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Abstract—All-pass filter (APF) passes all frequency compo-
nents of a signal without altering their amplitude, but changes
their phase. This feature has made the APF a versatile building
block in different signal processing applications. The focus of
this paper is on APF-based phase-locked loops (PLLs), where
the APF is required for creating a 90◦ phase shift at the fun-
damental frequency. Such a phase shift is needed for generating
a fictitious orthogonal signal in single-phase applications and
rejecting the grid voltage imbalance in three-phase systems. To
the best of authors’ knowledge, none of the APF-based PLLs
have an accurate model yet. This gap in knowledge makes the
analysis of these synchronization systems and identifying their
advantages/disadvantages compared to state-of-the-art structures
complicated. The main objective of this paper is to bridge this
knowledge gap.

Index Terms—All-pass filter (APF), modeling, phase-locked
loop (PLL), quadrature signal generation (QSG), single-phase
systems, synchronization, three-phase systems.

I. INTRODUCTION

POWER ELECTRONIC converters are widely used in
different applications, such as renewable energy systems,

uninterruptible power supplies, power quality conditioners,
and electric vehicles among others [1], [2]. Depending on
the application in hand, these converters may have different
control systems. Almost all of them, however, require a
synchronization unit in their controllers. Such a unit may be
designed in different ways. A popular method is using the
phase-locked loop (PLL) concept [3]–[5].

PLLs are nonlinear closed-loop control systems with a long
history of use in power and energy applications. Focusing on
single-phase applications, PLLs are divided into two major cat-
egories [3]: Quadration signal generation-based PLLs (QSG-
PLLs), which mimic the operating principle of a three-phase
synchronous reference frame PLL (SRF-PLL) by producing
a 90◦-phase-shifted version of the single-phase input signal,
and power-based PLLs (pPLLs), which employ a product-type
phase detector. In power applications, which this paper focuses
on, QSG-PLLs have received more attention than pPLLs [3].
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Fig. 1. Block diagram of the 1φ-APF-PLL. v is the single-phase input
signal. kp and ki are the control parameters of the proportional-integral (PI)
controller. ωd and ωq are the cutoff frequency of low-pass filters (LPFs) in
the d- and q-axis, respectively. The q-axis LPF is optional. ωn is the nominal
angular frequency of the input signal. ω̃ and ω̂ are both estimations of the
input signal angular frequency, and θ̂1 and V̂1 are estimations of its phase
angle and amplitude, respectively.
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Fig. 2. Block diagram of the MFOF-PLL. The parameter k is an additional
degree of freedom. See the caption of Fig. 1 for the description of other
parameters.

A large number of QSG-PLLs have been presented in the
literature [3]. The key difference between these PLLs lies in
how to produce the quadrature signal mentioned above. Using
transfer delay [6], [7], second-order generalized integrator [8]–
[10], inverse Park transform [10], [11], and all-pass filter
(APF) [12]–[14] are notable examples.

The APF is a filter that passes all frequency components
without affecting their amplitude, but changes their phase.
Using the APF for generating the quadrature signal in single-
phase PLLs dates back to more than a decade ago [12]–[14].
Fig. 1 illustrates the block diagram of the single-phase APF-
based PLL (1φ-APF-PLL), which consists of a first-order APF
for generating the quadrature signal and an SRF-PLL. Notice
that the SRF-PLL has an optional LPF in its q-axis. Notice
also that a frequency feedback loop, which is connected to
the output of the PI controller, adapts the APF to frequency
changes.

In [15], adding a degree of freedom (parameter k) to the
1φ-APF-PLL structure has been proposed. Fig. 2 illustrates
this idea, which is referred to as the modified first-order filter-
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Fig. 3. Block diagram of the 3φ-APF-PLL.

based PLL (MFOF-PLL) [15].1 Notice that the 1φ-APF-PLL
is a special case of the MFOF-PLL with k = 1. Notice also
that the MFOF frequency response converges to that of an
integrator and differentiator when the parameter k tends to
zero and infinity, respectively.

The APF application is not limited to single-phase PLLs. In
fact, around two decades ago, its application for rejecting the
grid voltage imbalance in three-phase PLLs has been proposed
in [16]. Fig. 3 illustrates this idea, which is referred to as the
three-phase APF-based PLL (3φ-APF-PLL).2 The 3φ-APF-
PLL includes an APF-based fundamental-frequency positive-
sequence (FFPS) detector, which works based on instantaneous
symmetrical components theory, and an SRF-PLL.

To the best of authors’ knowledge, no accurate model
for the 1φ-APF-PLL, MFOF-PLL, and 3φ-APF-PLL has yet
been presented.3 Without such a model, the analysis of these
synchronization systems and identifying their shortcomings
and advantages compared to state-of-the-art structures are
complicated. This paper aims to bridge this gap in knowledge.

II. 3φ-APF-PLL

The 3φ-APF-PLL [Fig. 3], as mentioned before, consists
of an APF-based FFPS component detector and an SRF-
PLL. The FFPS component detector works based on the
instantaneous symmetrical components theory in the stationary
(αβ) frame. According to this theory, the FFPS component of
an imbalanced vector in the αβ frame can be extracted by
applying the following transformation [18]:[

ṽα1(t)
ṽβ1(t)

]
= 0.5

[
1 −q
q 1

] [
vα(t)
vβ(t)

]
(1)

where q = e−jπ/2. The 90◦ phase-shift operator q in the 3φ-
APF-PLL is implemented using a first-order APF.

1In the original structure of the MFOF-PLL in [15], the signal ω̂ is used
for feeding back to the MFOF. Here, for the sake of consistency with the
1φ-APF-PLL structure, the frequency feedback point is changed to the signal
ω̃ (see Fig. 2).

