the implementation of multi-energy DRP, the final electrical

and heat profiles are determined using (58) and (59) [36].
∆Pupl,t,s ≤ αl × PDini

l,t,s, ∀l, t, s,

∆P dwl,t,s ≤ αl × PDini
l,t,s, ∀l, t, s,

(56)


∆Hup

n,t,s ≤ αn ×HDini
n,t,s, ∀n, t, s,

∆Hdw
n,t,s ≤ αn ×HDini

n,t,s, ∀n, t, s,
(57)

PDdr
l,t,s = ∆Pupl,t,s −∆P dwl,t,s + PDini

l,t,s, ∀l, t, s, (58)

HDdr
n,t,s = ∆Hup

n,t,s −∆Hdw
n,t,s +HDini

n,t,s, ∀n, t, s. (59)
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2.2.5. IEHs’ energy balancing

Each IEHO manages the energy balance in each IEH by considering localized energy generation, energy

curtailments, as well as power imported/exported from/to the renewable power system. Constraints (60)

and (61) are used to make the energy balance between energy consumed by local demands, i.e., PDdr
l,t,s

and HDdr
n,t,s, and generated/traded energy in each IEH. It should be noted that the modified energy

demands after implementing multi-energy DRP are used rather than the initial energy demands in the

supply-demand constraints.

Ph,t,s +
∑
e∈E

KNh,e·Pe,t,s +
∑
k∈K

KNh,k · Pk,t,s −
∑
q∈Q

KNh,q · Pq,t,s −
∑
l∈L

KNh,l · PDdr
l,t,s = 0, ∀h, t, s,

(60)∑
k∈K

KNh,k ·Hk,t,s +
∑
q∈Q

KNh,q · (Hq,t,s +Hdir
q,t,s)−

∑
n∈N

KNh,n ·HDdr
n,t,s = 0, ∀h, t, s. (61)

3. Hybrid robust-stochastic model

In the above-described model, the uncertainty of renewable generation was neglected and the output

power of WFs and PV parks was perfectly forecasted. Since the uncertainty of RESs is more vital than

the energy demands, the RPSO prefers to apply a risk-based method to handle the uncertainty associated

with renewable powers, while the IEHOs try to manage the fluctuations of electrical and heat demands

of local industrial consumers using stochastic programming based on a Monte-Carlo (MC) simulation.

Compared to stochastic programming, which requires the probability distribution function (PDF) or

fuzzy membership set of uncertain parameters, the robust approach describes uncertain parameters by

descriptive statistics. Therefore, in such models, complex calculations resulting from scenario counting

are avoided. In the proposed privacy-preserving decision-making structure, the mathematical definition

of the distributed robust-stochastic approach to realize the worst case is as follows.

After adopting the budget of uncertainty, the uncertainty set of WFs and PV parks is described by

(62)-(64) [38]. The degree of uncertainty of RESs in period t can be controlled by variable βx,t,s. The

value of βx,t,s = 0 demonstrates that there is no uncertainty in renewable power production in period t,

while βx,t,s = 1 demonstrates that the maximum renewable power uncertainty occurs in period t. The

robustness level of the solution can be controlled by the budget of uncertainty, i.e., Γt. The budget of the

uncertainty parameter can change from 0 to 1 in each scheduling interval. The greater value of Γt, e.g.,

1, means that RPSO has selected a highly conservative state in period t. In contrast, a lower value of Γt

means that the uncertain parameter is almost neglected in period t.

Px,t ∈
[
P fx,t − βx,t,s · P̃x,t, P

f
x,t + βx,t,s · P̃x,t

]
, ∀x ∈ {w, p}, t, s, (62)

0 ≤ βx,t,s ≤ 1, ∀x ∈ {w, p}, t, s, (63)∑
w∈W

βw,t,s +
∑
p∈P

βp,t,s ≤ Γt, ∀t, s. (64)

Based on the uncertainty model of the RESs presented in (62)-(64), the renewable power curtailment

constraint, which was shown in (29), and energy balance constraint, which was shown in (34), can be
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converted to (65) and (66), respectively.

