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Natural convective flow and heat transfer on unconfined isothermal zigzag-shaped
ribbed vertical surfaces

J. Hærviga, H. Sørensena

aAalborg University, Department of Energy Technology, Pontoppidanstræde 111, DK-9220 Aalborg, Denmark

Abstract

Natural convective heat transfer is commonly used as heat transfer mechanism in applications with low heat flux due
to its reliability and cost effectiveness. In this study, we introduce zigzag-shaped ribs to vertical, isothermal, heated
surfaces with the purpose of increasing natural convective heat transfer. The ribs are characterised by a rib height h,
rib length p and vertical pitch distance L. We perform numerical simulations using the Boussinesq approximation by
prescribing a linear density-temperature relation and investigate how changes in rib length p/L, rib height h/L affect
heat transfer at GrL = 105 and GrL = 106 at Pr = 0.71.

The results show how geometric variations affect heat transfer locally. Generally, local heat transfer increases along
each outward-facing section and peaks at the tip of each rib. In the limiting case when surface approaches a forward
facing step (e.g. p/L = 1), a significant decrease in heat transfer is observed on the horizontal section.

A peak in heat transfer is observed for geometries with high rib lengths p/L = 0.9, where the surface-averaged Nusselt
number is increased by 4.43% compared to the flat surface. This increases to 11.60% when correcting for the increase in
surface area.

Keywords: Heat transfer, Natural convection, Zigzag shaped surface, Laminar flow, Geometric variations, Isothermal
surface

1. Introduction1

Natural convection as heat transfer mechanism has2

many uses because of its simplicity and lack of additional3

components such as fan or pump, which ensures reliable4

operation over extended periods. Even though much5

research has been devoted to mixed convection [1–3],6

relatively few studies focus solely on enhancing natural7

convection by geometrical changes in surface geometry.8

Therefore further studies on pure natural convection9

are essential for critical applications where the added10

maintenance and risk of failure associated with a fan11

or pump is crucial. Commonly, heat sinks that utilise12

natural convection are designed with multiple straight13

simple fins with the purpose of increasing the overall14

surface area and therefore heat transfer rate. Relatively15

few studies focus on how surface alterations and if16

such alterations actually the increase heat transfer rate17

remain relatively scarce. In some circumstances, such as18

faces of buildings and electronic circuit boards, surface19

protrusions exist naturally. In other applications such20

as heat sinks, there are opportunities to alter surface21

geometries for higher heat transfer rates. In either case a22

better understanding of surface alterations affect natural23

convective heat transfer is therefore important.24

Email address: jah@et.aau.dk (J. Hærvig)

Park and Bergles [4], Joshi et al. [5] investigated25

experimentally how heat-generating protrusions of various26

size on vertical surfaces affect heat transfer characteristics.27

Bhavnani and Bergles [6] used a Mach-Zehnder28

interferometer (MZI) to experimentally investigate29

natural convective heat transfer from isothermal square30

ribs and steps on surfaces. Generally, square ribs were31

shown to decrease heat transfer when compared to a32

plain vertical surface, which was attributed the presence33

of stagnation zones just up- and downstream the ribs,34

which result in a thickening of the thermal boundary35

layer. Instead, an outward step-like surface with a series36

of vertical segments was introduced that successfully37

increased heat transfer.38

To decrease stagnation zones up- and downstream the39

ribs, Bhavnani and Bergles [6], Aydin [7], Tanda [8] suggest40

adding non-conductive square ribs to the heated surface.41

In general, studies agree that stagnation zones can be42

reduced in size but disagree on its effect on heat transfer.43

While Bhavnani and Bergles [6] report surface-averaged44

heat transfer enhancements up to 5%, the study by Tanda45

[8, 9, 10] suggests that only local enhancements in heat46

transfer can be obtained. As a result adding square ribs to47

surfaces are commonly reported to decrease heat transfer48

[11]. In all instances, the spacing between successive ribs49

should be chosen carefully to ensure that the inter-rib50

region with enhanced heat transfer is not offset by the51

inherent stagnation zones.52
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Dating back to the study by Yao [12], a number of53