2In the original structure of 3φ-APF-PLL (see [16, Fig. 5]), the APF-based
FFPS component detector is implemented in the abc frame, which demands
three APFs. A better way, as shown in Fig. 3, is implementing that in the αβ
frame, which requires only two APFs.

3Some attempts to model the 1φ-APF-PLL and the MFOF-PLL have been
made before (see [17, Fig. 2] and [15, Fig. 5]). These models, however, are
not accurate and, therefore, may not precisely predict the dynamics of the
1φ-APF-PLL and the MFOF-PLL.
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Fig. 4. Bode plot of the APF-based FFPS component detector [see (2)]. For
obtaining this Bode plot, ω = ωn = 2π50 rad/s is considered.

Considering the APF transfer function as GAPF(s) = ω−s
ω+s ,

(1) can be rewritten in the space vector notation as follows:

[ṽα1(s) + jṽβ1(s)] =
1

2

[
1 + j

ω − s
ω + s

]
[vα(s) + jvβ(s)] .

(2)
Fig. 4 shows the Bode plot of the transfer function (2). As

expected, it has unity gain with zero phase at +50 Hz, and zero
gain at -50 Hz, which confirms that it is an FFPS component
detector.

A. Modeling

Assume that the three-phase input signals of the 3φ-APF-
PLL are as follows:

va(t) = V1 cos(θ1)
vb(t) = V1 cos(θ1 − 2π/3)
vc(t) = V1 cos(θ1 + 2π/3)

(3)

where V1 and θ1 are the grid voltage fundamental amplitude
and phase angle, respectively. Applying Clarke’s transforma-
tion to (3) gives the αβ-axis input of the APF-based FFPS
component detector as

vα(t) = V1 cos(θ1)
vβ(t) = V1 sin(θ1).

(4)

Considering (4) and Fig. 4, the αβ-axis output of the APF-
based FFPS component detector can be considered as

ṽα1(t) = Ṽ1 cos(θ̃1)

ṽβ1(t) = Ṽ1 sin(θ̃1)
(5)

where Ṽ1 and θ̃1 are estimations of V1 and θ1, respectively.
Based on these assumptions, the 3φ-APF-PLL modeling is
carried out in what follows.

1) Phase Estimation Dynamics: Using (5), the phase angle
of the αβ-axis output signals of the APF-based FFPS compo-
nent detector in Fig. 3 can be expressed as

θ̃1 = tan−1

(
ṽβ1(t)

ṽα1(t)

)
. (6)
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Differentiating from (6) results in

dθ̃1

dt
=
ṽα1(t)

dṽβ1(t)
dt − ṽβ1(t)dṽα1(t)

dt

ṽ2
α1(t) + ṽ2

β1(t)︸ ︷︷ ︸
Ṽ 2
1

(7)

where
dṽα1(t)

dt
=

1

2

[
dvα(t)

dt
− dv′α(t)

dt

]
=

1

2

[
dvα(t)

dt
+
dvβ(t)

dt
− ω̃ {vβ(t) + 2ṽα1(t)− vα(t)}

]
(8)

dṽβ1(t)

dt
=

1

2

[
dvβ(t)

dt
+
dv′β(t)

dt

]
=

1

2

[
dvβ(t)

dt
− dvα(t)

dt
+ ω̃ {vα(t)− 2ṽβ1(t) + vβ(t)}

]
. (9)

Substituting (8) and (9) into (7) results in

dθ̃1

dt
=

1

2Ṽ 2
1

[(
ṽα1(t)

dvβ(t)

dt
− ṽβ1(t)

dvα(t)

dt

)
+ω̃ (ṽα1(t)vα(t) + ṽβ1(t)vβ(t))

+ω̃ (ṽα1(t)vβ(t)− ṽβ1(t)vα(t))

−
(
ṽα1(t)

dvα(t)

dt
+ ṽβ1(t)

dvβ(t)

dt

)]
. (10)

Substituting (4) and (5) into the above equation yields

dθ̃1

dt
=

1

2

[(
dθ1

dt
+ ω̃ +

1

V1

dV1

dt

)
V1

Ṽ1

sin(θ1 − θ̃1)

+

(
dθ1

dt
+ ω̃ − 1

V1

dV1

dt

)
V1

Ṽ1

cos(θ1 − θ̃1)

]
. (11)

Considering the definitions (12), in which ∆ means a small
perturbation and n refers to a nominal value, the terms of (11)
can be rewritten/approximated as (13).

ω = ωn + ∆ω (12a)
ω̃ = ωn + ∆ω̃ (12b)
V1 = Vn + ∆V1 (12c)
Ṽ1 = Vn + ∆Ṽ1 (12d)

θ1 =

∫
ωdt =

∫
ωndt︸ ︷︷ ︸
θn

+

∫
∆ωdt︸ ︷︷ ︸
∆θ1

(12e)

θ̃1 = θn + ∆θ̃1 (12f)

dθ̃1

dt
= ωn +

d∆θ̃1

dt
(13a)

1

V1

dV1

dt
=

1

Vn + ∆V1

d∆V1

dt
=

1

Vn

≈1−∆V1/Vn︷ ︸︸ ︷
1

1 + ∆V1/Vn

d∆V1

dt

≈ 1

Vn

d∆V1

dt
−

1

V 2
n

∆V1

d∆V1

dt
≈ 1

Vn

d∆V1

dt
(13b)

dθ1

dt
+ ω̃ = 2ωn +

d∆θ1

dt
+ ∆ω̃ (13c)

V1

Ṽ1

=
Vn + ∆V1

Vn + ∆Ṽ1

=
1 + ∆V1/Vn

1 + ∆Ṽ1/Vn

≈ (1 + ∆V1/Vn)(1−∆Ṽ1/Vn)

= 1 + ∆V1/Vn −∆Ṽ1/Vn −∆V1∆Ṽ1/V
2
n

≈ 1 + ∆V1/Vn −∆Ṽ1/Vn (13d)
sin(θ1 − θ̃1) ≈ (∆θ1 −∆θ̃1) (13e)
cos(θ1 − θ̃1) ≈ 1 (13f)

Notice that the highlighted terms in (13) are negligible.

