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Abstract: The synergy between electrochemical oxidation and adsorption on particle electrodes was
investigated in three-dimensional (3D) systems for p-nitrosodimethylaniline (RNO) decolorization
and pesticide removal. A comparison was made between granular activated carbon (GAC) and
a novel synthesized nitrogen-doped graphene-based particle electrode (NCPE). Experiments on
RNO decolorization show that the synergy parameter of the 3D-NCPE system was improved 3000
times compared to the studied 3D-GAC system. This was due to the specific nanostructure and
composition of the NCPE material. Nitrogen-doped graphene triggered an oxygen reduction reaction,
producing hydrogen peroxide that simultaneously catalyzed on iron sites of the NCPEs to hydroxyl
radicals following the electro-Fenton (EF) process. Data showed that in the experimental setup
used for the study, the applied cell voltage required for the optimal value of the synergy parameter
could be lowered to 5V in the 3D-NCPEs process, which is significantly better than the 15–20 V
needed for synergy to be found in the 3D-GAC process. Compared to previous studies with 3D-GAC,
the removal of pesticides 2,6 dichlorobenzamide (BAM), 2-methyl-4-chlorophenoxyaceticacid (MCPA),
and methylchlorophenoxypropionic acid (MCPP) was also enhanced in the 3D-NCPE system.

Keywords: three-dimensional electrochemical water treatment; synergy parameter; nitrogen-doped
graphene; activated carbon; pesticide removal

1. Introduction

Electrochemical oxidation is an emerging technology that has been effectively used for the removal
of organic pollutants from water and is appropriate to be implemented as part of a decentralized water
treatment system [1]. The use of a bed material inside the reactor as a third electrode can effectively
increase the specific surface area of the electrodes [2–4]. For example, Li et al. [5] used a ceramic particle
electrode for the electrochemical degradation of 2-diethylamino-6-methyl-4-hydroxypyrimidine in a
three-dimensional electrode reactor. There are also reports showing that the combination of metals
and ceramic materials as particle electrodes could be effective in promoting 3D-electrochemical water
treatment processes [6–8].

Granular activated carbon (GAC) is widely studied as a third electrode due to its interesting
surface properties such as high surface area, high porosity and active surface chemistry [9–12].
The improvement of three-dimensional electrochemical systems (using GACs as the third electrode)
was attributed to its extensive specific surface area [13–15] and the ability of carbon materials to
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promote the generation of hydrogen peroxide by an oxygen reduction reaction [16–18]. Nevertheless,
when GAC is applied as the third electrode, the efficiency of the technology depends mostly on the
adsorption properties of the organic micropollutants [19,20]. For instance, some compounds such as
phenoxy-acid herbicides have less tendency to adsorb to the carbon [10], resulting in low adsorption
capacity and low removal efficiency in these systems. Research on technologies for the removal of
persistent organic contaminants including pesticides from groundwater has been the focus for several
years, either as part of groundwater-based drinking water production or as pump-n-treat solutions
used in groundwater remediation. In countries such as Denmark, research in this area has recently
increased [10,21,22] due to large non-target analytical screenings of groundwater aquifers revealing
significant pesticide contamination of a greater extent than previously expected [21–23]. Therefore,
the development of efficient and cost-effective treatment technologies for pesticides removal is of
high concern.

The removal and degradation mechanisms of contaminants in three-dimensional electrochemical
systems are a complex interplay between surface adsorption processes and electrode surface and
particle surface electrochemical reactions. Synergy between these removal pathways usually leads
to increased treatment efficiency and lower overall treatment costs compared to the removal of
the individual processes alone or the additive removal in series. Therefore, enhancement of the
synergy parameter is important for optimization of the three-dimensional electrochemical system.
The synergy parameter has been studied by a few researchers in three-dimensional systems using GACs
as particle electrode [9,10,20]. In the work of Zhu et al., it was found that synergy not only resulted
from direct electrochemical oxidation at activated carbon, but also the electrocatalysis of activated
carbon to indirect electrochemical oxidation mediated by hydroxyl radicals [9]. Garcia reported
positive values of synergy for COD (Chemical Oxygen Demand) and TOC (Total Organic Carbon)
removal (i.e., 28% and 30%, respectively) using granular activated carbon as a particle electrode, which
further demonstrated that the combination of adsorption and electrochemical oxidation triggered
electroadsorption and electrocatalytic reactions at the surface of GAC, showing a better performance
than their superposed operation. Pedersen et al. explored the synergy of GAC adsorption and
electrochemical degradation in the mineralization of pesticides. Their results indicated that synergies
of 121–126% were obtained for pesticides removal, including 2-methyl-4-chlorophenoxyaceticacid
(MCPA) and methylchlorophenoxypropionic acid (MCPP) in electric field strength of 375 V/m [10].

