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Abstract— This paper presents the utilization of discontinuous
PWM modulation for the condition monitoring of SiC power
MOSFETs switching at high switching frequencies in a three-
phase inverter prototype. Due to the settling time imposed by the
monitoring system, accurate measurements require low switching
frequency and high modulation indexes when monitoring. To
overcome these limitations, a discontinuous PWM modulation
strategy is proposed. This way, the monitored device does not
switch during certain time, and hence the accuracy of the
measurements is not compromised. The effect of the alteration of
the modulation is analyzed in terms of power losses and current
ripple, comparing the traditional with the proposed modulation.
Moreover, online monitoring results performed in a SiC-based
inverter prototype in different operating points are presented.
An RDS-based thermal model is presented in order to estimate
online the junction temperature.

I. INTRODUCTION

Nowadays, the integration of wide-bandgap (WBG) semi-
conductor devices in power electronics industry is experi-
encing a huge increase. The improved properties offered by
materials such as SiC and GaN compared with those of
Si [1], like higher electric field, electron velocity and high
temperature operation, allow to obtain better semiconductor
devices that lead to more efficient and smaller power electronic
converters. Regarding SiC devices, their enhanced perfor-
mance has favoured its industrial introduction, especially in
high-power applications. In these applications, such as traction
or renewable energy generation, the improvements in terms of
the reduction of volume and increase of switching frequency
and efficiency are even more evident [2], [3], [4].

However, the lack of maturity of these devices and the short
experience with them in in-field conditions cause uncertainty
regarding their long-term degradation. In order to overcome
these issues, condition monitoring has been proposed as a
way to predict failures and enhance the reliability of power
electronics systems [5]. A recent survey among industry
experts recognised condition monitoring as a key method to
achieve a higher reliability in power converters [6]. There,
power modules and electrolytic capacitors were considered as
the components most susceptible to failure, while condition
monitoring was identified as an interesting trend to improve
system reliability. By employing condition monitoring, main-
tenance can be schedule when required. Moreover, active

thermal control techniques can be implemented in order to
reduce degradation and extend the useful lifetime [7].

Package-related failures are considered the limiting factor to
increase the lifetime of power modules [8]. For IGBT power
modules, bond-wire and solder joints degradation are the two
most relevant failure mechanisms [9]. Both are caused by the
thermomechanical stress caused by the power losses generated
in the semiconductors [10]. Since the packaging employed
for IGBTs is similar to that of SiC power modules, similar
wear-out failures can be expected. Moreover, a comparison
between the fatigue stress in a Si and a SiC power module
was presented in [11] for the same electrical ratings and
temperature profiles. The study concluded that a higher stress
and theremore lower lifetimes is expected in SiC power
modules due to the mechanical properties of SiC. A number
of condition monitoring techniques have been presented in
order to evaluate the state-of-health of the semiconductors
[12]. However, it is often difficult to diagnose the root-cause of
degradation, since different failure mechanism have the same
failure effect.

Condition monitoring usually requires dedicated circuits,
which have to reduce noise and measurement errors [13],
[14]. Furthermore, the monitoring system is usually device-
specific, since the damage-sensitive monitored parameters are
influenced by the packaging and the internal layout of the
module. Moreover, the monitoring circuit must be easily
integrable in the converter, in order to be implemented in
an industrial product [15]. This implies that the system must
be able to perform online measurements without interfering
on the regular operation of the converter. Furthermore, the
monitoring system must not compromise the overall system
reliability. Although several monitoring systems have been
proposed in the literature, only few of them have been tested
in in-field conditions [16], [17], [18], [19].

For those single-chip power modules with an auxiliary
source available for control purposes, it was proposed in [20]
a technique to predict the junction temperature of the Device
Under Test (DUT) independently of the degradation on the
bond wires. The mentioned technique consists in the use of
the on-state resistance as a Temperature Sensitive Electrical
Parameter (TSEP) [14], [21]. This is obtained by monitoring
the on-state voltage between the drain and auxiliary source
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TABLE I
PROTOTYPE SPECIFICATIONS.

Three Phase Inverter

Power Module Wolfspeed CCS050M12CM2
DC-Link Voltage 300 V
DC-Link Capacitance 49µF
LFilter 2.4 mH
RLoad 40 Ω
Output Frequency 50 Hz

VDSaux
and the drain current ID. However, the monitoring

requires certain minimum on-state times in order to work
properly. This fact limits the maximum switching frequency
that can be achieved by the DUT, which in turn limits the
potential benefits of SiC. Similar issues have been found in
other publications [18], [22].