studies on natural convection on vertical wavy surfaces54

have been published. Moulic and Yao [13, 14] did55

numerical simulations for wavy surface subject to a56

constant heat flux and found an overall decrease heat57

transfer compared to a smooth vertical surface. Molla58

et al. [15], Molla and Hossain [16] investigated both59

simple and more complex wavy surfaces with an additional60

harmonic. By varying both the wave amplitude of the61

fundamental wave and the harmonic, the study concludes62

that the heat transfer is more sensitive to the amplitude of63

the harmonic than the fundamental wave. In general the64

study by Yao [17] suggests the average Nusselt number to65

be lower for wavy surfaces than for vertical plane surfaces.66

However, when correcting for the increment in surface67

area, heat transfer rate is almost doubled compared to68

a vertical plane surface.69

The transition to turbulence in natural convective flows70

may significantly change heat transferred. The studies by71

Sharma et al. [18], Cimarelli and Angeli [19] and Qiao72

et al. [20] all focus on the route to turbulence and map73

the transition thoroughly but limit their studies to bare74

channels without surface alterations. However, as outlined75

by both Bhavnani and Bergles [21] and Yao [17] the76

presence of ribs may trigger the transition to turbulence77

to occur at lower Rayleigh numbers.78

As previous studies suggest, the stagnation zones being79

formed just up- and downstream ribs reduce local heat80

transfer. In the present study, we study zigzag-shaped81

surfaces (see figure 1), which have rib angles that are82

different from 90◦. As shown later, these zigzag shaped83

ribs changes how the flow separates and reattaches to the84

surface. Starting from a vertical plane surface, we show85

how different surface perturbations affect the buoyancy-86

driven flow and local heat transfer. It is worth noting87

that in the limit of p/L = 1, the geometry reduces to the88

forward-facing step documented by Hærvig et al. [22].89

2. Numerical details90

2.1. Governing equations and computational domain91

We limit our study to cases where β(Ts − T∞) ≪ 192

so that the Boussinesq approximation is valid and93

temperature variations only affect the governing equations94

through the gravity term in the y-momentum equation. In95

general, density-temperature relations can be described by96

a series of n terms:97

∆ρ

ρ0
=

n!

i=1

βi(T − T∞)i (1)

where ρ0 refers to the density at the reference98

temperature T∞. In this study a linear density-99

temperature relation (LDT) is assumed throughout the100

entire temperature range so that eq. (1) simply reduces101

to ∆ρ/ρ0 = β(T∞ − T ). Consequently, we treat the102
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Figure 1: Examples of zigzag ribbed surfaces (two successive ribs
shown) with increasing local rib length p/L from left to right and
increasing rib height h/L from top to bottom.

temperature T as a passive scalar and solve the time-103

dependent, incompressible continuity, momentum and104

temperature equations for buoyant flow:105

∇ · u = 0 (2)

∂u

∂t
+ (u ·∇)u = −1

ρ
∇p+ ν∇2u+ gβ (T − T∞) (3)

∂T

∂t
+ u ·∇T =

ν

Pr
∇2T (4)

where g is the gravity vector. The governing equations106

are discretised using the finite volume method and the107

second-order accurate Crank-Nicolson scheme is applied108

for temporal discretisation while second-order accurate109

central differencing is applied for spatial discretisation.110

The coupling between velocity and pressure is handled111

using the Pressure-Implicit with Splitting of Operators112

(PISO) algorithm [23] with the time step size dynamically113

being adjusted to ensure a maximum cell convective114

Courant number Co ≈ 1. Simulations are carried out115

using OpenFOAM 6 using a custom-built version of the116

buoyantBoussinesqPimpleFoam solver.117

Figure 2 gives an overview of the computational118

domain along with boundary conditions. In general, the119

boundary conditions shown in the figure are carefully120

chosen to ensure the buoyant flow being generated121

resembles that for truly unconfined surfaces. The zigzag-122

shaped ribbed surface is prescribed a constant wall123

temperature Ts. Below the heated wall, an adiabatic wall124

section (∂T/∂n = 0) with length 2L is added to ensure the125

boundary layer development on the heated section remains126

unaffected by the presence of domain boundaries. For the127
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same reason, an additional heated section with surface128

temperature Ts is added above the heated wall of interest.129

L

2L

2L

2L

T = T∞

uy = 0 if uy ≤ 0
∂u/∂n = 0 if uy > 0

Symmertry for u

T = T∞ if uy ≤ 0
∂T/∂n = 0 if uy > 0

u = 0 if uy ≤ 0
∂u/∂n = 0 if uy > 0

y∂T/∂n = 0

u = 0
T = Ts

T = T∞

∂u/∂n = 0

x

p

y∗

g

h

n

n

Figure 2: Overview of the geometry, computational domain and
boundary conditions. Results are reported for the wall section
coloured in light grey. The ribbed wall section is characterised
by pitch distance L, local rib length p and rib height h.
Furthermore, a local coordinate y∗ is defined along the surface so
that y∗ = L∗ =

!
p2 + h2 +

!
(L− p)2 + h2 at y = L.