By substituting (13) into (11) and neglecting the multipli-
cation of small perturbations, we have

d∆θ̃1

dt
≈ ωn

(
∆θ1 −∆θ̃1

)
+
ωn
Vn

(
∆V1 −∆Ṽ1

)
+

1

2

d∆θ1

dt

− 1

2Vn

d∆V1

dt
+

1

2
∆ω̃. (14)

2) Amplitude Estimation Dynamics: Using (5), the ampli-
tude of the αβ-axis output signals of the APF-based FFPS
component detector in Fig. 3 can be expressed as

Ṽ1 =
√
ṽ2
α1(t) + ṽ2

β1(t). (15)

Differentiating from (15) results in

dṼ1

dt
=
ṽα1(t)dṽα1(t)

dt + ṽβ1(t)
dṽβ1(t)
dt

Ṽ1

. (16)

Substituting (8) and (9) into (16) gives

dṼ1

dt
=

1

2Ṽ1

[(
ṽα1(t)

dvα(t)

dt
+ ṽβ1(t)

dvβ(t)

dt

)
−ω̃ (ṽα1(t)vβ(t)− ṽβ1(t)vα(t))

−2ω̃
(
ṽ2
α1(t) + ṽ2

β1(t)
)

+ω̃ (ṽα1(t)vα(t) + ṽβ1(t)vβ(t))

+

(
ṽα1(t)

dvβ(t)

dt
− ṽβ1(t)

dvα(t)

dt

)]
. (17)

Substituting (4) and (5) into (17) results in

dṼ1

dt
=

1

2

[(
dθ1

dt
+ ω̃ +

1

V1

dV1

dt

)
V1 cos(θ1 − θ̃1)

−
(
dθ1

dt
+ ω̃ − 1

V1

dV1

dt

)
V1 sin(θ1 − θ̃1)− 2ω̃Ṽ1

]
. (18)
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Fig. 5. (a) Full-order linear model of the 3φ-APF-PLL. (b) An alternative
representation of the full-order model. (c) Neglecting the coupling terms of the
model. (d) Reduced-order linear model of the 3φ-APF-PLL. All these models
are linear time-invariant (LTI). It will be proved later that these models are
also valid for the 1φ-APF-PLL.

Considering (12) and (13), (18) can be approximated by

d∆Ṽ1

dt
≈ ωn

(
∆V1 −∆Ṽ1

)
− ωnVn

(
∆θ1 −∆θ̃1

)
+

1

2

d∆V1

dt

+
Vn
2

d∆θ1

dt
− Vn

2
∆ω̃. (19)

Using (14), (19), and the linear model of the SRF-PLL [19,
Fig. 3], the full-order linear model of the 3φ-APF-PLL can be
developed as shown in Fig. 5(a).

B. Model Verification

In this section, the accuracy of the full-order linear model
[Fig. 5(a)] of the 3φ-APF-PLL is investigated. As shown in
Fig. 3, there is an optional LPF in the 3φ-APF-PLL q-axis. The
3φ-APF-PLL with and without this LPF is called the 3φ-APF-
PLL1 and 3φ-APF-PLL2, respectively. Here, for the sake of
brevity, we only present the model verification results for the
3φ-APF-PLL1. The control parameters of the 3φ-APF-PLL1

can be found in Table I.
Three tests are considered for the model verification.

TABLE I
CONTROL PARAMETERS

Control parameters

3φ-APF-PLL1 kp = 130.1, ki = 7014.1, ωd = 157.1 rad/s, ωq = 628.3 rad/s
3φ-APF-PLL2 kp = 130.1, ki = 7014.1, ωd = 157.1 rad/s
CCF-PLL kp = 130.1, ki = 7014.1, ωd = 157.1 rad/s, ωp = 314.2 rad/s
1φ-APF-PLL1 kp = 130.1, ki = 7014.1, ωd = 157.1 rad/s, ωq = 628.3 rad/s
1φ-APF-PLL2 kp = 130.1, ki = 7014.1, ωd = 157.1 rad/s
EPLL µp = 260.2, µi = 14028.2, µv = 260.2

MFOF-PLL1 kp = 130.1, ki = 7014.1, ωd = 157.1 rad/s, k = 1/
√

2
MFOF-PLL2 kp = 130.1, ki = 7014.1, ωd = 157.1 rad/s, k = 1

MFOF-PLL3 kp = 130.1, ki = 7014.1, ωd = 157.1 rad/s, k =
√

2

• Test 1: 2 Hz frequency jump.
• Test 2: 20◦ phase jump.
• Test 3: 0.25 p.u. voltage sag.

The results of this verification, which is conducted in
Matlab/Simulink environment, are shown in Fig. 6. The solid
lines are the results of the 3φ-APF-PLL1, and the dashed
lines are those predicted by its full-order linear model. The
accuracy of the full-order model is remarkable. Notice that
this model even predicts the coupling between amplitude and
phase/frequency variables.