0 ≤ PCx,t,s ≤ P fx,t + max
βx,t,s

[βx,t,s · P̃x,t], ∀x ∈ {w, p}, t, s, (65)

max
βx,t,s

[
∑
x∈X

KNi,x · (P fx,t − βx,t,s · P̃x,t)] =
∑
x∈X

KNi,x · PCx,t,s +
∑

m∈M
KNi,m · PDm,t+∑

j∈I
KNi,j ·PFij,t,s −

∑
g∈G

KNi,g · Pg,t,s −
∑
h∈H

KNi,h · Ph,t,s, ∀x ∈ {w, p}, i, t, s.
(66)

Subject to: (63) and (64)

By applying the robust approach, the RPSO faces a bilevel min-max optimization problem. The

duality theory can be used to handle the bilevel optimization problem. Hence, the min-max optimization

problem is converted into a min-min program using the duality theory. According to the introduced

mechanism in [39], constraint (66) can be converted to (67)-(69) using the duality theory.

min
rx,t,s,εt,s

[
∑
x∈X

KNi,x · (P fx,t − rx,t,s)− (εt,s · Γt)] =
∑
x∈X

KNi,x · PCx,t,s +
∑

m∈M
KNi,m · PDm,t+∑

j∈I
KNi,j ·PFij,t,s +

∑
h∈H

KNi,h · Ph,t,s −
∑
g∈G

KNi,g · Pg,t,s, ∀x ∈ {w, p}, i, t, s,
(67)

min
rx,t,s,εt,s

[rx,t,s + εt,s] ≥ P̃x,t, ∀x ∈ {w, p}, t, s, (68)

rx,t,s, εt,s ≥ 0, ∀x ∈ {w, p}, t, s. (69)

where rx,t,s and εt,s are the dual variables of the initial problem. The constraint (65) can also be trans-

formed into (70) based on the duality theory.

0 ≤ PCx,t,s ≤ P fx,t + min
rx,t,s,εt,s

[rx,t,s + εt,s · Γt], ∀x ∈ {w, p}, t, s. (70)

After performing this mathematical process, the distributed robust-stochastic SCUC model can be

formulated as mixed-integer linear programming (MILP) problem, which can be solved using commercial

optimization packages. The summary of the proposed model is as follows.

• Objective function of the leader: RPSO aims to minimize the total operating cost by (1).

• Constraints of the leader problem:

1. Applying thermal unit constraints based on (2)-(28).

2. Applying renewable power curtailments constraints based on (70).

3. Satisfying technical limitations based on (30)-(33), (35), and (67)-(69).

• Objective function of the followers: Each IEHO aims to minimize their own operating costs by

(36)- (40).

• Constraints of the follower problems:
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1. Applying CHP units constraints based on (41)-(45).

2. Applying P2H storages constraints based on (46)-(51).

3. Applying EES systems constraints based on (52)-(55).

4. Performing multi-energy DRP based on (56)-(59).

5. Satisfying energy balance limitations based on (60) and (61).

4. Decentral solution methodology

The proposed distributed robust-stochastic SCUC problem is in an MILP format that guarantees the

global optimal solution. However, the operating problem of the renewable power system and IEHs are

interdependent through (67), which due to this constraint, it is not possible to solve the optimization

problems separately. Based on (67), the RPSO and IEHOs are coupled with the hourly scheduling and

exchange of electrical power at IEHs’ nodes. To address this issue, the standard Benders decomposition

algorithm is applied to solve the proposed collaborative operation model in a decentralized manner while

preserving the privacy of RPSO and IEHOs. Benders decomposition algorithm is one of the most efficient

decomposition techniques, which is used in power systems. The details of the implementation of the

Benders decomposition algorithm are given in [40].

The Benders decomposition can be utilized to exploit a separable framework for the two-stage robust-

stochastic SCUC problem, where this problem is decomposed into an optimization problem as a master

problem for RPSO and several optimal operation problems at the level of IEHOs as sub-problems, which

will be solved separately.

(I) Master problem (MP): RPSO is responsible for ensuring the operational security of the renewable

power system and tries to minimize the total operation cost, including operation cost of thermal units

and compensation cost of renewable power curtailments according to the optimal trade policy of power

with IEHs. The general structure of the master problem at iteration tb is formulated as (71).

