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ABSTRACT We show that for a legitimate communication under multipath quasi-static fading with a
reduced number of scatterers, it is possible to achieve perfect secrecy even in the presence of a passive
eavesdropper for which no channel state information (CSI) is available. Specifically, we show that the outage
probability of secrecy capacity (OPSC) is zero for a given range of average signal-to-noise ratios (SNRs) at
the legitimate and eavesdropper’s receivers. As an application example, we analyze the OPSC for the case
of two scatterers, explicitly deriving the relationship between the average SNRs, the secrecy rate RS and
the fading model parameters required for achieving perfect secrecy. The impact of increasing the number
of scatterers is also analyzed, showing that it is always possible to achieve perfect secrecy in this scenario,
provided that (i) the dominant specular component for the legitimate channel is sufficiently large compared
to the remaining scattered waves, and (ii) a exclusion area on which no eavesdroppers can be placed is
considered.

INDEX TERMS Fading channels, outage probability, physical layer security, secrecy capacity.

I. INTRODUCTION
In the last decade, the seminal works in [1]–[3] have
boosted the interest of the research community for pro-
viding secure communications over wireless channels from
an information-theoretic viewpoint based on the classical
work by Shannon [4]. Compared to the case in which fad-
ing is neglected [5], [6], the effect of random fluctuations
due to fading turns out being beneficial in many cases: in
the presence of fading, secure communications are possi-
ble even when the legitimate receiver experiences a lower
average signal-to-noise ratio (SNR) than the eavesdropper
[2], [3], since the transmitter can benefit from the instants
when the instantaneous SNR at the legitimate receiver is
above that of the eavesdropper. In other circumstances, the
secrecy capacity under fading may be larger than its additive
white Gaussian noise (AWGN) counterpart. In those cases in
which channel state information (CSI) of the eavesdropper is
unknown at the legitimate transmitter, these previous works
[1]–[3] show that it is not possible to ensure perfect secrecy
in wireless fading channels, and only a probabilistic measure
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is available through the outage probability of secrecy capacity
(OPSC) [1].

The field of wireless physical layer security (PLS) has now
become a rather mature field and numerous works have been
devoted to characterize the key performance metrics under
different propagation conditions: multiple-input multiple-
output (MIMO) systems [7]–[9], satellite communications
systems [10], vehicular communications [11], [12], corre-
lated fading channels [13], relays systems [14], [15], ultra
dense networks [16], machine-to-machine communications
in Internet of things (IoT) contexts [17] and propagation over
distinct fading conditions [18]–[20]; just to mention some
relevant examples. All these aforementioned works consider
state-of-the-art fading models like those in [1]–[3], which
are based on the central limit theorem (CLT) assumption.
This gives rise to the Rician and Rayleigh models, or gen-
eralizations of these [21]–[23]. The presence of a diffusely
propagating component arising from the superposition of a
sufficiently large number of non-dominant received waves
is common to all these models. In a way, the CLT provides
an approximate solution to the sum of random phase vec-
tors, which is one of the key problems in communication
theory [24]–[26].
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Nowadays, because of the new use cases of wireless sys-
tems under the umbrella of 5G and its evolutions, there are
several examples in which the propagation conditions may
be substantially different to those predicted by state-of-the-
art fading models. For instance, in mmWave communica-
tions, a scarce number of multipath components arrives at the
receiver [27], so that diffuse scattering only becomes relevant
when non-line-of-sight (NLoS) conditions are considered
[28]. In a different context, the potential of large-intelligent
surfaces (LIS) — also, reconfigurable intelligent surfaces
(RIS) — [29]–[32] to design the amplitude and phases of the
scattered waves in order to optimize system performance can
also be translated into a superposition of a finite number of
individual waves.

Due to the great deal of attention received by these afore-
mentioned emerging scenarios, we revisit in this work the
issue of secure communications over wireless channels, with
one key question in mind: What’s the effect of considering
a finite number of scatterers1 on wireless physical layer
security? For the first time in the literature, and thanks to
the fine-grain characterization of the wireless propagation
captured by ray-basedmodels, we demonstrate that it is possi-
ble to achieve perfect secrecy in the communication between
two legitimate peers under multipath quasi-static fading, i.e.,
zero OPSC, as the number of scatterers is reduced. Since all
previous CLT-based analyses indicated that perfect secrecy
was not possible in wireless channels, we proved that this was
an artifact caused by the consideration of having an infinite
number of multipath waves arriving at the receiver ends.
We determine the conditions under which perfect secrecy can
be ensured, and then we give some practical examples using
a ray-based fading model with an increasing number of mul-
tipath waves. We also observe that using the alternative defi-
nition of OPSC in [34], which, in contrast to those in [1]–[3],
only accounts for outage events that actually compromise the
security of the communication, secrecy performance can be
further improved.