Although in these studies the presence of activated carbon improved water treatment efficiency,
most of this progress was due to the adsorption characteristics of GAC and not the electrochemical
properties, making the synergy values low in these systems. Therefore, it is necessary to look for a
particle electrode material that can be more easily polarized within the electric field of a 3D system in
order to increase the synergy parameter.

An oxygen reduction reaction (ORR) is an essential reaction in electrochemical oxidation processes,
since it produces hydrogen peroxide, which is an important intermediate for hydroxyl radical
production. There are several papers in recent years showing that nitrogen-doped carbon nanomaterials
are effective electrocatalysts toward oxygen reduction reactions [24–29]. Research in this area shows
that catalysts containing nitrogen-doped carbon nanomaterials (including graphene, carbon nanotubes,
mesoporous carbon, etc.) can greatly enhance the oxygen reduction reaction efficiency [30–32].
Even in some cases, such electrocatalysts have been capable of outperforming rare and expensive
platinum-based catalysts [33,34]. It was also found that pyridinic and graphitic nitrogen species are
responsible for the improved activity of catalysts in these nitrogen-doped carbon nanomaterials [35,36].
Koutecký–Levich plots showed that oxygen reduction reaction on nitrogen-doped graphene is a
combination of two-electron and four-electron pathways considering the calculated number of
transferred electrons [37,38]. This means that hydrogen peroxide could be produced at least as an
intermediate during the reductive reactions. On the other hand, other studies reported that ORR is
less likely to occur through the 4e- pathway in acidic media, and alkaline media is favorable for 4e-
reduction of oxygen [39,40]. It has also been demonstrated that by decreasing applied potential and
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current density, the number of transferred electrons decreases, while the amount of produced hydrogen
peroxides increases [41,42].

The presence of iron components in graphene-based catalysts on the other hand could promote the
electro-Fenton (EF) process, which is important for hydroxyl radical production [43–46]. This can cause
a significant increase in the synergy of the process. Therefore, the combination of carbon–iron [45,47] or
nitrogen-doped carbon and iron species [19] are considered interesting to stimulate electro-oxidation and
reduction processes, leading to a higher synergy parameter. As mentioned before, this higher synergy
would increase efficiency, thus reducing the energy consumption and costs of the treatment process.

In our previous work, a novel nanostructure of nitrogen-doped catalytic particle electrode (NCPE)
was synthesized [19]. The morphological characterization of synthesized NCPEs demonstrated
the presence of a raspberry-like nanostructure of graphene sheets and iron nanocrystals. It was
found by Raman spectroscopy that synthesized graphene had high levels of graphitization, and XPS
characterization also revealed high amount of nitrogen doping with a higher ratio of pyridinic and
graphitic nitrogen types. These kinds of nitrogen were found to be effective for promoting oxygen
reduction reactions, while iron nanoparticles trigger Fenton’s reaction at the same time.

In previous work, synergy has only been investigated for activated carbon-based catalysts,
so the novelty of the current study is to study the synergy using the NCPE material. We aim to
develop a strategy for increasing the synergy parameter by promoting electrochemical properties of
synthesized catalyst materials. The synergy parameter for synthesized catalysts at different applied
cell voltages was evaluated followed by a comparison of the results to a similar process using activated
carbon as particle electrodes. Then, the removal rates of the pesticides 2,6 dichlorobenzamide (BAM),
2-methyl-4-chlorophenoxyaceticacid (MCPA), and methylchlorophenoxypropionic acid (MCPP) was
studied at the optimum voltage of the synergy parameter. In this study, p-nitrosodimethylaniline
(RNO) is used as model pollutant, as it is present in effluents from the production of explosives,
dyestuffs, pesticides and herbicides, and the bleaching of RNO has been reported to be very selective
to oxidation by hydroxyl radicals [48].