Min : ÔTotaltb
,

ÔTotaltb
= CRPS +

∑
h∈H

Oapph ,

s.t. Operational constraints of the leader problem,

Feasibility cutting plane,

Optimality cutting plane.

(71)

where Oapph is a non-negative continuous variable that represents the operation cost of the IEH h as

approximated by the RPSO. At each iteration, RPSO minimizes the total operation cost, i.e., ÔTotaltb
, as

an effective lower bound (LB) of the optimal robust-stochastic SCUC model by considering all available

Benders cuts constraints (LB = ÔTotaltb
).

(II) Sub-problem of the h th IEH: After solving the master problem at each iteration, the optimal

power trade schedule in the form of a tentative solution is passed to sub-problems that can be handled
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in parallel by individual IEHs. The IEHOs determine the optimal dispatch of IEHs in two phases. In

the first phase, IEHOs check whether the power exchange schedule obtained from the master problem

is practically feasible by considering operational and technical constraints in each IEH operation. The

feasibility check sub-problem for the hth IEH at iteration tb is stated as:

Min : F̂ IEHtb,h,t,s
= ξP1

h,t,s + ξP2
h,t,s,

s.t. Operational constraints of followers problems,

Ph,t,s + ξP1
h,t,s = P̂tb,h,t,s + ξP2

h,t,s; (ΛPtb,h,t,s),

ξP1
h,t,s, ξ

P2
h,t,s ≥ 0.

(72)

where P̂tb,h,t,s is related to the power exchange amounts, which is obtained from the master problem.

Moreover, ξP1
h,t,s and ξP2

h,t,s are non-negative slack variables, and ΛPtb,h,t,s is the dual variable associated

with the first constraint of the problem (72). For a non-zero optimal objective value (F̂ IEHtb,h,t,s
6= 0),

the determined power trade schedule via the master problem is infeasible. Hence, inequality (73) as the

feasibility cut should be created and provided back to the master problem.

F̂ IEHtb,h,t,s
+ ΛPtb,h,t,s ·

(
Ph,t,s − P̂tb,h,t,s

)
≤ 0. (73)

But if the optimal objective value F̂ IEHtb,h,t,s
equals to zero, the determined power trade schedule will

be feasible. In this case, the optimal values of all slack variables will be equal to zero. Upon completion

of the feasibility check phase, the IEHOs will solve the optimality sub-problems in the second phase as

presented in (74).

Min : ÔIEHtb,h
,

ÔIEHtb,h
=
∑
s∈S

σs · [
∑
k∈K

CCHPk,s +
∑
e∈E

CESe,s +
∑
q∈Q

CP2H
q,s +

∑
(l,n)∈
(L,N )

CMDR
l,n,s ],

s.t. Operational constraints of followers problems,

Ph,t,s = P̂tb,h,t,s (τPtb,h,t,s).

(74)

where ÔIEHtb,h
signifies the minimized operation cost for the hth IEH under the determined power trade

schedule, and τPtb,h,t,s is the dual variable associated with the constraint of the problem (74). After that,

an effective upper bound (UB) of the optimal two-stage robust-stochastic SCUC model can be calculated

by (75).

UB = ÔTotaltb
+
∑
h∈H

(ÔIEHtb,h
−Oapph ). (75)

In each iteration, the convergence criterion of the Benders decomposition algorithm must be checked

to decide whether it is necessary to perform the next iteration. A generally used convergence criterion is
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stated below:

|UB − LB| ≤ ε. (76)

where ε is a pre-defined value that indicates the convergence threshold. But if the convergence criterion

is not met, the optimality cut should be constructed according to (77), and then added to the master

problem. The flowchart of the proposed problem-solving process is shown in Fig. 5.

ÔIEHtb,h
+ τPtb,h,t,s ·

(
Ph,t,s − P̂tb,h,t,s

)
≤ Oapph . (77)
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Fig. 5: Flowchart of the proposed algorithm.

5. Case study and numerical results

In this section, the developed collaborative decision-making structure is applied to the modified IEEE

30-bus test system to validate the feasibility and efficiency of the proposed decentral optimization program.