2.2. Non-dimensionalisation130

For buoyancy driven flows with linear density-131

temperature relations, the problem is solely governed by132

the Grashof and Prandtl numbers:133

GrL =
gβ (Ts − T∞)L3

ν2
(5)

Pr =
ν

α
(6)

where β is the thermal expansion coefficient, Ts is surface134

temperature, T∞ is the fluid temperature unaffected by135

the presence of the wall and L is the vertical pitch distance136

between two successive ribs. For a plane wall we instead137

use the vertical coordinate y as reference length:138

Gry =
gβ (Ts − T∞) y3

ν2
(7)

Each rib is further geometrically characterised by a local139

rib length p and rib height h (see figure 2) forming the140

non-dimensional local rib length p/L and rib height h/L.141

Local heat transfer along the heated surface is reported by142

the local Nusselt number:143

NuL =
∂T

∂n

L

Ts − T∞
(8)

where ∂T/∂n denotes the local wall normal temperature144

gradient evaluated at the surface. For a plane wall it145

is convenient to use the vertical coordinate as reference146

length:147

Nuy =
∂T

∂n

y

Ts − T∞
(9)

To compare different surface geometries in terms of their148

enhancement of heat transfer mechanism, the surface-149

averaged Nusselt number used. This is defined as follows:150

NuL =

"
A
NuLdA"
A
dA

(10)

Heat transfer from ribbed surfaces can be increased151

by either changing the flow field and Consequently the152

temperature gradient at the surface or by increasing the153

surface area. To compare the surface geometries account154

for both factors when comparing the surface geometries,155

Nusselt numbers based on projected surface length are156

compared as well. The surface-averaged Nusselt number157

corrected to account for the increase is surface area NuL,c158

is related to the surface-averaged Nusselt number NuL by:159

NuL,c = NuL
A

Ap
(11)

where the actual surface area A is larger than the projected160

surface area Ap except for the plane wall where A = Ap.161

3. Grid and time dependence analysis162

To ensure the choice of boundary conditions resembles163

a truly unconfined flow and to quantify the effect of164

discretisation error, two measures are taken. First, the165

numerical code is verified by comparing local heat transfer166

on a vertical plate to the analytical solution by Ostrach [24]167

and Fevre [25]. Next, the dependency of grid resolution is168

examined for a ribbed surface. For a vertical plane wall169

the analytical solution by Ostrach [24] is given by:170

Nuy =

#
Gry
4

$1/4

g(Pr) (12)

with the fit for g(Pr) proposed by Fevre [25] to account171

for variations in Prandtl number:172

g(Pr) =
0.75Pr1/2

%
0.609 + 1.221Pr1/2 + 1.238Pr

&1/4
(13)

Figure 3 shows how the numerical simulation from the173

present study compares to the semi-analytical solution and174
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Figure 3: Numerical prediction of local Nusselt number Nuy as
function of local Grashof number Gry at Pr = 0.71 compared to the
semi-analytical solution by Ostrach [24] and Fevre [25] (eq. (12) and
(13) respectively) and the experiments by Bhavnani and Bergles [21].

the experiment by Bhavnani and Bergles [21]. As figure175

3 shows, the numerical results deviate slightly from the176

semi-analytical solution at lower Grashof numbers. This177

can be explained by heat diffusing upstream the heated178

section, which is not accounted for in the semi-analytical179

solution. As opposed to the semi-analytical solution,180

which assumes no heat diffuses upstream the heated plate,181

the simulations are carried out in a domain that extends a182

distance of 2L upstream the heated plate, which is found183

to be sufficient to make the results independent of domain184

size. As the flow develops along the heated plate, the185

local Nusselt number asymptotically approaches the semi-186

analytical solution, and at Gry = 108 the deviation from187

the semi-analytical solution is a mere 0.6%. To estimate188

the exact solution for an infinite fine mesh, Richardson189

extrapolation and the Grid Convergence Index (GCI)190

are used as suggested by Roache [26]. Using the GCI191

approach, an error band quantifying the uncertainty in192

the estimated exact value is obtained. This error band is193

given by NuL,e ± NuL,eGCI12, where subscript e denotes194

the estimated exact value and GCI12 denotes the GCI195

value obtained from the two finest meshes obtained from:196

GCI =
Fs|ε|
rp − 1

(14)