The remainder of this paper is structured as follows. The
system model for PLS over fading channels with a finite
number of rays is formulated in Section II. Then, the notion of
perfect secrecy over ray-based fading channels is introduced
in Section III. As an illustrative example, the two-ray case is
analyzed in Sections IV and V, showing how secure and reli-
able transmission can be attained. The effect of considering
a larger number of rays is analyzed in Section VI, whereas
main conclusions are drawn in Section VII.

II. PROBLEM FORMULATION
A. SYSTEM MODEL FOR PLS
We consider a legitimate user (Alice) who wants to send
confidential messages to another user (Bob) in the presence
of an eavesdropper (Eve). For simplicity, yet without loss of

1i.e., objects or surfaces in the propagation environment on which elec-
tromagnetic waves impinge. Specifically, our goal is to determine how
individual multipath waves not originated from diffuse scattering [33] affect
physical layer security.

generality, all these agents are equipped with single-antenna
devices. The complex channel gains from Alice to Bob and
Eve are denoted by hb and he, respectively, and assumed
constant during the transmission of an entire codeword but
independent from one codeword to the next one, i.e., we con-
sider quasi-static fading channels. Therefore, the instanta-
neous SNRs at Bob and Eve are given by

γb = γ b
‖hb‖2

E[‖hb‖2]
, γe = γ e

‖he‖2

E[‖he‖2]
, (1)

where E[·] is the expectation operator and γ b and γ e denote
the average SNR at Bob and Eve, respectively.

If Alice has perfect knowledge of both Bob’s and Eve’s
instantaneous CSI, perfect secrecy can be obtained by adapt-
ing the transmision rate, Rs, in those instants where γb > γe
[1], [3]. The secrecy capacity, i.e., the maximum transmission
rate ensuring a secure communication between Alice and
Bob, is obtained by leveraging the classical results over real
Gaussian channels in [5], [6] to model complex ones, leading
to2

Cs = [Cb − Ce]+ = [log(1+ γb)− log(1+ γe)]+, (2)

where Cb and Ce are the capacities of Bob and Eve, respec-
tively, and [x]+ is the shorthand notation for max{0, x}. Thus,
for each channel realization, Alice would transmit at a rate
Rs ≤ Cs in order to avoid any information leakage to Eve.
Consider now amore realistic case in which Eve’s instanta-

neous CSI is unknown at the transmitter (corresponding, e.g.,
to that of a purely passive eavesdropper). In this case, previ-
ous works state that perfect secrecy cannot be achieved, and
therefore they resort on outage analysis [1]–[3], [34]. That
is, Alice would blindly establish a target transmission rate,
Rs, relying on the assumption that the secrecy capacity of the
channel is larger than Rs. If Cs < Rs, then an outage occurs
and the security of the tranmission is compromised with some
probability. The interest lies then in the analysis of the prob-
ability of this event, namely OPSC, and defined as [1], [34]

Pout(Rs) , P{Cs < Rs}. (3)

However, all the aforementioned works [1]–[3], [7]–[20]
consider that the channel gains and, consequently, γb and γe,
are distributed according to classical fading models arising
from the assumption of CLT or generalizations of them,
which ultimately inherits the diffuse component present in
these classical distribuions. As stated before, these models
may not be suitable to characterize channel conditions in
some emerging scenarios such as mmWave communications
or propagation through LIS [27], [28].

B. CLT AND RAY-BASED FADING MODELS
Due to the multipath propagation, the complex based-band
received signals at both Bob and Eve are written as the

2Unless specifically stated, all the logarithmic functions in this paper are
base 2.
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superposition of multiple waves arising from reflections and
scattering as [21, eq. (1)]

hk =
Nk∑
i=1

Vi,kejφi,k , (4)

where k = b, e denotes indistinctly Bob’s or Eve’s channel,
Nk denotes the number of multipath waves3, Vi,k ∈ R+ their
constant amplitudes and φi,k their phases, which are assumed
to be statistically independent and uniformly distributed over
[0, 2π ). Traditionally, the sum in (4) is split into two groups
of waves as

hk =
Mk∑
i=1

Vi,kejφi,k +
Pk∑
i=1

V̂i,kejθi,k (5)

where θi,k ∀ i are also independent and uniformly distributed.
Hence, the first sum represents the contribution of the Mk
dominant or specular components, whilst the second one
groups the contribution of non-specular or diffuse waves,
where the power of each component is considerably lower.
Thus, the dominant waves are associated with the line-of-
sight (LoS) components, whereas the diffuse part represents
the contribution of reflections and scattering. When Pk is
sufficiently large, i.e., we have a rich multipath propagation,
the diffuse component can be regarded as Gaussian because
of the CLT, and therefore

hk =
Mk∑
i=1

Vi,kejφi,k + σx,kXk + jσy,kYk (6)

with Xk ,Yk ∼ N (0, 1) and σx,k , σy,k ∈ R+.
Equation (6) is the basis for most popular fading models,

and the widespread classical distributions arise depending on
the value of the parameters Mk , σx,k and σy,k . For instance,
if σx,k = σy,k and Mk = 0 we obtain the Rayleigh
model, whilst Mk = 1 yields the Rice distribution and
Mk = 2 reduces to the two-wave with diffuse power (TWDP)
model [21].