The scheduling horizon is one day (T = 24) with one-hour time slots. The numerical case studies are

implemented in the environment of GAMS software on a personal computer with an Intel CoreTM i7-4500

CPU and 6-GB RAM. The proposed MILP problem is solved by commercial solver CPLEX in which the
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relative gap and the solution time limits are adjusted to 0.1% and 10000 s. Moreover, the convergence

tolerance of the Benders decomposition algorithm is set at 0.05%.

5.1. Simulation setup

The topology of the modified test system is shown in Fig. 6. This test system is composed of two

integrated areas. The first area is related to the renewable power system, which includes 30 buses, six

conventional thermal units, 2 WFs, 2 PV parks, and 21 electrical loads. It should be noted that these

electrical loads represent the transmission substations in the test system. Bus 1 represents the slack bus,

with a voltage phase angle of zero. All technical specifications associated with the 30-bus test system

are provided in [41]. It should be noted that the capacity of transmission lines and technical parameters

of thermal units were adjusted according to the peak load. The second area covers the two industrial

parks that are equipped with IEHs. IEHs are committed to providing the electrical and heat demands

of local industrial consumers located in industrial parks. Two IEHs are respectively located at buses 21

and 30, which are indicated by IEH1 and IEH2. Each IEH consists of a CHP unit, an EES system, and a

P2H storage. Thus, in the whole integrated renewable energy system, there are two CHP units, two EES

systems, and two P2H storages.
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Fig. 6: Schematic of the proposed test system.

The predicted values related to each WF and PV park productions, as well as the hourly forecasted

energy demands of all entities, are shown in Figs. 7 and 8. The rated capacity of WFs, PV parks installed

on buses 12, 21, 23, and 30 are equal to 275, 325, 185, and 335 MW, respectively. It should be mentioned

that candidate buses for the installation of RESs were selected in accordance with the results of the

planning study carried out in [42]. In addition, all RESs produce active power at unity power factor. The

share of each bus from the hourly electrical demand is acquired from PowerFactory’s library. The heat

loads connected to the buses 21 and 30 have 40% and 60% share of the total heat demand, respectively.

The characteristics of energy conversion facilities installed in IEHs are adopted from [43] and scaled to
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Fig. 7: Forecasted output power of each WF and PV park.
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Fig. 8: Forecasted electricity and heat demands.

achieve 180 MW of thermal energy. The essential technical characteristics are given in Table 2.

The penalty cost of renewable power curtailment, i.e., Πre, is set to 20 $/MW that is higher than the

highest marginal cost of available thermal units, and the natural gas price, i.e., λg, is assumed to be 15

$/MWh [43]. The maintenance costs of CHP units, i.e., ρk, and P2H storages, i.e., ρq, are considered

43.2 $/MW and 10 $/MW, respectively [44]. Also, the EES degradation cost, i.e., ρe, is 10 $/MW [29].

The incentive values for implementing multi-energy DRP are set to 20 $/MWh and 10 $/MWh for the

electrical and heat loads, respectively. Furthermore, the coefficients αl and αn are assumed to be 15%

and 10%, respectively.

Six case studies are considered to investigate the impact of the proposed structure on improving the

Table 2: Specifications of the available equipment in IEHs.

Parameter Amount Parameter Amount

ηk, ηq, ηe 0.35, 0.05, 0.9 Aq, Aq (MWh) 0, 60

Pk, Pk (MW) 35, 130 Pe (MW) 20

Hk, Hk (MW) 0, 110 Ae, Ae (MWh) 0, 60

Pq (MW) 40 βloss, βgain 0.3, 0.6

Hq (MW) 20 COP q 1.5
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performance of the integrated renewable energy system. These include:

• Base case: In the base case, high-renewable power system is operated without the deployment of

IEHs;

• Case 1 : The optimal collaborative operation of the high-renewable power system and IEHs is

analyzed in a decentralized manner. In this case, IEHs are equipped with only CHP units and

various uncertain parameters are not considered;

• Case 2 : The EES system is plugged into existing IEHs, and then the effects of electrical storage on

case 1 are investigated;

• Case 3 : Case 2 is developed by considering the role of P2H storage in achieving the desired goals;

• Case 4 : The benefits of implementing multi-energy DRP on improving the techno-economic per-

formance of the integrated renewable energy system are evaluated according to the IEHs formed in

case 3. In this case, the uncertainties of renewable power production and energy demands are also

ignored.