To overcome the above limitation, a discontinuous modu-
lation during a fundamental period of the modulation signal
could be implemented for monitoring. The use of discon-
tinuous pulse-width modulation (DPWM) has already been
proposed for different purposes, being it popular due to
the reduction of switching losses. This modulation has been
employed to reduce thermal stress and enhance the lifetime
[23], [24], [25] or to achieve higher efficiencies or power
densities [26], [27], [28].

In this paper, the use of a discontinuous modulation for
the monitoring of power semiconductors in inverter systems
is proposed. This way, the measurements can be carried out
during normal operation of the converter without interruption
for monitoring purposes. This is mandatory in high power SiC-
based converters, which take advantaje of the high switching
frequency capabilities of SiC devices. The remainder of the
paper is arranged as follows. In Section II, the set-up employed
to perform the tests is described, along with the monito-
ring system and the DUT. Section III shows the limitation
of conventional monitoring system in comparison with the
proposed one. Section IV shows the experimental results at
different operating points. Section V finalizes the paper with
conclusions.

II. EXPERIMENTAL SET-UP

A. Prototype Specifications

In order to present the problem of monitoring at high
switching frequency, a SiC-based converter prototype has
been developed. In Figure 1(a), a functional diagram of the
prototype is shown, along with a photograph of the set-up in
Figure 1(b). Concretely, it consists of a three-phase inverter, in
which the Condition-Monitoring System (CMS), whose details
are described below, is implemented on one of the active
switches.

The power module employed is a six-pack 1200-V/50-
A MOSFET module, which consists on three half-bridge
branches in parallel. The module is mounted on a forced air-
cooled heatsink. For the control of the converter and the CMS,
a digital microcontroller is employed along with commercial
SiC gate drivers. Moreover, a DC-Link is sized in order to
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Fig. 1. Experimental set-up: (a) Functional diagram of the components of
the system. (b) Photograph of the prototype.

meet the desired performance. In Table I, the specifications of
the prototype are collected.

B. Condition Monitoring System

A condition-monitoring circuit is integrated in the described
platform in order to estimate the junction temperature of the
DUT. Several publications have proved that the on-state resis-
tance RDS is a valid TSEP for SiC MOSFETs [14], [21], [29].
Hence, it could be employed for the online estimation of the
junction temperature. This way, if an increase of the thermal
resistance of the module occurs as a consequence of the solder
degradation, the resulting higher junction temperature can be
predicted.

In Figure 2(a), the internal layout of the employed module
is presented. In order to determine its on-state resistance,
the voltage between Drain and Source VDS and the drain
current ID of the DUT have to be measured. However, if the
monitoring is performed between the AC and DC- terminals of
the module, it comprises the voltage drop in the power source
bond wires. Hence, the measurement would be sensitive to
bond wire failures [30]. To avoid the mix-up of failures, the
monitoring is carried out between the drain D and auxiliary
source Saux of the DUT. This way, the voltage drop in the
power source bond wires does not influence the measurement.

The monitoring of VDS is carried out employing the circuit
shown in Figure 2(b) [31]. This circuit is specially designed
for the monitoring of the on-state voltage of power semi-
conductors, since during the on-state of the DUT the current
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Fig. 2. (a) Internal layout of the power module and (b) circuit implementation
of the monitoring system for VDS.
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Fig. 3. Osciloscope measurement of the on-state voltage measured on the
module terminals VDS, the on-state voltage measured at the input of the
ADC VDS−ADC and circulating current ID after turn-on.

source polarizes the two diodes D1 and D2 through the power
semiconductor. An important fact is that the voltage through
the diodes has to be equal, hence both should be matched and
thermally-coupled to minimize the error. Moreover, during the
off-state, the current cannot flow through the power switch.
Hence, the diodes must be able to block the DC-Link voltage
to protect the rest of the monitoring system.

The ADC employed for the measurements has 16-bit with
input voltage of +-5V, resulting in a resolution of 0.15 mV.
Its output is transmitted through fiber optics to the digital
controller, and sent in a PC via RS-232. Regarding the
current, it is measured with a hall-effect current transducer.
The digital controller is in charge of synchronizing the PWM
and monitoring signals, in order to perform the monitoring
when desired.