In stark contrast with the previous works, which consider
channel gains according to (6), in this work we will stick to
the general formulation in (4) in order to explicitly account for
the effect of considering a finite number of multipath waves
on PLS.

III. PERFECT SECRECY OVER FADING CHANNELS
A. IMPACT OF A REDUCED NUMBER OF SCATTERERS IN
OPSC
In order to better understand the influence of the fading
distribution in the OPSC, we reformulate Pout in (3) in terms
of Bob’s and Eve’s SNRs as

Pout(Rs) = P{γb < 2Rsγe + 2Rs − 1} = P{γb < γeq}, (7)

3For a beautiful and complete formal description of ray-based models and
their connection with the underlying electromagnetic theory, we gently refer
the reader to [33].

FIGURE 1. Common area under the PDFs of γb and γeq for classical and
ray-based fading models, and different values of Rs (γb = 12 dB and
γe = 5 dB). For better visualization, the PDFs in the figure have been
normalized.

which is obtained by introducing (2) in (3) and performing
some basic algebraic manipulations. Note that, when condi-
tioning on γe, Pout corresponds to the cumulative distribution
function (CDF) of γb and, therefore, it can be computed by
averaging over all the possible states of γe as

Pout(Rs) =
∫
∞

0
Fγb

(
2Rsγe + 2Rs − 1

)
fγe (γe) dγe. (8)

Regarding (7), it is clear that the condition for secrecy is
γb > γeq, where γeq is obtained from γe as γeq = 2Rsγe +
2Rs − 1. From a geometric point of view, for a given value
of γeq, the OPSC corresponds therefore to the area under the
probability density function (PDF) of γb for which γb < γeq.
If we consider the complete distribution of γeq, then the
outage probability is related to the common area under the
PDFs of γb and γeq, being the latter a rescaled and shifted
version of fγe (γe) of the form

fγeq (γeq) = 2−Rs fγe (2
−Rs (γeq + 1)− 1). (9)

Thus, the larger this overlapped area in which γb can
take lower values than γeq, the higher the outage probabil-
ity. If we consider any fading distribution arising from the
CLT assumption, i.e., the underlying random variables are
Gaussian distributed, the PDFs of the SNRs – or, equivalently,
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those of ‖h‖2 – are supported on a semi-infinite interval, and
then the tails of fγb (γb) and fγeq (γeq) overlap regardless of the
values of Rs and the average SNRs. Hence, the condition of
γb < γeq is met with non-null probability and perfect secrecy
cannot be achieved, as stated in [1]–[3], [34]. This can be
observed in Fig. 1a, where even for Rs = 0 there exists some
outage area, denoted by A.

However, things are different when assuming ray-based
fading models. Due to the consideration of a finite number
of waves, there is a maximum and a minimum value for
both the channel gains and the instantaneous SNRs, i.e., the
PDFs of γb and γeq are supported on a bounded interval, say
[γmin, γmax]. These limit values will depend on the relative
amplitudes of the incident waves, that will add-up destruc-
tively/constructively with some probability. Therefore, it is
evident that in some cases the distribution domains will
be disjoint, and hence the OPSC can be identically zero,
as showed in Fig. 1b. That is, under certain conditions, any
possible value of γb will always be larger than γeq. This is
an important observation, since it will allow us to achieve
perfect secrecy for transmission rates Rs > 0 without Eve’s
CSI knowledge at the transmitter.

B. ACHIEVING PERFECT SECRECY OVER RAY-BASED
FADING CHANNELS
Let us consider that the gains for both Eve’s and Bob’s
channels are given by (4). For simplicity — yet without loss
of generality — we assume that V1,k ≥ V2,k ≥ · · · ≥ VNk ,k .
It is clear that the maximum value of hk , where k = b, e
is used again to distinguish between Bob’s and Eve’s gains,
is obtained when all the waves in (4) are summed coherently.
In turn, the minimum value arises when destructive combina-
tion occurs. Consequently, and in stark contrast with classical
fading distributions, the domain of ‖hk‖ is bounded on the
interval [‖hmin

k ‖, ‖h
max
k ‖] with

‖hmin
k ‖ =

[
V1,k −

Nk∑
i=2

Vi,k

]+
, ‖hmax

k ‖ =

Nk∑
i=1

Vi,k . (10)

Therefore, this finite domain definition of channel gains
allows us to achieve zero OPSC when a certain condition is
met, as stated in the following proposition.
Proposition 1: Consider hb and he as in (4). Then, for

a given transmission rate Rs > 0, perfect secrecy, i.e.,
Pout(Rs) = 0, is achieved if