• Case 5 : The proposed robust-stochastic SCUC model is applied to manage the uncertainties of the

renewable power production and energy demands of the local industrial consumers with respect to

privacy provisions. In this case, multi-energy DRP and all energy conversion facilities are considered.

5.2. Comparative results with/without various tools

To perform the collaborative operation scheme in terms of power trades, RPSO and IEHOs optimize

the scheduling of local energy resources by satisfying several operational/technical constraints in the

renewable power system and IEHs. Figs. 9 and 10 show the total operation cost of the renewable power

system and IEHs at each iteration of the Benders process for each case study. As can be seen, it takes

4, 4, 5, and 5 iterations to reach optimal results in cases 1 to 4, respectively. After proceeding with the

iterations, RPSO coordinates the scheduled power exchange with IEHOs at each hour, according to the

governing targets in each entity.

The hourly traded power between IEH1/IEH2 and the renewable power system for each case study

are shown in Figs. 11 and 12, respectively. The negative values for traded power indicate that IEHs

are willing to deliver the surplus power to the renewable power system. As can be seen in these figures,

regarding the capacity in each industrial park, IEH1 has more power demand from the renewable power

system than IEH2 during the scheduling horizon. Meanwhile, IEH2 exhibits a higher tendency to transfer

power to the renewable power system, specifically during the final intervals of the scheduling horizon. In

both industrial areas, the highest traded power between IEHs and the renewable power system is related

to case 3, where P2H storages are exploited as an efficient energy conversion facility.

Tables 3 and 4 present the total electrical and heat demands supplied by different resources for each

case study. As it is evident from Table 3, the IEHs act as a viable option to increase the hosting capacity of

RESs in meeting the electricity demand of the integrated renewable energy system. On the other hand, in

case 2, the power generated by thermal units during the scheduling horizon decreased by about 3,200.604

MW compared to the base case (without the deployment of IEHs). Therefore, the amount of spinning
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Fig. 11: Hourly traded power between IEH1 and renewable power system for each case study at bus 21.

reserve provided by thermal units can increase by up to 9.67% by adopting the optimal coordinated

strategy between the renewable power system and IEHs. In addition, case 4 demonstrates the capability

of the proposed multi-energy DRP to enhance the reliability of the integrated renewable energy system by
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Fig. 12: Hourly traded power between IEH2 and renewable power system for each case study at bus 30.

Table 3: Optimal mix of various sources to procure total electrical demand for each case study.

Base case Case 1 Case 2 Case 3 Case 4

Production of thermal units (MW) 33,081.634 29,894.483 29,881.03 31,409.356 31,288.961

Production of RESs (MW) 13,555.256 13,463.434 13,583.318 13,940.739 13,945.96

Production of CHP units (MW) - 3,278.973 3,202.407 1,941.63 1,516.058

Production of EESs in discharging mode
(MW)

- - 134.392 141.85 129.09

Power delivered to EESs in charging mode
(MW)

- - -164.257 -173.372 -157.777

Power delivered to P2H storages (MW) - - - -623.314 -646.593

Curtailed load in multi-energy DRP (MW) - - - - 561.191

Total electrical demand (MW) 46,636.89

Table 4: Optimal mix of various sources to procure total heat demand for each case study.

Case 1 Case 2 Case 3 Case 4

Production of CHP units (MW) 3,938.609 3,938.609 3,079.862 2,810.623

Production of P2H storages in direct mode (MW) - - 866.155 933.863

Production of P2H storages in discharging mode (MW) - - 61.407 32.551

Heat delivered to P2H storages in charging mode (MW) - - -68.816 -36.025

Curtailed load in multi-energy DRP (MW) - - - 197.597

Total heat demand (MW) 3,938.609

curtailing electrical demand (about 561 MW) using the DLC program. The distribution of the required

demand among different sources, which are supported by different energy carriers, increases the flexibility

and resilience of the renewable power system against potential risks associated with non-dispatchable

power sources, natural disasters, and cyber attacks. From the heating point of view, CHP units act as the

main supplier to cover the heat demand of industrial parks, which is due to its high production capacity.