C. Model Order Reduction

The full-order model of the 3φ-APF-PLL, which is shown in
Fig. 5(a), is a bit complicated for tuning its control parameters.
Therefore, a reduced-order model is presented here.

Using block diagram algebra, Fig. 5(a) can be rearranged as
depicted in Fig. 5(b). As the coupling between the amplitude
and phase/frequency variables of the 3φ-APF-PLL is not that
strong [see Fig. 6], it can be neglected without significantly
affecting accuracy. This simplification results in Fig. 5(c). To
deal with the grid voltage harmonics, the 3φ-APF-PLL needs
to have a narrow bandwidth. It implies that the second-order
transfer functions highlighted with blue color in Fig. 5(c) can
be approximated in the low-frequency range by

0.5s2 + ωns+ 2ω2
n

s2 + 2ωns+ 2ω2
n

≈ ωns+ 2ω2
n

2ωns+ 2ω2
n

=
0.5(s+ 2ωn)

s+ ωn
. (20)

This approximation leads to Fig. 5(d), which is the reduced-
order model of the 3φ-APF-PLL.

To ensure that the reduced-order model is accurate enough,
its performance in predicting the 3φ-APF-PLL1 dynamic
behavior is investigated. The same tests as those defined in
Section II-B are considered for this purpose. The dotted lines
in Fig. 6 show the results of the reduced-order model. Re-
gardless of its incapability in predicting the coupling between
amplitude and phase/frequency variables, it is observed that
the accuracy of the reduced-order model is comparable to that
of the full-order model.

D. Tuning

1) 3φ-APF-PLL With Optional LPF (3φ-APF-PLL1): From
the phase estimation loop of the reduced-order model [the
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(c)

Fig. 6. 3φ-APF-PLL1 model verification. (a) Test 1: 2-Hz frequency jump. (b) Test 2: 20◦ phase jump. (c) Test 3: 0.25-p.u. voltage sag. The estimated
frequency and amplitude by the 3φ-APF-PLL1 denote the signals ω̂ and V̂1 in Fig. 3, and the phase error is the difference of the actual and estimated phase
angles. The estimated frequency, estimated amplitude, and phase error in the full-order and reduced-order models are the signals ∆ω̂ + ωn, ∆V̂1 + Vn, and
∆θ1 − ∆θ̂1, respectively. The control parameters of the 3φ-APF-PLL1 can be found in Table I. The sampling frequency and the grid nominal frequency
throughout this paper are 10 kHz and 50 Hz, respectively.

lower part of Fig. 5(d)], the following open-loop transfer
function can be obtained:

G3φ−APF−PLL1

ol (s)=
∆θ̂1(s)

∆θ1(s)−∆θ̂1(s)

= Vn
0.5 (s+ 2ωn)

s+ ωn

ωq
s+ ωq

kps+ ki
s2

. (21)

It is observed that selecting ωq = 2ωn = 628.3 rad/s results
in a pole-zero cancellation and simplifies (21) as

G3φ−APF−PLL1

ol (s) = Vn
ωn

s+ ωn

kps+ ki
s2

. (22)

The open-loop transfer function (22) describes a type-2
control system (i.e., a system with two open-loop poles at
the origin) with a pole-zero pair. For such a system, the
symmetrical optimum method (SOM)4 is a good option for the
tuning procedure [19], [20]. Notice that the open-loop pole in
(22) is already fixed. Therefore, using the SOM results in

kp =
ωc
Vn

=
ωn
Vnb

(23a)

ki =
ω2
c

Vnb
=

ω2
n

Vnb3
(23b)

where the design constant b determines the PM value. By
considering PM= π/4 rad (45◦), which is recommended in
[19], b = 1+

√
2 is achieved. Substituting this value into (23),

4The SOM sets the crossover frequency at the geometric mean of the pole-
zero pair (i.e., ωc =

√
ωnki/kp) to maximize the phase margin (PM) [19],

[20]. The ratio of the pole-zero pair, i.e., b2 = ωn
ki/kp

, then determines the

PM value as PM = tan−1
(

b2−1
2b

)
.

gives kp = 130.1 and ki = 7014.1.

The remaining design parameter is the cutoff-frequency
ωd, which regulates the 3φ-APF-PLL1 amplitude estimation
dynamics. A high value for this parameter makes the dynamic
response of the amplitude estimation faster, but at the cost of
reducing the noise immunity. Therefore, one has to make a
trade-off decision. Here, based on a trial-and-error procedure,
ωd = wn/2 = 157.1 rad/s is selected.

2) 3φ-APF-PLL Without Optional LPF (3φ-APF-PLL2):
By neglecting the optional LPF in Fig. 5(d), the open-loop
transfer function of the 3φ-APF-PLL2 can be obtained as

G3φ−APF−PLL2

ol (s)=
∆θ̂1(s)

∆θ1(s)−∆θ̂1(s)

= Vn
0.5 (s+ 2ωn)

s+ ωn

kps+ ki
s2

. (24)

The highlighted fraction on the right hand side of (24) is
a lag filter, which models the APF dynamics. In the low-
frequencies range (i.e., in frequencies less than the fundamen-
tal frequency), this term can be neglected without significantly
affecting the accuracy. Therefore, in the same range, the
closed-loop transfer function of the 3φ-APF-PLL2 can be
approximated by

G3φ−APF−PLL2

cl (s) =
∆θ̂1(s)

∆θ1(s)
≈ Vnkps+ Vnki
s2 + Vnkps+ Vnki

. (25)

Using (22), the closed-loop transfer function of 3φ-APF-
PLL1 may also be approximated in the low-frequency range
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by

G3φ−APF−PLL1

cl (s) =
∆θ̂1(s)

∆θ1(s)

=
ωn(Vnkps+ Vnki)

s3 + ωns2 + Vnωnkps+ Vnωnki

≈ ωn(Vnkps+ Vnki)

ωns2 + Vnωnkps+ Vnωnki
=

Vnkps+ Vnki
s2 + Vnkps+ Vnki

. (26)

A comparison of (25) and (26) suggests that to have a fair
comparison, kp and ki of the 3φ-APF-PLL2 should be selected
the same as those of the 3φ-APF-PLL1. The same goes for
the LPF cutoff frequency ωd (see Table I).