where Fs is a safety factor commonly chosen to be be197

1.25 as suggested by Roache [26], ε is the relative error198

between the two grids, r is the refinement ratio and p is199

the order of convergence. Figure 4 shows the sensitivity200

of grid resolution on the surface-averaged Nusselt number201

along with the extrapolated value for an infinite fine mesh.202

The figure shows that asymptotic behaviour is observed203

for grids with more than 141 cells along the surface of204

a rib. Furthermore, the figure suggests the grid with 141205

cells to be within the error band while the surface-averaged206

Nusselt number deviates 0.3% from the extrapolated exact207

value For this mesh, the wall-adjacent cells are placed at208

50 100 150 200 250 300
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Figure 4: Sensitivity of changes in grid resolution on the surface-
averaged Nusselt number NuL for GrL = 106 and Pr = 0.71 on a
ribbed surface with p/L = 0.8 and h/L = 1/5. The error band is
based on a safety factor Fs = 1.25.

2.5 · 10−3/L and successive cell layers grow with 2.5% in209

the direction perpendicular to the the wall.210

Furthermore, as pointed out in previous studies by211

Bhavnani and Bergles [21] and Yao [17], ribbed surfaces212

may trigger the transition to turbulence to occur at a213

lower Grashof number. As such all simulations in the214

present study are run as transient to resolve any transient215

phenomenon in the flow. Figure 5 shows a typical example216

of time convergence of the surface-averaged Nusselt217

number. As figure 5 shows, the simulation converges
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Figure 5: Time-history of the surface-averaged Nusselt number NuL
for GrL = 105, Pr = 0.71 with rib length p/L = 0.8 and rib height
h/L = 1/8.

218

towards a steady solution where no transients are observed219

in the flow field. In the remainder of this study, only time-220

converged results are reported. Furthermore, a domain221

independence analysis is carried out to ensure that the222

width of the domain being 2L is sufficient to make the223

results independent of the domain size.224
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4. Results and discussion225