The total amount of renewable power curtailment in each WF and PV park for each case study are also

presented in Figs. 13 and 14. The results demonstrate that the proposed privacy-preserving structure is

able to dramatically reduce renewable power curtailment with optimal collaborative expansion scheduling.

In accordance with case 2, by adding EESs to IEHs under the title of backup power stations, it is found
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Fig. 14: Solar power curtailment for each case study.

that the amount of curtailed renewable power reduces by 23.44% when compared to case 1. In case 3,

the amount of curtailed renewable power significantly decreases in comparison with cases 1 and 2 by

incorporating the unique capabilities of P2H storages in the collaborative scheme to determine the power

trading schedule. In addition, with the simultaneous use of P2H storages and multi-energy DRP in the

collaborative scheduling approach among RPSO and IEHOs, the values of curtailed wind and solar power

had reached zero and 29.85 MW, respectively. These simulation results clearly reveal that the promoted

IEHs in optimal coordination with the renewable power system had an effective role in reducing renewable

power curtailment.

In case 4, the effects of multi-energy DRP in coordination with EESs and P2H storages are evaluated

on the performance of IEHs to achieve the desired targets. It is assumed that the multi-energy DRP is

implemented only on the local industrial energy demands, which are located at buses 21 and 30. Figs.

15 and 16 show the consequence of implementing multi-energy DRP on the electrical and heat demands

of the industrial consumers connected to IEHs. According to these figures, the total electrical and heat

demands of the industrial consumers reduce by up to 9.94% and 5.017%, respectively, which is one of

the reasons for improving the performance of the integrated renewable energy system from the technical
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Fig. 16: The effect of multi-energy DRP on the local heat demand of IEHs.

perspective.

Table 5 presents a comprehensive economic comparison of different scheduling scenarios. As it is shown,

the total operation cost of the renewable power system can be significantly reduced by deploying IEHs

in industrial parks according to a decentralized collaborative operation. In accordance with case 1, with

establishing IEHs along with the renewable power system under the title of sustainable energy producers,

it is found that the amount of total operation cost of renewable power system decreases by 11.41% when

compared to the base case. Moreover, the operation cost of the renewable power system decreases by up

to 16.33% in case 2, 11.6% in case 3, and 14.19% in case 4 compared to the base case by adding EESs and

P2H storage to each IEH as well as utilizing multi-energy DRP in the framework of IEHs. On the other

hand, the total operation cost of IEHs reduces from $141,660 (case 1) to $88,332.899 (case 3) by using

EESs and P2H storages. Finally, by examining the renewable power curtailment cost, which is reduced

from $8,411.139 to $597.043 by implementing the proposed privacy-preserving decision-making structure,

the impact of applying multi-energy DRP in the objective function is clearly revealed. It can be seen that

the amount of renewable power curtailment cost in case 1, when IEHs are only equipped with CHP units,

is higher than other case studies. These results prove the necessity of using flexibility tools in the form of
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IEHs.

Table 5: Cost allocation for existing entities for each case study.

Base case Case 1 Case 2 Case 3 Case 4

Operation cost of thermal units ($) 226,996 198,300 189,110 207,400 201,400

Cost of renewable power curtailment ($) 8,411.139 10,253.354 7,849.882 701.456 597.043

Total operation cost of renewable power
system ($)

235,407.139 208,553.354 196,959.882 208,101.456 201,997.043

Renewable power system operation cost
decrement (%)

- 11.41 16.33 11.60 14.19

Operation cost of energy conversion facil-
ities ($)

- 141,660 141,330 88,332.899 69,048.178

Incentive compensation costs of multi-
energy DRP ($)

- - - - 13,412.37

Total operation cost of IEHs ($) - 141,660 141,330 88,332.899 82,460.548

5.3. Sensitivity analysis

In this sub-section, three sensitivity analyses are conducted to assess the importance of the introduced

flexibility options on renewable power curtailment as well as the total operation cost of IEHs. These

analyses are very useful for IEHOs and RPSO to harness existing opportunities in the energy markets.