E. Performance Assessment

In this section, a comparison among the 3φ-APF-PLL1,
3φ-APF-PLL2, and a complex-coefficient filter (CCF) based
PLL (CCF-PLL) [21] [see Fig. 7(a)] is conducted. The CCF-
PLL includes two complex band-pass filters with the center
frequency at the fundamental positive-sequence and negative-
sequence frequencies. These band-pass filters work collabo-
ratively and extract the fundamental positive- and negative-
sequence components of the grid voltage. The extracted FFPS
component is fed to the SRF-PLL, which extracts the phase,
frequency, and amplitude of this component. The estimated
frequency is fed back to the complex filters to adapt them to
grid frequency changes.

The small-signal model of the CCF-PLL can be observed
in Fig. 7(b) [19], [22].5 From the this model, the open-loop
transfer function (27) can be obtained.

GCCF−PLL
ol (s) =

∆θ̂1(s)

∆θ1(s)−∆θ̂1(s)
= Vn

ωp
s+ ωp

kps+ ki
s2

.

(27)

5It is the most accurate available model for the CCF-PLL. In obtaining this
model, the dynamics of the CCF tuned at the fundamental frequency of the
negative sequence has been neglected.

TABLE II
STABILITY MARGINS OF 3φ-APF-PLL1 , 3φ-APF-PLL2 , AND CCF-PLL

AND DETAILS OF THEIR NUMERICAL COMPARISON

3φ-APF-PLL1 3φ-APF-PLL2 CCF-PLL

Test A: DC offset
Peak-to-peak frequency error 0.41 Hz 0.41 Hz 0.67 Hz
Peak-to-peak phase error 2.76◦ 2.75◦ 4.51◦

Peak-to-peak amplitude error 0.04 p.u. 0.04 p.u. 0.07 p.u.
Test B: Imbalance and harmonics
Peak-to-peak frequency error 0.02 Hz 0.08 Hz 0.02 Hz
Peak-to-peak phase error 0.15◦ 0.56◦ 0.13◦

Peak-to-peak amplitude error 0.01 p.u. 0.01 p.u. 0 p.u.
Test C: Phase jump
2% settling time 47.3 ms 54.6 ms 48.5 ms
Phase overshoot 34.73% 24.01% 39.52%
Peak frequency variation 2.52 Hz 2.24 Hz 2.68 Hz
Peak amplitude variation 0.04 p.u. 0.03 p.u. 0.06 p.u.
Test D: Frequency jump
2% settling time 37.4 ms 40.5 ms 37.5 ms
Frequency overshoot 1.09% 1.74% 0.62%
Peak phase variation 4.9◦ 4.24◦ 5.09◦

Peak amplitude variation 0 p.u. 0 p.u. 0.01 p.u.
Phase margin 43.5◦ 55.7◦ 45◦

Note: All results are rounded to 2 decimal places.

Based on (22) and (27), it is immediate to conclude that
to have a fair performance comparison, the proportional and
integral gains of the CCF-PLL should be the same as those
of the 3φ-APF-PLL1, and the CBF gain ωp should be equal
to ωn. Table I summarizes the control parameters of the 3φ-
APF-PLL1, 3φ-APF-PLL2, and CCF-PLL.

Four tests are considered.
• In Test A, a 0.1 p.u. dc component is added to the phase
A of the grid voltage.

• In Test B, the grid voltage is imbalanced and distorted
with characteristic harmonics of order −5, +7, −11, and
+13. The magnitude of all harmonics is 5%.

• In Test C, a 20◦ phase jump in the grid voltage happens.
• In Test D, the grid voltage experiences a 2-Hz frequency

jump.
Fig. 8 shows the results of these tests, and Table II sum-

marizes their details. According to these results, the following
observations can be made:
• The 3φ-APF-PLL1 and 3φ-APF-PLL2 offer a higher dc-

offset filtering capability than the CCF-PLL.
• The CCF-PLL and 3φ-APF-PLL2 offer the best and

worst harmonic filtering capabilities, respectively. The
harmonic rejection ability of the 3φ-APF-PLL1 is close
to that of the CCF-PLL. Notice that all these PLLs
completely reject the grid voltage imbalance.

• In estimating the phase and frequency variables, the
3φ-APF-PLL2 offers a more damped dynamic response
compared to the CCF-PLL and 3φ-APF-PLL1, which is
attributable to its higher phase margin [see Fig. 9].

• The estimated amplitude of the CCF-PLL experiences
larger transients when phase and frequency jumps hap-
pen. It means that the coupling between the amplitude
and phase/frequency variables in the CCF-PLL is stronger
than that in the 3φ-APF-PLL1 and 3φ-APF-PLL2.