γminb > 2Rsγmaxe + 2Rs − 1, (11)

where γminb and γmaxe are given by

γminb = γ b
‖hminb ‖

2

E[‖hb‖2]
, γmaxe = γ e

‖hmaxe ‖
2

E[‖he‖2]
(12)

with ‖hminb ‖ and ‖h
max
e ‖ as in (10) and

E[‖hk‖2] =
Nk∑
i=1

V 2
i,k , k = b, e. (13)

Proof: The condition for zero OPSC is given by γmin
b >

γmax
eq . Since γeq is obtained as a linear transformation over
γe, its maximum value occurs when γe = γmax

e , yielding
immediately (11). On the other hand, (13) is obtained by
calculating the expectation of the squared modulus of (4) and
applying the multinomial theorem.
Inspecting (11), we observe that higher values of Rs imply

a more restrictive perfect secrecy condition, i.e., if we aim
to increase the transmission rate, we need γmin

b to be larger.
This is also shown in Fig. 1, where increasing Rs shifts fγeq
to the right regardless of the considered fading distribution.
Moreover, as γ b becomes larger – or, equivalently, γ e takes
lower values – we can transmit at a faster secure rate while
keeping zero OPSC, which is a coherent result.

We also observe that considering a larger number of rays
in (4) has a significant impact in the OPSC. As Nk increases,
either in Bob’s or Eve’s channel, the interval [hmin

k , hmax
k ] gets

wider, causing the condition in (11) to be more restrictive.
In fact, if N → ∞, then (4) becomes a Gaussian ran-
dom variable, rendering the classical fading distributions and
implying that ‖hmin

k ‖ → 0 and ‖hmax
k ‖ → ∞, as predicted

by CLT-based channel modeling approaches.
It is important to note that, although Eve’s instantaneous

CSI is not required, we implicitly make some assumptions
regarding the distribution of he, i.e., the value of γmax

e ,
in order to apply the secrecy condition in (11). Because the
relative amplitudes of the waves arriving at Eve as well as
their average power are closely related to the geometry of the
scenario under analysis, this is equivalent to assume that Alice
has information over the propagation environment.

More specifically, some worst-case assumptions (equiva-
lent to having statistical knowledge of CSI without explicitly
requiring it) can be taken and still ensure perfect secrecy.
For instance, an upper bound for the average SNR at Eve
(γ e) can be determined by establishing exclusion areas (or
secure areas) around the transmitter in which no eavesdrop-
pers can be placed [35]. With the radius of the secure area,
it is possible to calculate the minimum pathloss to Eve and
therefore we can upper bound its average SNR. Note that the
use of exclusion areas is usual in the related literature (see,
e.g., [36], [37]). Similarly, the number of rays arriving at the
eavesdropper can be designed from the geometry of the prop-
agation scenario in case of highly directional transmissions,
or by properly controlling the propagation environment using,
e.g., large intelligent surfaces, which allow to modify at will
the phases of the incident waves [29]–[32]. Thus, although
technically no CSI may be available for a purely passive
eavesdropper, we can still design the transmission in order
to ensure perfect secrecy.

IV. SECURE TX OVER TWO-WAVE FADING
After formulating the conditions on which perfect secrecy
can be attained when considering ray-based fading channels,
we now analyze a simple, albeit illustrative, case by assuming
two dominant components arriving at both receiver ends. The
two-wave (or two ray) fading model [21], [38] arises when
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setting Nk = 2 in (4), i.e.

hk = V1,kejφ1,k + V2,kejφ2,k . (14)

This model is completely characterized by the parameter

1k =
2V1,kV2,k
V 2
1,k + V

2
2,k

, (15)

which measures the relative difference in amplitude between
the two waves. Hence, 1k = 1 implies that both rays have
exactly the same power, whilst 1k = 0 signifies that one of
the specular components in (14) vanishes.

With this consideration, the PDF and the CDF of the SNR
at Bob and Eve are written as [21], [39]

f twγk (γk ) =
1

πγ k

√
12
k − (1− γk/γ k )2

γmin
k ≤ γk ≤ γ

max
k ,

(16)

F tw
γk
(γk ) =

1
2
−

1
π
asin

(
1− γk/γ k

1k

)
(17)

where, as in the previous section, the subindex k = b, e
is used to distinguish between the parameters of Bob’s and
Eve’s channel distributions. The domain boundaries for each
distribution are calculated as in (12), yielding in this case

γmin
k = γ k (1−1k ), γmax

k = γ k (1+1k ), (18)

and therefore the condition for perfect secrecy stated in
Proposition 1 is expressed as

γ b >
2Rsγ e(1+1e)+ 2Rs − 1

1−1b
. (19)