2. Materials and Methods

2.1. Materials and Chemical Reagents

Prussian blue (Na4Fe(CN)6 × 10H2O) was purchased from Sigma-Aldrich (Søborg, Denmark).
Activated carbon (RESPCARB BRI, 12×20 US RGF 3191) was supplied from Chemviron Carbon (Feluy,
Belgium), 2-methyl-4-chlorophenoxyaceticacid (MCPA) (CAS: 94-74-6), methylchlorophenoxypropionic
acid (MCPP) (CAS: 93-65-2) and 2,6 dichlorobenzamide (BAM) (CAS: 2008-58-4) of analytical grade
were all obtained from Sigma Aldrich (Søborg, Denmark). Reagents, including FeSO4 × 7H2O,
H2SO4, NaOH, and solvents of analytical grade (all Sigma-Aldrich, Søborg, Denmark), were used
as such without any further processing. All solutions were prepared with deionized water except
otherwise mentioned.

2.2. Synthesis of Nitrogen-Doped Catalytic Particle Electrodes (NCPEs)

The detailed protocol for synthesis of the NCPE material and characterization of the material is
published in our earlier work [19]. In brief, Na4Fe(CN)6 × 10H2O (Prussian blue) was dried in an
oven at 150 ◦C for 24 h before annealing in a low nitrogen flow rate at 900 ◦C for 3 h in a tube furnace
(EHA 12/450B horizontal tube furnace, CARBOLITE, Sheffield, UK) with a heat-up rate of 5 ◦C/min
to convert it to the hybrid material. After cooling down to room temperature, the nitrogen-doped
catalytic particle electrode (NCPE) was obtained by washing with deionized water, vacuum filtration,
and drying at 65 ◦C for 24 h.
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2.3. Morphological Characterization

Morphological analysis of synthesized particle electrodes was performed by scanning electron
microscopy (SEM) using a ZEISS instrument (Jena, Germany). Elemental analysis (EDS (Energy-dispersive
X-ray spectroscopy) mapping) of synthesized particle electrodes was also investigated by Field-Emission
Scanning Electron Microscopy (FESEM MIRA3, TESCAN, Brno, Czech Republic).

2.4. Experimental Set-Up and Procedure

Electrocatalytic evaluation of the synthesized particle electrodes was conducted in a 700 mL
cylindrical single compartment cell using Mersan DC (0–20 V ± 0.1 V) as the power supply (Istanbul,
Turkey). RNO solution (in deionized (DI) water) was prepared with conductivity of≈6 to 7µS/cm, and no
additional electrolytes were used for all experiments except otherwise mentioned. Electrochemical
degradation using different particle electrodes was performed under constant stirring at ambient
temperature (22 ± 1 ◦C), particle electrodes were added by considering the ratios of 1 mgcatalyst per
mL of the feed solution. Electrochemical treatment experiments in 2D and 3D systems (with (3D)
and without (2D) particle electrodes) were performed in a laboratory setup, as shown in Figure 1.
The electrolytic cell was comprised of Nb/BDD anode and AISI 316 stainless steel cathode (Electrocell
A/S, Tarm, Denmark) with submerged active electrode areas of 30 cm2 each and an electrode gap of
4.0 cm.
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Figure 1. Schematic diagram of the three-dimensional electrode batch reactor.

A nylon gasket (2× 2× 4 cm) was set between the electrodes fixating the particles within the electric
field and allowing movement at the same time. The initial concentration of RNO was 10 mgRNO/L
for RNO decolorization experiments, and 500 mL of the feed solution was considered as the working
volume for the electrocatalytic experiments. Due to the low conductivity (≈6 to 7 µS/cm) of the solvent,
the resulting current was in the range of 0–400 mA.