To confirm the above simulation results, Test A is repeated
experimentally using the dSPACE 1006 platform. To this end,
the mains voltage [which is a 50 Hz/230-V (phase RMS)
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Fig. 8. A performance comparison among the 3φ-APF-PLL1, 3φ-APF-PLL2, and CCF-PLL. (a) Test A. (b) Test B. (c) Test C. (d) Test D.
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system] is measured using a sensor board and fed to the
DS2004 A/D board. The digital grid voltage signals are then
normalized by dividing them by the nominal amplitude. A
0.1 p.u. dc component is then generated in the real-time code
and added to the phase A. The responses of PLLs to this
disturbance are sent out using DS2102 DAC board and shown
on a digital oscilloscope [Tektronix DPO 2014B]. The results
of this experimental test can be observed in Fig. 10. To save
space, only the estimated frequencies by the PLLs are shown.
As shown, these results are the same as simulation one [see
Fig. 8(a)].
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Fig. 11. Alternative mathematically-equivalent representation of the 1φ-APF-
PLL.

III. 1φ-APF-PLL

A. Modeling

From Fig. 1, an alternative representation of the 1φ-APF-
PLL can be obtained as shown in Fig. 11. This representation
demonstrates that the 1φ-APF-PLL is actually a special case
of the 3φ-APF-PLL where its β-axis input is equal to zero.
By assuming that the single-phase grid voltage signal v is
as (28), where V1 and θ1 are the amplitude and phase angle,
respectively, the signals vα and vβ in Fig. 11 can be expressed
as (29).

v(t) = V1 cos(θ1) (28)

vα(t) = 2v(t) =

FFPSCom.︷ ︸︸ ︷
V1 cos(θ1) +

FFNSCom.︷ ︸︸ ︷
V1 cos(−θ1)

vβ(t) = 0 = V1 sin (θ1) + V1 sin(−θ1)

(29)

In (29), FFPS Com. and FFNS Com. denote the fundamental-
frequency positive-sequence and negative-sequence compo-
nents, respectively.

The equation (29) describes a set of imbalanced signals in
the αβ frame, where its positive and negative sequence compo-
nents have the same amplitude. Fortunately, the FFNS compo-
nent is blocked in the steady state because the transfer function
between the vectors vα(s) + jvβ(s) and ṽα1(s) + jṽβ1(s) in
Fig. 11 has a zero magnitude at the fundamental negative
frequency [see Fig. 4]. Therefore, the FFNS component can be
neglected during the modeling procedure without significantly
affecting the accuracy. Considering this fact and the similarity
of Fig. 3 and 11, it can be concluded that the LTI models of
3φ-APF-PLL [see Fig. 5] are also valid for the 1φ-APF-PLL.

B. Model Verification

In this section, the accuracy of the full-order and reduced-
order models of the 1φ-APF-PLL is investigated. As men-
tioned before, the 1φ-APF-PLL has an optional LPF in its q-
axis [see Fig. 1]. The 1φ-APF-PLL with and without this LPF
is called the 1φ-APF-PLL1 and 1φ-APF-PLL2, respectively.
To save space, the model verification of the 1φ-APF-PLL1 is
only presented here.

Fig. 12 shows the model verification results. It is observed
that both models precisely predict the dynamics of phase
and frequency variables in Test 1 and 2 (i.e., the phase and
frequency jump tests), and accurately anticipate the amplitude
estimation dynamics in Test 3 (the voltage sag test). They,
however, fail to do so in predicting the coupling between
amplitude and phase/frequency variables. In the case of the
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(c)

Fig. 12. 1φ-APF-PLL1 model verification. (a) Test 1: 2-Hz frequency jump. (b) Test 2: 20◦ phase jump. (c) Test 3: 0.25 p.u. voltage sag. The control
parameters of the 1φ-APF-PLL1 can be found in Table I.

reduced-order model, this result was expected because it is
obtained by neglecting the coupling terms in the full-order
model. In the case of the full-order model, however, this
inaccuracy requires justification, which is explained in what
follows.

During the modeling of the 1φ-APF-PLL in Section III-A,
the FFNS component highlighted in (29) was neglected. Notice
that occurring a disturbance (for example, a phase, a frequency,
or an amplitude jump) results in a change in this FFNS
component, which affects the 1φ-APF-PLL transient response.
The full-order model, however, does not consider this com-
ponent and, therefore, cannot predict its effects. It is worth
mentioning here that considering the FFNS component during
the modeling procedure results in a linear-time periodic (LTP)
model, which is more complicated to analyze compared to LTI
models developed in this paper. For more details about the LTP
modeling of single-phase grid synchronization systems, refer
to [23].

C. Performance Comparison

In this section, a comparison among the 1φ-APF-PLL1,
1φ-APF-PLL2 and enhanced PLL (EPLL) [5], [24], which
is a well-known single-phase PLL, is conducted. The block
diagram of the EPLL and its linear model may be observed
in Fig. 13.

Equation (30) is the EPLL closed-loop transfer function,
which can be obtained from its LTI model.

GEPLL
cl (s) =

∆θ̂1(s)

∆θ1(s)
=

0.5Vn(µps+ µi)

s2 + 0.5Vnµps+ 0.5Vnµi
(30)
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Fig. 13. (a) Block diagram representation of the EPLL. (b) EPLL LTI model.
µp, µi, and µv are the EPLL control parameters.

If we compare the above transfer function with (25) or (26),6 it
can be concluded that a fair comparison between the EPLL and
1φ-APF-PLL1/1φ-APF-PLL2 demands µp = 2kp and µi =
2ki. Table I summarizes the control parameters of all these
PLLs.

Four numerical tests are conducted.