All assumptions are the same as those of case 4. Fig. 17 shows the sensitivity of the amount of renewable

power curtailment and operation cost of IEHs to variations of the multi-energy DRP participation rate,

i.e., αl and αn. The participation rates of electrical and heat demands for implementing multi-energy

DRP changed from (αl,n − 8)% to (αl,n + 10)% applying nine equal steps. As can be seen from Fig. 17,

the total operation cost of IEHs decreases almost nonlinearly. On the other hand, there are almost no

changes in the renewable power curtailment up to values close to (αl + 4)% and (αn + 4)%. But, the

renewable power curtailment dramatically increases with increasing the participation rates of electrical

and heat demands to more than (αl + 4)% and (αn + 4)%. These results indicate that it is necessary to

perform a trade-off between different targets for the ideal utilization of the multi-energy DRP. In Fig. 18,

the sensitivity of the renewable power curtailment and operation cost of IEHs is analyzed by assigning

different values of incentive compensation costs. In this analysis, the incentive values for implementing

multi-energy DRP, i.e., (IE, IH ) are incremented/decremented by (2 $/MWh, 1 $/MWh) steps regarding

the base values of (20 $/MWh, 10 $/MWh). As it can be derived, the rate of renewable power curtailment

and the operation cost of IEHs significantly increase with increasing the amounts of (IE, IH ).

The effect of the coefficient of performance (COP) of P2H storage on the amount of renewable power

curtailment and the total operation cost of IEHs is shown in Fig. 19. As it is obvious, the increase in

COP of P2H units dramatically reduces both renewable power curtailment and operation cost of IEHs.

Therefore, the efficiency of the proposed strategy can be strengthened with the use of high-efficiency P2H

storage.

5.4. Monitoring the loading of thermal units

In order to validate the feasibility of the optimization algorithm as well as to evaluate the rate of

the spinning reserve of thermal units, the thermal units’ loading level is monitored using DIgSILENT
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Fig. 19: Sensitivity of renewable power curtailment and operation cost of IEHs to the coefficient of P2H performance.

PowerFactory software in different operating conditions after implementing the optimization process. In

the first stage, the original test system is modeled in the software according to the considered assumptions.

Then, the efficient Quasi-Dynamic Simulation tool is applied to analyze the IEEE 30-bus test system.

Fig. 20(a) shows the thermal units’ loading range for the base case. As it is evident, G1 has the highest

loading range, i.e., 68.2%. To evaluate the efficiency of the proposed strategy in abnormal conditions of
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the renewable power system, it is assumed that a planned outage occurred in G3 from t=11 to t=15 to

carry out emergency repairs. Fig. 20(b) shows the status of thermal units when G3 was not under load.

As can be seen, the most critical situation of the thermal units’ loading level with 105.6% is related to G2,

which is increased by 45.9% compared to the normal condition in the base case. Nevertheless, the loading

level of G2 is improved with the optimal operation of the renewable power system in coordination with

private IEHs within the privacy-preserving framework. As can be seen in Fig. 20(c), the loading level of

G2 in case 4 (with the optimal deployment of IEHs along with DRP) is decreased to 82.6% under the

defined planned outage. Reducing the thermal units’ loading level indicates the increase in the spinning

reserve of the renewable power system. The obtained results demonstrate the extraordinary technical

effect of using IEHs in coordination with the renewable power system.

5.5. Impacts of uncertain parameters

In case 5, the impacts of uncertain parameters, i.e., renewable power production and electrical and

heat demands of local industrial consumers, on the results of the collaborative operation are investigated

using the adjusted hybrid robust-stochastic model to more clearly technical and economic analysis. The

energy demand prediction error follows a normal distribution function with a deviation of 10% and a

mean of zero. To this end, one-hundred scenarios are generated by MC simulation, which is reduced to

ten scenarios by the GAMS/SCENRED tool [45]. To handle the uncertainty associated with renewable

power production, the value of uncertainty budget, i.e., Γt, in the robust model is increased by steps 0.02