The monitoring circuit requires a certain settling time in
order to get accurate measurements. This is shown in Figure 3,
where the drain-to-source voltage of the DUT VDS, the voltage
at the input of the ADC VDS−ADC and the drain current ID
measured with an oscilloscope are shown. The measurements
where captured with the DUT switching at 1 kHz with Sinu-
soidal PWM (SPWM) modulation and a unitary modulation
index. When the DUT is in the off-state, its drain to source
voltage is the DC-Link voltage, while at the input of the
ADC VDS−ADC rises to the saturation voltage of the Op-

Fig. 4. Results of the thermal characterization with DC-currents and RDS −
Tj correlation.

Amp. Furthermore, when the DUT is turned on, VDS falls to
the on-state voltage defined by the circulating current ID and
the junction temperature. Although an operational amplifier
with 9 MHz bandwidth has been employed for the circuit, the
current source, the parasitic capacitances of the diodes and
the ADC imposes a certain delay between the switch on of
the device and the measurement. This minimum on-state time
required for monitoring limits both the modulation index and
the switching frequency of the DUT, reducing the operating
points of the inverter and not taking advantage of the fast
switching capabilities of SiC.

C. Thermal Characterization of the DUT

In order to demonstrate the feasibility of employing the
on-state resistance as a TSEP, a thermal characterization test
employing DC-currents and an IR camera has been carried
out with the prototype. To do this, a sample module has been
opened and the soft-gel that covers the active switches and the
copper pad removed with a solvent. Afterwards, the module
has been painted with high-temperature black paint in order
to equalize the emissivity of the surface [32].

The test consisted on forcing DC-currents through the DUT
while a constant positive voltage (20 V) is applied to its gate
in order to dissipate conduction power losses [32]. This way, a
self-heating is generated in the DUT while measurements are
acquired [33], such as in a converter during operation. The
monitoring system monitors once a second both VDS and ID,
while the IR camera monitors the junction temperature.

The measurement results of the correlation between RDS

and Tj are shown in Figure 4. A curve-fitting has been
employed to extract the relation between them. A second-order
polynomial has been employed for the correlation, as the one
in [29], resulting in the expresion:

Tj = aR2
DS + bRDS + c (1)

where a = −1.4539 × 105, b = 1.5067 × 104 and c =
−252.1657 are the curve-fitting parameters.

It is worth to mention that this correlation will be dependent
on degradation state of the gate oxide of the DUT. Concretely,
significant threshold voltage VTH shifts have been reported due
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Fig. 5. Fundamental signals of the modulation strategies SPWM, SVPWM
and DPWM for different modulation indexes and monitoring instants (dashed
lines).

to bias temperature instabilities, caused by trapped charges in
the oxide and its interface [34]. In power MOSFETs, the RDS

is mainly composed of three terms: channel, JFET and epitax-
ial layer resistance. A positive shift in the threshold voltage of
a die results in a lower gate overdrive VGS − VTH, which is
further reflected in an increase of the channel resistance [35].
This matter is specially relevant for SiC MOSFETs, since for
these devices the channel resistance can make up to 50 % of
the total resistance [36].

Although results in [37] show the improvement of the gate
oxide ageing of SiC MOSFETs along generations, a change in
the temperature coefficients of (1) is expected [38]. In order
to overcome this issue, it is proposed in [39] an indicator of
the VTH shift based on the forward voltage of the body diode.
This technique could be implemented during maintenance or
in an intelligent gate-driver in order to detect the degradation
of the gate oxide and carry-out a recalibration.

III. MODULATION STRATEGIES

A. Monitoring with Standard Modulations SPWM and
SVPWM

As introduced above, the monitoring system limits the
maximum switching frequency that can be achieved. In order
to determine the settling time required, the prototype has been
tested with both standard SPWM and Space Vector PWM
(SVPMW) modulation strategies. Figure 5 shows the SPWM
and SVPWM fundamental signals employed to generate the
PWM commands in one of the half-bridge branches of the
three-phase inverter for various modulation indexes. Here, the
modulation index ma is defined as:

ma =
2V1
VDC

(2)

where VDC is the DC-Link voltage and V1 is the fundamental
peak phase voltage. The signals for the other two branches are
obtained by shifting the signal shown.