To compare the electrochemical performance of synthesized NCPEs with that of GAC as the
particle electrode, activated carbon was washed in deionized water, vacuum filtered, and dried at
105 ◦C for 24 h before electrochemical treatment experiments.

The 3D electrochemical experiments for the degradation of pesticides were carried out using
a 50 mg/L mixed solution of BAM, MCPA, and MCPP in deionized water. All experiments were
performed at the natural pH of the deionized water (≈5.6).

In order to investigate the effect of background electrolyte on the RNO decolorization performance
of the synthesized NCPEs, 0.05 M sodium sulfate and tap water from Esbjerg (Denmark) was used as
background electrolyte. The composition of major ions in the tap water is listed in Table 1 [10,21,22].
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Table 1. Ionic composition (major ions) of Esbjerg tab water (mg/L).

Calcium Magnesium Sodium Chloride Nitrate Sulfate

37.7 4.9 19.0 44.8 0.5 16.6

2.5. Analytical Methods

The rate of RNO decolorization was analyzed using UV-vis spectrophotometry at the 440 nm
maximum absorbance peak. Linear calibration was made in the 1 to 10 mg/L interval with R2 = 0.996.

Concentrations of BAM, MCPA, and MCPP were evaluated using an HPLC/MS-MS (Thermo
Scientific Dionex UltiMate 3000/TSQ Vantage, Roskilde, Denmark) equipped with an ACQUITY UPLC
BEH C18, 1.7 µm, column. A mixture of methanol (60%) and 5 mM ammonium acetate buffer solution
(pH = 3) (40%) (formic acid was used to adjust the pH) was used as the eluent. The determination was
performed with a flow rate of 0.35 mL/min, injection volume of 4 µL, column temperature at 40 ◦C,
and a detection limit of 0.01 mg/L.

2.6. Evaluation Parameters

The decolorization ratio of RNO was calculated according to Equation (1).

Decolorization percentage = (1 − At/A0) × 100 (1)

The rate constant of decolorization of RNO was determined by the pseudo-first-order reaction
shown in Equation (2)

ln(C0/Ct) = kobs t. (2)

A0 and At are the absorbance of the dye solution initially, and at time t, t is the reaction time
(min), kobs is the apparent rate constant (min−1), and C0 and Ct are concentrations at times of t = 0 and
t = t, respectively.

The experimental results for pesticides were assessed with concentration removal rate (ηt), which
is expressed as shown in Equation (3):

ηt = (C0 − Ct)/C0 × 100. (3)

The kinetic models were represented by Equations (4)–(6) for particle electrodes adsorption,
2D and 3D electrochemical processes, respectively:

Adsorption : r =
d[C]
dt

= −kAd·[C] ; kAd = k·[PE]0 (4)

2D Elec. : r =
d[C]
dt

= −k2D·[C] ; k2D = k·[OH•]0 (5)

3D Elec. : r =
d[C]
dt

= −k3D·[C] ; k3D = k·[OH•]0·[PE]0 (6)

[C] denotes the concentration of organic molecules RNO, MCPA, MCPP, and BAM. PE refers to
particle electrodes and kAd, k2D, and k3D refer to the kinetic constants of adsorption, two-dimensional,
and three-dimensional processes, respectively. The potential synergy of the 3D process, S, was calculated
according to Equation (7):

S =
k3D − k2D − kAd

k2D + kAd
·100 (7)
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3. Results and Discussion

3.1. Morphological Characterization

The SEM image in Figure 2 clearly shows that the raspberry-like nanostructure of the graphene
particles in combination with iron nanocrystal was formed during the synthesis process. This three-
dimensional nanostructure could be very effective for exposing active sites to the reactants as the
ORR electrochemical process take place. It can provide sufficient channels for both electrons and ions
transfer during the oxygen reduction reaction. In addition, it was clear from the EDS mapping of the
nanocatalyst surface that a good distribution of nitrogen and iron species was achieved by the applied
synthesis method, which plays an important role in creating active sites on the catalyst surface for
the ORR.
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(c) iron and (d) nitrogen elemental distribution.

It is worthwhile to mention that a full characterization report of the synthesized NCPEs can be
found in our earlier paper [19].