from 0.02 to 0.2. To carry out the desired simulations, three different ranges for the maximum deviation

between the forecasted and actual values, i.e., P̃x,t, are considered. The variation in the operation costs

of the renewable power system and IEHs for different Γt when P̃x,t changes from 10% to 30% are shown

in Figs. 21 and 22. As can be seen in Fig. 21, with increasing the amounts of Γt and P̃x,t, the operation

cost of the renewable power system increases. The reason is that higher uncertainty budgets force RPSO
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Fig. 20: Thermal units’ loading range for: (a) base case without planned outage; (b) base case with the planned outage in
G3; (c) case 4 with the planned outage in G3.
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Fig. 21: Impact of Γt and P̃x,t on total operation cost of renewable power system.
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Fig. 22: Impact of Γt and P̃x,t on total operation cost of IEHs.

to provide the required power from expensive units instead of the RESs. Similarly, according to Fig.

22, with increasing the robust approach parameters, the operation cost of IEHs also grows. As it is

anticipated, the expected operation costs of IEHs and renewable power system have increased under the

uncertainty environment compared to the deterministic condition due to reduced participation of high-

power RESs. As can be seen from these figures, the total operation costs of IEHs and renewable power

systems stabilize for Γt higher than 0.12. Traded power between IEH1/IEH2 and the renewable power

system for 0.1Px,t is shown in Fig. 23. As clearly visible, the total traded power between IEH1/IEH2 and

renewable power system decreases from 3627.38 MW, when Γt = 0.02, to 3623.58 MW, when Γt = 0.2,

during the scheduling horizon. This is due to the fact that by reducing the actual power generated by

RESs compared to the forecasted value, i.e., Γt = 0, the traded power between IEHs and the renewable

power system also decreases.
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Fig. 23: The effect of variations of the uncertainty budgets on the total exchanged power.

6. Conclusions and future work

This paper presented a decentralized two-stage robust-stochastic model to achieve the optimal collabo-

rative operation of private industrial energy hubs with the renewable power system in a privacy-preserving

manner. In the presented collaboration structure, a renewable power system operator interacted with in-

dustrial energy hubs in leader-followers fashion to perform the security-constrained unit commitment

problem, while the Benders decomposition algorithm was exploited to resolve the conflicts of private en-

tities. The main goals of the developed privacy-preserving decision-making structure were to decrease

the rate of renewable power curtailment as well as to minimize the operation costs of each private entity

by relying on establishing a sustainable power trading schedule between industrial energy hub operators

and renewable power system operator. The proposed model considered uncertainties in renewable energy

sources power and energy demands of local industrial consumers, where combined heat and power unit,

electrical energy storage, power-to-heat storage, and multi-energy demand response program served as the

backup energy supply units in the framework of industrial energy hubs. The obtained numerical results

in the IEEE 30-bus test system confirmed the effectiveness of the proposed decentral solution in creating

an economical and secure operation between industrial energy hubs and renewable power systems. The

key findings from the simulation studies could be drawn as:

(1) Deploying the industrial energy hubs in the industrial parks had an undeniable role in minimizing

the total operation cost of the renewable power system. In the worst case, industrial energy hubs

were able to reduce the operation cost of the renewable power system by 11.41% compared to the

initial state of the renewable power system.

(2) Utilizing the flexibility options such as power-to-heat storage and multi-energy demand response

program had a significant effect on the rate of renewable power curtailment. The renewable power

curtailment was decreased by up to 92.9% in the presence of flexibility tools.

(3) Using the two-stage robust-stochastic approach enabled the renewable power system operator and

industrial energy hub operators to adjust the robustness level of the optimization process, as well

as to cover the uncertainty of renewable power and energy demands in real-time decisions.
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(4) DIgSILENT PowerFactory validated the practical feasibility of implementing the proposed optimiza-

tion strategy under normal and abnormal conditions. By using the capabilities of this software, the

thermal units’ loading level was monitored when an event occurred in a part of the power system.

In future work, we will focus on the transactive energy mechanism between multiple networked indus-

trial energy hubs to enhance the flexibility and resiliency of the integrated renewable energy system.
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