In this section results are presented. First, our226

discussion is focused on how geometric variations affect227

the flow and temperature fields and consequently the local228

Nusselt number along the ribbed surfaces. Next, the229

surface-averaged Nusselt numbers are compared for the230

different surfaces and compared to the flat vertical surface,231

which is used as reference geometry.232

4.1. Variations in rib length233

Figure 6 shows how streamlines (subfigure 1-4) and234

the temperature fields (subfigure 5-8) are affected when235

the rib length p/L is varied between 0.3, 0.6, 0.9 and236

1.0. Figure 7 shows the corresponding local Nusselt237

numbers as function of vertical coordinate y/L. For all rib238

lengths a local decrease in heat transfer is observed at the239

innermost points located at y/L = p/L, y/L = 1 + p/L240

and y/L = 2 + p/L explained by a thickening of the241

thermal boundary layer in these regions. As the figure242

shows, higher values of p/L cause this effect to become243

increasingly more pronounced. In the limit of p/L = 1.0,244

corresponding to a forward facing step similar to the one245

investigated by Hærvig et al. [22], the horizontal section246

causes the stagnation zone at the innermost point to247

significantly increase in size. After the innermost point248

at y/L = p/L (e.g. the outward-facing sections), local249

heat transfer is increased compared to the plane vertical250

surface. In all cases local heat transfer peaks at the rib251

tip, due to a significant thinning of the thermal boundary252

layer. This is also evident from subfigure 4-6 in figure253

6, which shows the temperature fields. Again, this effect254

is more pronounced for higher p/L-ratios. For all p/L-255

ratios investigated, local heat transfer peaks at the rib256

tips. After the rib tip, local heat transfer again attains257

values below the plane vertical surface. The drop in local258

heat transfer right after the rib tip is more pronounced259

for higher rib lengths and the least pronounced for low rib260

lengths. One exception is the limiting rib with p/L = 1,261

which experiences a more significant drop in heat transfer262

at the innermost point. Figure 8 gives an overview of the263

local heat transfer using surface coordinates y∗ instead264

of vertical coordinates y. As shown in figure 8 for the265

surface with p/L = 1, the local Nusselt number is lowest266

at the innermost points and increases on horizontal section267

towards the rib tip where the highest heat transfer is268

observed.269

4.2. Variations in rib height270

Next, the variations in rib height are introduced for271

a constant rib length. Figure 9 shows how stream lines272

(subfigure 1-4) and temperature fields (subfigure 5-8) are273

affected by variations in rib height from h/L = 1/32274

to h/L = 1/8. Subfigure 1-4 in figure 9 show how275

streamlines are affected by variations in rib height. As276

the rib height increases from h/L = 1/32 to h/L = 1/8,277

the low velocity stagnation regions at the innermost point278

and just downstream the rib tip increase in size. This279

is evident from subfigure 4-6, which shows a thickening280

of the thermal boundary layer and in turn yields lower281

local heat transfer rate in this region. Figure 10 shows282

the effect on the local heat transfer of altering the rib283

height for a fixed rib length. As seen in the figure, local284

heat transfer decreases in the region around the innermost285

point (in this case y∗/L∗ ≈ 0.8) and just downstream286

the rib tip for higher rib heights. On the outward-facing287

section between y∗/L∗ ≈ 0.8 and y∗/L∗ = 1.0, local heat288

transfer is significantly increased compared to the vertical289

plate. This effect is again increasingly more pronounced290

for higher rib heights. Downstream the rib tip, we again291

observe a local decrease in local heat transfer caused by292

a stagnation region. After a certain distance downstream293

the rib tip, the boundary layer again reattaches to the294

surface and the local heat transfer rate increases.295

4.3. Variation in Grashof number296

The Grashof number is varied to investigate the297

relative importance of buoyancy and viscous forces when298

introduction zigzag-shaped ribs. Two Grashof numbers of299

105 and 106 are simulated, which both represent typical300

values used for cooling applications. Figure 11 shows301

how changes in rib length affect the local Nusselt number302

along the surface. The tendency for the local Nusselt303

number obtained along the ribbed surface for a higher304

Grashof number of GrL = 106 is similar to that obtained305

for GrL = 105. Again, stagnation regions are present306

at the innermost points on the rib surface resulting in307

a decrease in local heat transfer. On the outward-facing308

section and at the rib tip, local heat transfer is significantly309

increased compared to the flat vertical plate. Heat transfer310

in the region downstream the rib tip is again dominated by311

stagnation region causing a decrease in local heat transfer.312

However, for GrL = 106 compared to GrL = 105, we313

observe an increase in local heat transfer at the location314

where the flow reattaches to the surface. This effect is315

even more pronounced after the second rib tip around316

y∗/L∗ ≈ 2.4, where the surface with p/L = 0.9 shows317

an increase of approximately 11% compared to the flat318

vertical plate.319

4.4. Surface-averaged heat transfer320

Surface-averaged Nusselt numbers are compared for321

the different geometric variations. All the numbers are322

listed in table A.1 in Appendix A. Figure 12 gives an323

overview of the results in terms of relative difference324

compared to the flat vertical surface. As shown in325

the figure, only small enhancements in surface-averaged326

Nusselt number are generally obtained for the different327

geometries. As expected, the increase in surface-averaged328

Nusselt number approaches 0 as h/L approaches 0. In329

general, for all rib heights the highest increase in surface-330

averaged Nusselt number is observed for either a low rib331

length or a rib length just below p/L = 1. In the limit332
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Figure 6: Subfigure 1-4 show streamlines and subfigure 5-8 show the temperature field θ = (T − T∞)/(Ts − T∞) with isotherms for surfaces
with p/L = 0.3, p/L = 0.6, p/L = 0.9 and p/L = 1.0 for a fixed rib length h/L = 1/8, Grashof number GrL = 105 and Prandtl number
Pr = 0.71.
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Figure 7: Local Nusselt number NuL as function of vertical distance
for various rib lengths at GrL = 105, Pr = 0.71 and at a fixed rib
height h/L = 1/8.

when p/L = 1 a significant drop in surface-averaged333

Nusselt number is observed. The drop becomes more334

significant for higher values of rib height and the surface-335

averaged Nusselt number is decreased compared to the flat336

vertical surface.337

The ribbed surfaces have a higher surface area than338

the plain surface. Figure 13 shows the relative difference339

in surface-averaged Nusselt number when the results are340
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Figure 8: Local Nusselt number NuL as function of local coordinate
along the wall (see figure 2) for various rib lengths at GrL = 105,
Pr = 0.71 and at a fixed rib height h/L = 1/8.