Thus, despite the fact that Eve’s instantaneous CSI is
unkown at Alice, secrecy in the communication can be
ensured if the average SNR at Bob is above a certain thresh-
old. In case Alice does not have any statistical knowledge of
Eve’s channel, the transmission rate can be adapted based
on the worst-case in which 1e = 1. As previously indi-
cated, when the average SNR at Eve is unknown, it can
be upper-bounded by defining exclusion areas in which no
eavesdroppers are possible. Hence, even in this situation, the
perfect secrecy condition can be met, e.g., by a proper design
of the distance between the transmitter and the legitimate
receiver. After simple manipulations to (19), the largest con-
stant rate that ensures perfect secrecy is expressed as

Rmax
s =

[
log

(
γ b(1−1b)+ 1
γ e(1+1e)+ 1

)]+
. (20)

In fact, whenever Alice has perfect knowledge of Bob’s
CSI (instead of statistical knowledge only), it is possible to
adapt its transmission rate to Bob’s instantaneous CSI while
meeting the condition γb > γ e(1 + 1e), which yields the
following expression for the instantaneous secrecy capacity:

Cs =
[
log

(
γb + 1

γ e(1+1e)+ 1

)]+
≥ Rmax

s . (21)

The OPSC over two-wave fading is straightforwardly cal-
culated by introducing (16) and (17) in (8), leading to

Ptwout(Rs) =
1
πγ e

∫ γmax
e

γmin
e

F̂ tw
γb

(
2Rsγe + 2Rs − 1

)√
12
e − (1− γe/γ e)2

dγe (22)

with

F̂ tw
γk
(γ )

=


0, if γ < γmin

k

1
2
−

1
π
asin

(
1− γ /γ k
1k

)
, if γmin

k < γ < γmax
k

1, if γ > γmax
k ,

(23)

where the piecewise definition of F̂ tw
γk
(γ ) is a consequence of

the finite domain of F tw
γk
(γk ) in (17).

A simple and accurate approximation for the OPSC in (22)
can be obtained by applying quadrature methods. Note that
the integrand presents a singularity at γe = γmax

e , and thus we
must carefully choose the weights of the quadrature approx-
imation. Since the singularity is of the type (1 − x2)−1/2,
Chebyshev-Gauss’ method is the more appropriate [40, eq.
eq. (25.4.38)]. Therefore, by performing the change of vari-
ables (1 − γe/γ e)/1e = x and applying the aforementioned
quadrature technique, the outage probability is approximated
as

Ptwout(Rs) ≈
1
n

n∑
i=1

F̂ tw
γb

(
2Rs − 1

+ 2Rsγ e

[
1−1e cos

(
(2i− 1)π

2n

)])
, (24)

where n is the approximation order, reducing the integral to
a finite sum of evaluations of F tw

γb
(·). In most cases, (24) pro-

vides accurate approximations even for relatively low values
of n, e.g., n = 10, and it is faster to compute than (22). Note,
however, than (22) can also be computed without difficulties
using standard calculation software such as Matlab or Math-
ematica.

The outage probability in (22) in terms of Rs and γ b
is depicted in Figs. 2 and 3, respectively. For the sake of
comparison, Pout over CLT based channels (in this case,
Rayleigh fading) is also shown as a reference. We observe
that, for a given Rs < Rmax

s , the outage probability is exactly
zero when considering a finite number of reflections, whilst
this behavior is not reproduced when assuming a fading
model arising from the CLT. Specifically, we observe that
the asymptotic decay for the Rayleigh case (i.e., the negative
slope of the OPSC as γ b grows) is that of a diversity order
equal to one. Conversely, when considering the ray-based
alternatives here analyzed the OPSC abrutly drops for the
limit value of γ b given by (18), which can be regarded as
an infinite diversity order. As1b→ 1, we see from (19) that
γmin
b → 0 and hence perfect secrecy cannot be achieved for

operational values of γ b. Interestingly, the asymptotic decay
for this particular configuration on which 1b = 1 is that
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FIGURE 2. Impact of CLT based fading models (Rayleigh) and ray-based
ones (Two-wave) in the OPSC for different values of channel parameters
and average SNRs. For all traces, γ e = 0 dB. Solid lines correspond to
theoretical calculations whilst markers correspond to MC simulations.

FIGURE 3. OPSC in terms of γ b for different values of channel parameters
and distinct fading models. For all traces γ e = 7 dB. Solid lines correspond
to theoretical calculations whilst markers correspond to MC simulations.
Dashdotted vertical lines correspond to the asymptotic OPSC.

of a diversity order equal to 1/2 [39] i.e., lower than in the
Rayleigh case, as shown in Fig. 4.