6The equations (25) or (26) are the (approximate) closed-loop transfer
functions of the 3φ-APF-PLL2 and 3φ-APF-PLL1, respectively, which are
obtained from their reduced-order LTI model [see Fig. 5(d)]. As the 1φ-APF-
PLL and 3φ-APF-PLL have the same models, it can be concluded that these
transfer functions are valid for the 1φ-APF-PLL2 and 1φ-APF-PLL1 too.
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Fig. 14. A performance comparison among the 1φ-APF-PLL1, 1φ-APF-PLL2, and EPLL. (a) Test A∗. (b) Test B∗. (c) Test C∗. (d) Test D∗.
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TABLE III
STABILITY MARGINS OF 1φ-APF-PLL1 , 1φ-APF-PLL2 , AND EPLL AND

DETAILS OF THEIR NUMERICAL COMPARISON

1φ-APF-PLL1 1φ-APF-PLL2 EPLL

Test A∗: DC offset
Peak-to-peak frequency error 0.75 Hz 0.71 Hz 0.79 Hz
Peak-to-peak phase error 5.02◦ 4.79◦ 5.37◦

Peak-to-peak amplitude error 0.07 p.u. 0.08 p.u. 0.09 p.u.
Test B∗: Harmonics
Peak-to-peak frequency error 0.12 Hz 0.18 Hz 0.26 Hz
Peak-to-peak phase error 0.8◦ 1.2◦ 1.74◦

Peak-to-peak amplitude error 0.04 p.u. 0.04 p.u. 0.03 p.u.
Test C∗: Phase jump
2% settling time 48.1 ms 54.6 ms 56 ms
Phase overshoot 34.06% 24.31% 24.65%
Peak frequency variation 2.66 Hz 2.39 Hz 2.12 Hz
Peak amplitude variation 0.09 p.u. 0.08 p.u. 0.12 p.u.
Test D∗: Frequency jump
2% settling time 38.4 ms 40.7 ms 43.1 ms
Frequency overshoot 1.06% 1.64% 2.07%
Peak phase variation 4.66◦ 4.16◦ 4.57◦

Peak amplitude variation 0.01 p.u. 0.01 p.u. 0.02 p.u.
Phase margin 43.5◦ 55.7◦ 68.9◦

Note: All results are rounded to 2 decimal places.

• In Test A∗, a 0.05 p.u. dc component is suddenly added
to the PLLs input signal.

• In Test B∗, the input signal is contaminated with low-
order harmonics of order 3, 5, 7, and 9. The amplitudes of
these harmonics are 5%, 4%, 3%, and 2%, respectively,
which are corresponding to a total harmonic distortion
around 7.35%.

• In Test C∗, a 20◦ phase jump in the PLLs input signal
happens.

• In Test D∗, a 2-Hz frequency jump in the PLLs input
signal occurs.

The results of these tests and their details can be found
in Fig. 14 and Table III, respectively. From these results, the
following observations are made.
• All PLLs demonstrate a close level of dc-offset filtering

capability.
• The 1φ-APF-PLL1, thanks to its in-loop LPF, represents

a slightly better performance than the 1φ-APF-PLL2 and
EPLL in filtering harmonics.

• The 1φ-APF-PLL1 demonstrates a larger phase overshoot
than the 1φ-APF-PLL2 and EPLL after the phase jump.
The main reason behind this observation is the phase
delay caused by its in-loop LPF, which reduces its phase
margin. This fact is clear from Fig. 15.

• There is not a large difference between the settling
time of 1φ-APF-PLL1, 1φ-APF-PLL2, and EPLL during
transients.

IV. MFOF-PLL
A. Description and Modeling

The MFOF, which is used for generating the fictitious
quadrature signal in the MFOF-PLL [see Fig. 2], is expressed
in the Laplace domain as [15]

GMFOF(s) =
ω − ks
s+ kω

(31)
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Fig. 15. Open-loop Bode plots of the 1φ-APF-PLL1, 1φ-APF-PLL2, and
EPLL. These plots are obtained using the linear models shown in Fig. 5(c)
and 13(b).

where k is the design constant of this filter, and ω is the grid
voltage angular frequency. Notice that, as shown in Fig. 2, the
estimated frequency is fed back to the MFOF to adapt it to
frequency variations.

Fig. 16 shows the MFOF frequency response for three
different values of k. From this plot and the transfer function
(31), the following observations are made:

• Regardless of the value of k, the MFOF has −90◦ phase
at the fundamental frequency.

• k = 1 results in a unity amplitude at all frequencies and
therefore make the MFOF a first-order APF.

• 0 ≤ k < 1 amplifies the dc component and sub-
harmonics and attenuates frequencies larger than the
fundamental frequency. Notice that k = 0 makes the
MFOF an ideal integrator.

• k > 1 attenuates the dc component and sub-harmonics
and amplifies frequencies larger than the fundamental
frequency. Notice that k = ∞ makes the MFOF a
differentiator.

Fig. 17 illustrates an alternative mathematically-equivalent
representation of the MFOF-PLL. Considering this structure,
the discussions conducted in Section III-A, and the mathemat-
ical modeling procedure presented in Section II-A, the full-
order model of the MFOF-PLL can be obtained as shown
in Fig. 18(a). By applying the block diagram algebra, this
model can be rearranged as Fig. 18(b). Neglecting the cross-
coupling terms leads to Fig. 18(c). Further simplification can
be achieved by replacing the second-order transfer functions
in Fig. 18(c) by their first-order approximations, as depicted in
Fig. 18(d). These models are useful for measuring the stability
margin of the MFOF-PLL, tuning its control parameters, and
analyzing its performance. The accuracy of these models can
be verified using numerical results. To save space, the model
verification results are not presented here.
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B. Performance Assessment

As discussed before, the only difference of the MFOF-
PLL compared to the 1φ-APF-PLL is the additional degree of
freedom k in its structure [see Figs. 1 and 2]. This section aims
to investigate the effects of this additional degree of freedom.
To this end, the following cases are considered:

• MFOF-PLL1: k = 1/
√

2
• MFOF-PLL2: k = 1
• MFOF-PLL3: k =

√
2.