scaled according to (11) to account for the difference in341

surface area. As shown in the figure, the peaks observed342

at low and high rib heights of p/L = 0.3 and p/L =343

0.9 respectively become even more pronounced when the344

correction for the increase in surface area is applied. The345

highest increase in surface-averaged Nusselt number after346

correcting for the increase in surface area is observed for a347

surface with a combination of high rib length and height348
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Figure 9: Subfigure 1-4 show streamlines and subfigure 5-8 show the temperature field θ = (T − T∞)/(Ts − T∞) and isotherms for surfaces
with h/L = 1/8, h/L = 1/16, h/L = 1/24 and h/L = 1/32 for a fixed rib length p/L = 0.8, Grashof number GrL = 105 and Prandtl number
Pr = 0.71.
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Figure 10: Local Nusselt number NuL for various rib heights at
GrL = 105, Pr = 0.71 and at a fixed rib length p/L = 0.8.

of p/L = 0.9 and h/L = 1/8 respectively. Here the zigzag-349

shaped shaped surface perform 11.60% better than the350

vertical flat plate. As figure 13 shows, the heat transfer351

rate is significantly increased just upstream the rib tip.352

5. Conclusions353

The possibility of enhancing natural convective heat354

transfer on vertical isothermal surfaces was examined.355
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Figure 11: Local Nusselt number NuL = (∂T/∂n)L/(Ts − T∞) for
various rib lengths at GrL = 106, Pr = 0.71 and at a fixed rib height
h/L = 1/8.

Unlike previous work dealing mostly with sinusoidal356

surfaces or square ribs, we introduce zigzag-shaped357

surfaces to circumvent some of the drawbacks mentioned358

in previous work. After validating the numerical results359

obtained in the limiting case of a vertical flat plate, we360

varied the rib length p/L, rib height h/L for Grashof361

numbers GrL = gβ (Ts − T∞)L3/ν2 of 105 and 106 at Pr =362

0.71. Summing up, the main findings in this study were:363
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Figure 12: Relative difference in surface-averaged Nusselt number at
GrL = 105 and Pr = 0.71 compared to the flat vertical surface under
similar conditions.
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Figure 13: Relative difference in surface-averaged Nusselt number
corrected for the increase in surface area for ribbed surfaces at GrL =
105 and Pr = 0.71 compared to the flat vertical surface under similar
conditions. Refer to equation (11) for the correction.

• Natural convective heat transfer may be increased by364

adding zigzag-shaped ribs to vertical surfaces. For365

a rib with p/L = 0.9 and h/L = 1/8 an increase366

in surface-averaged Nusselt number of 4.43% and367

4.94% is observed for GrL = 105 and GrL = 106368

respectively. These numbers increase to 11.60% and369

12.15% when the total heat transfer is considered370

by correcting for the increase in surface area for the371

ribbed surfaces.372

• The selection of rib length p/L and rib height h/L is373

critical and if not chosen carefully the zigzag shaped374

ribs may eventually decrease the overall heat transfer375

on the surface compared to a plane vertical surface.376

• Ribs with horizontal sections (e.g. p/L = 1) should377

be avoided due to the inherent stagnation regions378

that limit heat transfer in these regions. Instead,379

horizontal sections should at angled slightly (e.g.380

p/L = 0.9) to circumvent the decrease in local heat381

transfer in these regions.382

• A local peak in surface-averaged Nusselt number is383

observed for either a low rib length of p/L = 0.3 or384

a high rib length p/L = 0.9. The ribs having lengths385

between p/L = 0.3 and p/L = 0.9 are shown to386

perform worse in terms of heat transfer than either387

limit of p/L = 0.3 and p/L = 0.9.388

• By carefully monitoring local quantities in the389

present study, no transient phenomena were390

observed in the flow. Surfaces with slightly higher391

Grashof number or rib heights are expected to trigger392

the transition to turbulence.393

We suggest future studies on unconfined surface heat394

transfer enhancement to follow the numerical approach by395

Faghri and Asakot [27], Kelkar [28] and focus on a periodic396

section of the geometry. Furthermore, ribs are expected397

to trigger the transition to turbulence and hence mapping398

the transition to turbulence for a wide range of geometrical399

parameters and Grashof numbers is important.400
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Nomenclature