3.2. Synergy Parameter Investigation for RNO Decolorization

Decolorization of the yellow color of the RNO solution was used to track the organic removal
processes. The currents were below 0.3 A because of the low conductivity of the demineralized
water matrix, so the decolorization rates were in general much slower than previously reported for
electrochemical 2D BDD (Boron Doped Diamond) RNO decolorization performed in 0.1 M sodium
sulfate supporting electrolytes also operated galvanostatically at higher current densities [48]. A 3D
RNO decolorization was performed using unsaturated NCPEs throughout 360 min, and the result was
compared with the performance of unsaturated GACs, as illustrated in Figure 3. The corresponding
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kinetic rates are also shown in order to calculate the synergy parameter. As shown in the synthesized
catalyst RNO decolorization curves (Figure 3a,b), this catalyst has a slow rate of adsorption while
being able to decolorize RNO up to 91% in the 3D system within the 6 h experiment. As expected,
the decolorization rate of RNO by activated carbon was almost the same in single adsorption and 3D
processes, which decreased the value of the synergy parameter in the 3D-GAC system. To compare
the performance of the synthesized NCPEs with that of GACs for the RNO decolorization process,
the synergy parameter for both catalysts was calculated using Equation (7) to be 3547% and 3% for
3D-NCPEs and 3D-GACs systems, respectively.
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Figure 3. (a,b) p-nitrosodimethylaniline (RNO) decolorization with corresponding kinetic rates in
3D systems using nitrogen-doped graphene-based particle electrode (NCPE) as particle electrodes;
(c,d) RNO decolorization with corresponding kinetic rates using granular activated carbon (GAC) as
particle electrodes in 3D systems.
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The considerably large difference between the synergy parameter of the NCPE material and
the activated carbon (≈3543%) shows that the combination of the two-dimensional system with
particle electrodes will improve the performance of the system more significantly in the case of
NCPEs than the GACs. This can be attributed to the electrocatalytic properties of the synthesized
catalyst, whereas activated carbon has poor intrinsic electrocatalytic characteristics. Nitrogen-doped
graphene in the structure of NCPEs boosts electrical conductivity and promotes the oxygen reduction
reaction. In addition, the presence of iron particles in this catalyst improves the electro-Fenton
reaction and the production of hydroxyl radicals. On the other hand, since activated carbon only has
minor electrochemical activity toward the oxygen reduction reaction associated with high adsorption
capabilities, the large difference in the obtained synergy parameter seems rational.

It is worth noting that the removal rates in 3D-NCPEs and 3D-GACs systems are so close, but the
advantage of using NCPEs as a third electrode is that it could promote electrochemical reactions
because of its intrinsic electrochemical characteristics during the whole treatment process, whereas
the adsorption capacity of GACs could be deactivated after a certain period of time of treatment and
would not be an effective characteristic anymore.

3.3. RNO Decolorization Versus Applied Cell Voltage

In order to find the optimal synergy point for NCPE material and to make a comparison with
activated carbon, the synergy was investigated at different applied cell voltages.

To find the maximum point for the synergy parameter, the conventional 2D electrochemical process
for RNO bleaching by the stationary electrode surface reactions was studied under potentiostatic
conditions at different cell voltages (5, 10, 15, and 20 V). Considering the pseudo-first-order kinetics for
the RNO bleaching reaction, the rate constants in each voltage were calculated. This was also followed
for the 3D electrochemical treatment of RNO solution using GACs and NCPEs as particle electrodes.
Therefore, with the adsorption rate constants for both electrocatalysts obtained from the previous stage
(kinetic correlation within 120 min), it was possible to calculate the synergy at each voltage. The RNO
degradation curves with corresponding kinetic rates in each voltage for 2D (a and b), 3D-GACs (c and
d), and 3D-NCPEs (e and f) are shown in Figure 4.