We also notice that the parameter 1k plays an important
role in the OPSC; as 1k increases, i.e., the power of the
rays becomes more similar in either Bob’s or Eve’s channels,
Rmax
s takes lower values. Then, larger values of 1k render a

lower achievable transmission rate or, equivalently, require
higher values of the average SNR at Bob for the same Rs.
It is interesting to pay attention to the limit values of both1e

FIGURE 4. OPSC in terms of the ratio γ b/γ b for different channel
conditions and distinct values of channel parameters and average SNRs.
For all traces, Rs = 1.5. Solid lines correspond to theoretical calculations
whilst markers correspond to MC simulations. Dashdotted vertical lines
correspond to the asymptotic OPSC.

and 1b. While setting 1e = 1 still allows to achieve perfect
secrecy, substituting 1b = 1 in (20) makes Rmax

s = 0, as
stated before.

Finally, it is important to note that the OPSC does not
only depend on the relative values between γ b and γ e, but
also on the absolute ones. This is clearly observed from the
perfect secrecy condition in (11) by dividing both terms of the
inequality by γ e. Specifically, the value of γ b/γ e required to
achieve perfect secrecy decreases as γ e increases, as shown
in Fig. 4, where fixing γ e = 10 dB renders lower outage
probabilities than the case γ e = 0 dB for the same ratio
γ b/γ e.

V. SECURE AND RELIABLE TX OVER TWO-RAY FADING
Up to this point, we have considered the classical definition
of OPSC given in (3). However, this formulation does not
distinguish between outage events produced by a failure in
achieving perfect secrecy (Rs > Cs) or due to the fact that
Bob cannot decode the transmitted message (e.g., because its
instantaneous SNR drops below the minimum value required
for a reliable communication) [34]. Therefore, we revisit the
outage formulation in [34, Sec. III], according to which the
OPSC is defined as

Pout(Rs) , P {Rs > Cb − Ce | γb > γth} (25)

where γth ≥ 0 is the minimum SNR at Bob required for a
reliable communication. Because Bob is supposed to collab-
orate with Alice, then the latter can suspend the transmission
if γb < γth, since it would make no sense transmitting
when the legitimate receiver cannot decode themessage.With

Pout(Rs) =
1

1− Fγb (γth)

[∫
∞[
γth+1

2Rs
−1
]+ Fγb (2Rsγe + 2Rs − 1

)
fγe (γe) dγe

]
−

Fγb (γth)
[
1− Fγe

(
γth+1
2Rs − 1

)]
1− Fγb (γth)

. (26)
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FIGURE 5. Comparison between classical and alternative OPSC
formulation for different values of channel parameters and distinct SNR
thresholds. For all traces, γ e = 0 dB and 1e = 0.6. Solid lines correspond
to theoretical calculations whilst markers correspond to MC simulations.

the OPSC definition in (3), this situation would produce an
outage but, in fact, secrecy is not compromised since there
would not be any message transmission.

Therefore, introducing (2) in (25), Pout is rewritten as

Pout(Rs) =
P
{
γth < γb < 2Rsγe + 2Rs − 1

}
P{γb > γth}

, (27)

which, after some algebraic manipulations, leads to (26) (see
Appendix A), placed at the bottom of the previous page. Note
that (26) is valid for any arbitrary fading distribution, and
not only for ray-based models. In fact, specializing for the
Rayleigh distribution, (26) becomes [34, eq. (7)]. We can also
observe that, if γth = 0, then (27) becomes (7), since we
eliminate any reliability constraint.

Consider again the case of a finite number of reflections
arriving to the receiver, i.e., the channel gains follow a
ray-based distribution as in (4). Coming back to the geo-
metrical meaning of the OPSC, conditioning Pout to the
transmission event is equivalent to truncating the left tail of
fγb (γb) in Fig. 1. Hence, the perfect secrecy condition is now
formulated as

max{γmin
b , γth} > 2Rsγmax

e + 2Rs − 1, (28)

with γmin
b and γmax

e given in (12). Note that the condition
is less restrictive than that in Proposition 1, allowing us to
achieve perfect secrecy in those scenarios where γmin

b takes
lower values, i.e., γmin

b → 0. Thus, by properly choosing
γth, it is possible to ensure secrecy at the expense of a lower
transmission probability, which ultimately translates into a
reduced throughput.

This is represented in Fig. 5, where the classical (3) and
the alternative (25) definitions of OPSC are compared. The
channels gains are assumed to follow a two-wave distribution,
and therefore Ptwout is calculated by substituting (16) and (17)
in (26) and taking into account the boundaries of Fγk (γk ).

Let us first consider the case on which γ b = 7 dB and
1b = 0.4. We observe that, until Rs reaches a certain value,
γth < γmin

b and thus the transmission condition has no
impact on the OPSC, since it is always met. Naturally, as the
threshold increases, such limit value for Rs is reduced.

Regard now the case with γ b = 10 dB and 1b = 1.
As stated before, by choosing a sufficiently large threshold
value γth, we can ensure perfect secrecy even when 1b = 1
(or, equivalently, γmin

b = 0). However, increasing γth implies
a lower throughput, given by η = P{γb > γth}Rs.