A Actual surface area L2

Ap Projected surface area L2

g Gravitational acceleration L T−2
GrL Local Grashof number 1
h Rib height (see figure 2) L
L Pitch distance (see figure 2) L
L∗ Pitch distance along surface L
n Wall normal unit vector (see figure 2) 1
NuL Local Nusselt 1
p Rib length (see figure 2) L
Pr Prandtl number 1
t Time T
t∗ Dimensionless time 1
T Temperature θ
Ts Surface temperature θ
T∞ Temperature unaffected by surface θ
u Velocity vector L T−1

x, y Global coordinate system L
y∗ Local coordinate along the surface L

α Thermal diffusivity L2 T−1

β Coefficient of volumetric expansion θ−1

ν Kinematic viscosity L2 T−1

θ Dimensionless temperature 1

Notation
x Surface averaging, x = A−1

"
A x dA

xc Surface area correction using A/Ap

Appendix A. Tabulated Data517
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Table A.1: Surface-averaged Nusselt numbers NuL, the relative difference from the flat surface and the relative difference from the flat surface
corrected for the area ratio. Refer to equation (11) for the surface area corrected Nusselt number NuL,c.

h/L p/L Pr
NuL (NuL −NuLflat)/NuL,flat (%) (NuL,c −NuLflat)/NuL,flat (%)

GrL = 105 GrL = 106 GrL = 105 GrL = 106 GrL = 105 GrL = 106

0 (flat surface) - 0.71 6.505 11.476 1.00 1.00 1.00 1.00
1/8 0.3 0.71 6.561 11.604 0.85 1.11 4.49 4.75
1/16 0.3 0.71 6.520 11.534 0.23 0.50 1.14 1.41
1/24 0.3 0.71 6.504 11.508 -0.02 0.28 0.40 0.70
1/32 0.3 0.71 6.498 11.499 -0.01 0.19 0.12 0.42
1/8 0.4 0.71 6.542 11.580 0.57 0.90 3.79 4.13
1/16 0.4 0.71 6.514 11.522 0.13 0.40 0.93 1.20
1/24 0.4 0.71 6.500 11.502 -0.08 0.23 0.28 0.59
1/32 0.4 0.71 6.495 11.493 -0.16 0.15 0.04 0.35
1/8 0.5 0.71 6.534 11.579 0.45 0.85 3.54 3.95
1/16 0.5 0.71 6.508 11.517 0.04 0.35 0.80 1.12
1/24 0.5 0.71 6.497 11.501 -0.13 0.20 0.22 0.55
1/32 0.5 0.71 6.494 11.493 -0.18 0.14 0.01 0.33
1/8 0.6 0.71 6.538 11.602 0.50 0.89 3.72 4.12
1/16 0.6 0.71 6.505 11.521 0.00 0.36 0.79 1.16
1/24 0.6 0.71 6.496 11.499 -0.15 0.21 0.22 0.58
1/32 0.6 0.71 6.492 11.493 -0.21 0.14 -0.01 0.34
1/8 0.7 0.71 6.546 11.602 0.63 1.09 4.26 4.74
1/16 0.7 0.71 6.507 11.521 0.03 0.39 0.93 1.30
1/24 0.7 0.71 6.495 11.499 -0.16 0.20 0.26 0.62
1/32 0.7 0.71 6.490 11.493 -0.23 0.14 0.00 0.37
1/8 0.8 0.71 6.588 11.674 1.27 1.72 5.89 6.35
1/16 0.8 0.71 6.512 11.534 0.10 0.50 1.28 1.69
1/24 0.8 0.71 6.496 11.507 -0.13 0.27 0.41 0.81
1/32 0.8 0.71 6.489 11.494 -0.24 0.15 0.06 0.45
1/8 0.9 0.71 6.793 12.044 4.43 4.94 11.60 12.15
1/16 0.9 0.71 6.549 11.609 0.67 1.16 2.67 3.16
1/24 0.9 0.71 6.511 11.532 0.09 0.48 1.03 1.43
1/32 0.9 0.71 6.496 11.506 -0.14 0.26 0.38 0.78
1/8 1.0 0.71 5.641 9.926 -13.28 -13.51 -1.77 -2.03
1/16 1.0 0.71 6.091 10.662 -6.37 -7.10 -0.38 -1.16
1/24 1.0 0.71 6.262 10.981 -3.74 -4.32 0.38 -0.22
1/32 1.0 0.71 6.354 11.167 -2.33 -2.69 0.75 0.37

10