As expected for RNO decolorization curves using GACs in the 3D process, no significant change
was observed in the system by changing cell voltage. As earlier mentioned, most of the pollutant
removal by GACs was attributed to its high adsorption properties rather than its electrochemical
characteristics. Slight increases in RNO decolorization were observed by increasing the voltage from
5 to 20 V in the 3D-GACs process; however, there were no considerable changes. This is distinctly
different for the synthesized particle electrode, and as it is clear from the RNO decolorization curves
for the 3D-NCPEs system with changing voltage from 5 to 10 and 15 V, a remarkable difference
in RNO decolorization rate appeared (65.4% and 138% improvement, respectively), indicating the
electrochemical properties of the synthesized NCPEs. A subtle change in the RNO decolorization after
15 volts indicates that a further increase in voltage only enhanced the side reactions, which have a
deterrent role in the hydroxyl radical production and thus do not lead to further improvement in the
decolorization process.
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3.4. Synergy Evaluation for GAC and NCPEs Versus Applied Cell Voltage

Having the kinetic rate constants obtained for single adsorption, two-dimensional and
three-dimensional processes from Figure 4, the synergy parameter for each setting was calculated,
and the results are compared in Figure 5. In our previous work, 15 V was found to be the optimum
voltage for RNO removal in a 3D system using NCPEs as particle electrodes [19].
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Figure 5. Comparative study of synergy parameter for RNO decolorization (a) in 3D systems using
GACs as particle electrodes and (b) in a 3D system using NCPEs as particle electrodes.

Here, it was attempted to achieve an optimum synergy point ascertaining optimal operating costs
with respect to the electric energy consumption of the electrochemical water treatment process.

Making an overall comparison of the values obtained for the synergy parameter of synthesized
NCPEs and GACs, the performance superiority of NCPEs to GACs was clear. As shown in
Figure 5, the synergy parameter for the activated carbon catalyst was negative below 15 V. However,
the synthesized catalyst exhibited the highest synergy parameter value at 5 volts. Moreover, although
the synergy parameter in activated carbon increases with increasing voltage, such a trend was not
observed for the synthesized catalyst. In other words, the synergy parameter value of the synthesized
catalyst declined from 5 to 10 V and again slightly increased at 15 V and reached the minimal synergy
value at 20 V, which is an opposite trend compared to the activated carbon with the highest synergy
value attained at 20 V. By achieving the maximum synergistic effect at 5 V for the synthesized catalyst,
one can discern that by improving the performance of the particle electrodes in the 3D system and by
improving its electrochemical properties, it can further decrease electrical energy consumption.

This improvement in the performance of the synthesized catalyst can be attributed to the high
ability of NCPEs in hydroxyl radical production. Nitrogen-doped graphene and iron species in
synthesized NCPEs create an electronic structure and increase electrical conductivity in particle
electrodes, making them quickly polarized in the electric fields, even at low voltages of 5 volts. Then,
hydrogen peroxide is produced at nitrogen-doped graphene sites by an oxygen reduction reaction,
which instantly converts to hydroxyl radicals on iron sites of NCPEs by an electro-Fenton reaction.
Thereafter, these produced hydroxyl radicals can degrade RNO molecules, which is not the case for
activated carbon except at very high voltages, and that is why the synergy parameter for activated
carbon is only positive at 15 and 20 volts. In the next section, we evaluate the removal of pesticide at
the optimum synergy voltage obtained for synthesized NCPEs in a 3D system.
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3.5. Pesticides Removal at Maximum Synergy

The removal of pesticides was completed in a three-dimensional electrochemical water treatment
process in a solution containing three pesticide compounds, MCPP, MCPA, and BAM at the cell
potential of 5 volts corresponding to the optimum synergy point. Pesticide removal at this voltage for
MCPA, MCPP, and BAM reached 32%, 33%, and 27%, respectively, within the treatment time of 8h
(Figure 6).Water 2020, 12, x FOR PEER REVIEW 11 of 15 
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Figure 6. Pesticides removal utilizing a 3D-NCPEs system at maximum synergy voltage (5 V).