In all these cases, the optional LPF in the q-axis is neglected.
Notice that, as mentioned before, k = 1 makes the MFOF a
first-order APF. Therefore, the MFOF-PLL2 and the 1φ-APF-
PLL2 are the same systems. Considering this fact, the control
parameters of the MFOF-PLL2 are selected the same as those
of the 1φ-APF-PLL2 [see Table I]. As the objective here is
to investigate the effects of the parameter k, the proportional
and integral gains of the MFOF-PLL1 and MFOF-PLL3 and
the cutoff frequency of their d-axis LPF are chosen the same
as those of the MFOF-PLL2.

The same tests as those defined in Section III-C are con-
sidered for the investigation here. Fig. 19 shows the results of
these tests, and Table IV summarizes the details of the results.
From these results, the following observations are made:

• MFOF-PLL1 and MFOF-PLL3, which have the lowest
and highest value of k, have the worst and best dc-offset
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Fig. 18. (a) Full-order linear model of the MFOF-PLL. (b) Alternative
representation of the full-order model. (c) Neglecting the coupling terms of
the model. (d) Reduced-order linear model of the MFOF-PLL.

filtering capability, respectively. This result is consistent
with the MFOF bode plot [see Fig. 16].

• From the harmonic filtering capability point of view, the
MFOF-PLL1 has the best performance, and the MFOF-
PLL3 has the worst one. Again, this result is consistent
with the MFOF frequency response [see Fig. 16].

• There is not a large difference between the dynamic re-
sponse and stability margin of the MFOF-PLL1, MFOF-
PLL2, and MFOF-PLL3.

V. CONCLUSION

In this paper, a study on APF-based PLL systems was
conducted. The focus of the study was first on the 3φ-APF-
PLL. Through a detailed mathematical procedure, an accurate
model (called the full-order model) for the 3φ-APF-PLL
was developed for the first time. The remarkable accuracy
of this model was proved through some numerical tests in
Matlab/Simulink environment. To simplify the analysis and
the tuning procedure, a reduced-order model for the 3φ-APF-
PLL was proposed. Some control design guidelines were then
presented. Finally, to highlight the advantages and disadvan-
tages of the 3φ-APF-PLL, some comparative numerical and
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Fig. 19. MFOF-PLL performance investigation for different values of the parameter k. (a) Test A∗. (b) Test B∗. (c) Test C∗. (d) Test D∗.
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TABLE IV
STABILITY MARGINS OF MFOF-PLL1 , MFOF-PLL2 , AND MFOF-PLL3

AND DETAILS OF THEIR NUMERICAL COMPARISON

MFOF-PLL1 MFOF-PLL2 MFOF-PLL3

Test A∗: DC offset
Peak-to-peak frequency error 0.98 Hz 0.71 Hz 0.58 Hz
Peak-to-peak phase error 6.56◦ 4.79◦ 3.88◦

Peak-to-peak amplitude error 0.11 p.u. 0.08 p.u. 0.06 p.u.
Test B∗: Harmonics
Peak-to-peak frequency error 0.15 Hz 0.18 Hz 0.22 Hz
Peak-to-peak phase error 0.98◦ 1.2◦ 1.48◦

Peak-to-peak amplitude error 0.03 p.u. 0.04 p.u. 0.04 p.u.
Test C∗: Phase jump
2% settling time 55.6 ms 54.6 ms 54.7 ms
Phase overshoot 21.57% 24.31% 24.35%
Peak frequency variation 2.53 Hz 2.39 Hz 2.29 Hz
Peak amplitude variation 0.1 p.u. 0.08 p.u. 0.07 p.u.
Test D∗: Frequency jump
2% settling time 41.1 ms 40.7 ms 40.6 ms
Frequency overshoot 1.62% 1.64% 1.71%
Peak phase variation 4.11◦ 4.16◦ 4.13◦

Peak amplitude variation 0.01 p.u. 0.01 p.u. 0 p.u.
Phase margin 57◦ 55.7◦ 58.6◦

Note: All results are rounded to 2 decimal places.

experimental tests were conducted. As a reference for the
comparison, a typical CCF-PLL, which is a well-known three-
phase PLL, was considered.

In the second part of this research, the focus was on the
1φ-APF-PLL. It was demonstrated that the 1φ-APF-PLL is a
special case of the 3φ-APF-PLL where its β-axis input is equal
to zero. Based on this fact, it was concluded that the models
developed for the 3φ-APF-PLL are also valid for the 1φ-
APF-PLL. This conclusion was verified using numerical tests.
Finally, to gain insight into the advantages/disadvantages of
the 1φ-APF-PLL, a performance comparison with the EPLL,
which is a popular single-phase PLL, was carried out.

In the last part of this study, the focus was on the MFOF-
PLL, which is implemented by adding a degree of freedom
(parameter k) to the 1φ-APF-PLL. It was discussed that the
modeling of the MFOF-PLL can be carried out by following
the same procedure as that explained for the case of the 3φ-
APF-PLL. It was also demonstrated using numerical tests that
the additional degree of freedom of the MFOF-PLL is a means
for adjusting its dc/harmonic filtering capability without sig-
nificantly affecting its dynamic response and stability margin
compared to the 1φ-APF-PLL. A hidden assumption here is
that the parameter k is close to unity.

In summary, this paper disseminates useful knowledge about
modeling and tuning of APF-based PLLs and highlights their
pros and cons compared to the state-of-the-art PLL systems.
Therefore, it can be a good reference for researchers who work
in this area.
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