VI. IMPACT OF THE NUMBER OF SCATTERERS
In the previous sections, we have assumed a two-wave distri-
bution for both Bob’s and Eve’s channel, i.e., Nk = 2 in (4).
Due to the clear impact of Nk in the perfect secrecy condition
stated in Proposition 1, we are now interested in analyzing
the consequences of having a larger number of reflections
arriving at the receiver. Specifically, two theoretical scenarios
are considered: (i) fixed average receive power and different
number of scatterers and (ii) number of scatterers as a design
parameter.

A. FIXED AVERAGE SNR AND DIFFERENT N
In this situation, an increased number of reflectors and scat-
terers renders a richer multipath propagation and, conse-
quently, larger values of both Nb and Ne, with Nb and Ne
denoting the number of rays in (4) for Bob’s and Eve’s chan-
nels, respectively. Hence, for some given γ b and γ e, our goal
is to determine the what extent the consideration of a larger
Nb and Ne impacts the secrecy performance. Since the limit
case of {Nb,Ne} → ∞ reduces to the Rayleigh fading case,
we expect that the perfect secrecy condition in Proposition 1
is not met beyond some limit values of {Nb,Ne}.
We now express hb and he as

hk = V1,kejφ1,k +
Nk∑
i=2

Vi,kejφi,k , k = e, b. (29)

with the amplitudes of the rays given by Vi,k = αi,kV1,k for
i = 2, . . . ,Nk , with 0 < αi,k < 1 and αi,k ≥ αj,k , ∀ i < j; i.e.,
the amplitude of the successive rays is expressed as relative
to the amplitude of the dominant component.

For simplicity, and to better visualize the impact of increas-
ing N , we consider again the classical outage formulation in
(7). Therefore, it is clear that increasing the number of waves
at reception makes the secrecy condition more restrictive.
On the one hand, if Nb increases, then γmin

b , which directly
depends on ‖hmin

b ‖ in (10), takes lower values. On the other
hand, γmax

e also rises with Ne.
The effect of increasing the number of rays is studied in

Fig. 6, where the OPSC is evaluated for different values of
N = Nb = Ne. We also set αi,k = α, which can be regarded
as a worst case situation in terms of secrecy performance. Due
to the mathematical complexity of the PDF of the ray-based
model in (4) when N > 3, which involves the integral of
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FIGURE 6. Impact of increasing the number of waves at both Eve and
Bob. hb and he are distributed according to (29) with α = 0.2 for Rs = 0.5
and α = 0.25 for Rs = 3. Also, Nb = Ne = N .

multiple Bessel’s functions [41], we resort on Monte Carlo
simulations for this section.

We observe in Fig. 6 that considering a larger number of
waves requires higher values of γ b to achieve the same outage
probability, for a fixed Rs. Moreover, the average SNR at
Bob needed to ensure perfect secrecy also changes with N ,
which is a coherent result sincewe are both reducing the value
of γmin

b and increasing γmax
e . Note that the relation between

the amplitudes Vi also plays a key role on achieving perfect
secrecy. For instance, in the case Rs = 3, in which α = 0.25,
we cannot ensure a secure transmission forN = 5, in contrast
to the case Rs = 0.5 and α = 0.2. This is explained as
follows: since we need γmin

b > γmax
e , this translates into

V1,b −
Nb∑
i=2

Vi,b > 0. (30)

Thus, considering the relation between amplitudes as in
(29), we have that α(Nb − 1) < 1. Hence, if α = 0.25
and N = 5, the condition is not met and therefore no perfect
secrecy can be ensured in this case.

B. DESIGNING N FOR SECRECY
Let us now move into the second scenario, in which we
assume that we are able to control the number of waves
arriving at the receiver ends, i.e., we can somehow eliminate
some of the rays by a proper design of the propagation
characteristics of the environment. To that end, the use of
LIS and RIS arises as a promising solution, since the phases
of the incident waves at each surface can be deliberately
modified [29]–[31]. Therefore, we could intentionally avoid
that certain rays arrive the receiver.

This has, obviously, a non-negligible impact on the receiver
power, since we are disregarding some components of the
channel and hence diminishing its average power. This
approach seems desirable for the eavesdropper channel, in the
sense that it degrades its average SNR. However, since
CSI needs to be known in order to properly configure the

FIGURE 7. Impact of controlling the number of waves arriving at Bob. The
wave amplitudes relation is given by (29) with αi,k = α = 0.2. The case
with power loss is compared with the theoretical case in which �b = �

and with that where Ne = Nb. For all the traces Rs has been fixed to
Rs = 1.

intelligent surfaces, we here consider the more realistic case
in which we can only manipulate the number of waves
arriving at the legitimate user, Bob, which is supposed to
collaborate with Alice. As we will later see, and despite being
somehow counterintuitive, reducing the number of rays also
turns out being beneficial for the legitimate channel even
though we are effectively decreasing the average SNR at
Bob. For this reason, we will specialize our study on the
consideration of a fixed number of rays for the eavesdropper
channel, and a successive reduction on the number of rays
received by Bob.