The electrochemical degradation pathway of BAM has previously been proposed by Madsen [49],
and it can be combined with the interpretation of the data in an illustration of the reaction mechanisms
of the 3D process (Figure 7). Once the electric field is applied across the particle electrode bed, oxygen
reduction reactions take place on nitrogen-doped graphene sites. The produced hydrogen peroxides
in the next step are catalyzed to the highly oxidizing agents hydroxyl radicals by an electro-Fenton
reaction on iron sites of the particle electrodes [19] and attack the pesticides to degrade them to organic
acids and similar oxidation products.
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Figure 7. Proposed degradation pathway of model pollutant on synthesized particle electrodes along
with the electro-oxidation process of 2,6 dichlorobenzamide (BAM) with permission from [49].

By increasing voltage up to 5 volts, the oxygen reduction reaction on the nitrogen-doped graphene
in the NCPEs structure increases the number of produced H2O2, and these species further convert
to hydroxyl radicals with oxidation reactions (including electro-Fenton) on iron sites of the NCPEs;
therefore, the produced hydroxyl radicals could degrade the pesticides from water, even at low voltages
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of 5 volts. However, activated carbon can only improve the oxygen reduction reaction in case of higher
voltages. This is why the removal of MCPP and MCPA pesticides from water by the 3D-NCPEs process
at 5 volts was not significantly different (only 15%) from that of the 3D-GACs process at 15 volts
that was reported previously [10], and the NCPE’s performance was even better for removing BAM
at 5 volts compared to that of activated carbon at 15 volts. This improved performance of particle
electrodes for pesticide degradation could also be attributed to the presence of graphitic and pyridinic
nitrogen species in a synthesized catalyst nanostructure [19]. It was reported that pyridinic nitrogen is
responsible for creating defect sites and edge planes on graphene sheets that play an important role in
catalyzing ORRs [36,50,51].

3.6. Effect of Background Electrolyte and Indirect Oxidation

Due to the focus on the microelectrode performance and synergy parameters in the previous
sections, DI water without background electrolytes was used as a solvent to minimize the influence
of an indirect oxidation reaction on organic removal and to confine degradation to near or at surface
reactions. By using sodium sulfate as the background electrolyte, the ionic and electronic conductivity
of solution increased; thus, ohmic resistance decreased. This would cause electrochemical water
treatment to proceed rapidly. The use of drinking water as a solvent triggered indirect electrochemical
oxidation and reduction reactions (active chlorine formation and bulk oxidation, oxygen reduction and
hydrogen peroxide catalysis, persulphate formation, etc.), which may influence removal kinetics and
energy requirements. The ionic composition of tab water from Esbjerg, Denmark drinking water is
listed in Table 1 [22].

RNO decolorization curves using different solvents i.e., DI water, Esbjerg tap water, and DI water
with supporting electrolyte of 0.05 M sodium sulfate, are shown in Figure 8. The conductivity of the
mentioned solutions was as follows: DI water: ≈6–7 µS/cm, tap water: 409.6 µS/cm, 0.05 M sodium
sulfate in DI water: 8.659 mS/cm.
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Figure 8. (a) RNO decolorization in 3D-NCPEs system using different solvents, (b) corresponding
kinetic rate curves at 15 V.

As seen in Figure 8, it was clear that the decolorization process occurred much faster in the case
of using sodium sulfate as supporting electrolyte, and it reached up to 90% within only 50 min of
treatment, while the corresponding level in DI water took 5 to 6 h. The rate of RNO decolorization
in drinking water was also faster compared to that of DI water, but it was still slower than RNO
decolorization with the supporting electrolyte.
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4. Conclusions

The synergy parameters in a three-dimensional system were significantly improved by using
a newly synthesized particle electrodes compared with activated carbon. The optimum synergy
parameter was obtained at 5 V in 3D-NCPEs system (≈3900%), whereas in a 3D-GACs system, it was
found to be 15 V (3%), showing a high electrochemical activity of synthesized catalyst. Pesticides
removal at the optimum synergy voltage was found to be comparable in the case of MCPA and MCPP
removal and better in the case of BAM removal compared to that of 3D-GACs at 15 V determined
in previous studies. Investigation of the effect of the supporting electrolyte indicated that adding a
background electrolyte increasing the ionic, and the electronic conductivity in the solution significantly
accelerates the treatment process. The use of drinking water also increased the indirect electro-oxidation
processes and facilitated the RNO decolorization process.
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