In order to characterize the SNR loss incurred by Bob,
we consider the SNRs at both Bob and Eve given by

γb = γ b
‖hb‖2

�
, γe = γ e

‖he‖2

�
, (31)

where he and hb are given as in (4) with Ne = N and
Nb < N , representing the reduced number of waves arriving
at Bob. The power loss is characterized by normalizing both
channels by4 � =

∑N
i=1 V

2
i . Thus, E[‖hb‖

2]/� < 1, which
is equivalent to scale γ b by a factor E[‖hb‖2]/� = �b/�.

With this consideration, the OPSC is plotted in Fig. 7 for
different values of Nb but maintaining the number of waves
at Eve. For the sake of comparison, we also include the case
of the first scenario in which Nb = Ne and �b = � and the
case �b = � but Nb < Ne. We observe that, despite the fact
that Bob’s average SNR is lowered, having a reduced number
of waves arriving at Bob is beneficial from a secrecy perspec-
tive. Note that the impact of eliminating rays on the legitimate
channel (and therefore having a lower received power) is less
detrimental as Nb approaches Ne. In fact, considering hk as in
(29) with αi,k = α ∀ i and k = b, e, the power loss can be
written as

�b

�
=

1+ α2(Nb − 1)
1+ α2(Ne − 1)

. (32)

4Note that we are assuming Vi,b = Vi,e ∀ i.
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Then, from (32), it is clear that such loss reduces as Nb
increases, being equal to one if Nb = Ne, i.e., if we do not
eliminate any ray.
Finally, we also note that the most favorable case is that

where both Bob and Eve receive a small number of waves,
which confirms the beneficial role of a reduced number of
scatterers for wireless physical layer security.

VII. CONCLUSION
In this work, we provided a new look at wireless PLS, backing
off from the classical CLT assumption associated to fading
and explicitly accounting for the effect of considering a finite
number of multipath waves arriving the receiver ends. To the
best of our knowledge, we showed for the first time that it is
possible to achieve perfect secrecy even when the eavesdrop-
per’s CSI is unknown at the transmitter.

We also showed that a rich multipath propagation (i.e.,
either a large number of specular reflections, the presence of
diffuse scatterers that generate numerous multipath waves,
or the consideration of double-bounce effects) has a neg-
ative impact on the OPSC, so that those propagation con-
ditions, which imply a reduced number of waves arriving
at the receiver ends, are instrumental to achieving perfect
secrecy. Specifically, under ray-based propagation condi-
tions, we proved that perfect secrecy can be achieved if the
average SNR at the receiver is above a certain threshold,
which depends on the number of rays present on each link
and their relative amplitudes. This somehow contradicts the
common knowledge that fading is beneficial for physical
layer security; this assert is restricted to those situations on
which the legitimate channel is more degraded that the eaves-
dropper’s counterpart (and hence PLS is not possible in such
case in the absence of fading), or when Eve’s instantaneous
CSI is available at Alice.

The consideration of a strong dominant specular compo-
nent (i.e., larger than the remaining aggregate waves) is the
key factor to enable perfect secrecy.We also showed that if the
amplitudes of these remaining aggregate waves are equal or
larger than that of the dominant component, then ray-based
fading models are no longer beneficial from a secrecy
point of view and the secrecy performance metrics obtained
exhibit a similar behavior as those obtained through CLT
approaches. Besides, incorporating a reliability constraint
in the OPSC definition allows for improving the secrecy
performance.

Finally, we also pointed out that the ability of controlling
the propagation environment in order to reduce the number of
waves arriving at the legitimate receiver is also beneficial for
PLS. This opens up the possibility of using LIS to improve
secrecy in a complete different way as those suggested in the
literature, i.e., to eliminate reflections instead of for maximiz-
ing the SNR at Bob [42].
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APPENDIX A PROOF OF EQ. (26)
Conditioned on γe, (27) is written in terms of the CDF of γb
as

Pout(Rs|γe) =
Fγb

(
2Rsγe + 2Rs − 1

)
− Fγb (γth)

1− Fγb (γth)
. (33)

In order to obtain the unconditioned outage probability,
we need to average over all possible values of γe taking into
account that, due to the reliability condition,

2Rsγe + 2Rs − 1 > γth. (34)

Therefore, Pout is calculated as

Pout(Rs) =
∫
∞[
γth+1

2Rs
−1
]+ Pout(Rs|γe)fγe (γe) dγe, (35)

where fγe (γe) is the PDF of Eve’s SNR. Performing some
algebraic manipulations to (35) immediately yields (26).
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