The digital controller is in charge of synchronizing the
measurement command signals and the PWM in such a way
that the monitoring is performed during the switching period
with the maximum on-state time. Therefore, the measurement

tdelay [�s]

V
D

S 
[V

] 
i D

 [A
]

R
D

S 
[m
�

]

Fig. 6. Measurement results of the on-state voltage VDS, the circulating
current ID and the resulting on-state resistance RDS with SPWM and
SVPWM modulations and varying tdelay after turn-on.

instants for each modulation (tSPWM, tSVPWM, tDPWM) are
shown in Figure 5, corresponding to the largest on-time of the
DUT.

In Figure 6, the results of the measurements with SPWM
and SVPWM, 2 kHz switching frequency and 0.95 modulation
index are presented. In these tests, the time delay (tdelay) is
defined as the elapsed time between the switch on of the
DUT (tON in Figure 3) and the measurement acquisition time
(tmeas):

tdelay = tmeas − tON (3)

This parameter is varied from 100 to 450 µs in order
to determine the minimum delay that ensures an accurate
measurement. Figure 6 shows that the current measurement
varies from 5 to 0 A during one switching period. This is
caused by the intentionally low switching frequency employed
for this test relative to the output phase inductance, as shown
in Figure 3. The low switching frequency ensures long on-state
periods to perform the measurements. As a consequence, the
calculated RDS at tdelay = 250µs has not been plotted in
Figure 6 since the current was too low for the calculation.
This can also be distinguished in the VDS measurements for
tdelay = 350 and 400µs, in which the current in SPWM is
higher than in SVPWM, resulting in higher VDS. However, the
measured RDS is not affected. Furthermore, the low bandwidth
of the monitoring system involves a settling time of at least
350 µs in order to obtain a stable measured RDS. This low
bandwidth reduces the commutation noise that could alter
the measurements. However, it limits the maximum switching
frequency to 3 kHz, far below the frequencies reported in
literature for SiC-based converters.

B. Proposed Modulation Strategy

In order to perform the measurements accurately, the modu-
lation strategy can be modified, with the objective of avoiding
the switching of the DUT and hence satisfy the required
settling time. For the presented three-phase inverter, this can
be obtained by implementing a Discontinuous PWM (DPWM)
modulation, in which each switch of the three phase inverter
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does not commutate during 1/6 of the fundamental period.
Although this modulation is not novel [40], to the authors
knowledge it has not been employed for condition monitoring
before.

Figure 5 shows the fundamental signal for this modulation.
As can be seen, between π/3 and 2π/3 the signal corres-
ponding to DPWM goes over 1 and hence during this time
the switch does not commute. This fact is independent of
the modulation index, allowing the CMS to measure at any
operating point of the converter.

As a consequence of altering the modulation strategy,
the output phase voltages are varied and so do the output
phase currents. However, since in the proposed modulation
a homopolar signal is injected, the fundamental current is
not affected. This is illustrated in Figure 7, where the phase
current of the prototype for SPWM, SVPWM and DPWM
modulations considering 50 Hz fundamental frequency, 50 kHz
switching frequency, unitary modulation index and a LFilter =
120µH are shown. A lower LFilter has been employed here
intentionally to increase the current ripple and show the
differences. It can be seen that the current ripple at the
switching frequencies is affected, but the fundamental phase
current remains the same.

In order to study the high-frequency ripple along the mo-
dulation index for each modulation strategy, the system is
simulated and the output current extracted. From the later, the
fundamental frequency harmonic is removed and the peak-to-
peak current ripple ∆ipp is determined. The results are shown
in Figure 8(a). It can be seen that the ripple current with
DPWM is higher than with the other choices for low- and
medium-modulation indexes. Concretely, the increase achieves
85 % with respect to SPWM for ma = 0.15 and 100 % with
respect to SVPWM for ma = 0.56. Moreover, for ma > 0.80
the resulting high frequency ripple current increase is below
40 %, while for ma > 0.94 it is equal for the three modulation
strategies.

As mentioned above and reported in the literature [41], [27],
[28], the use of DPWM is particularly targeted for the reduc-
tion of power losses. In order to quantify this advantage, the
power losses in the semiconductors PLoss have been calculated

�i
pp
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Fig. 8. Comparison of the studied modulation strategies at 50 kHz switching
frequency and varying modulation index in terms of (a) peak-to-peak high
frequency ripple current ∆ipp and (b) MOSFET power losses PLoss.

employing the available datasheet characteristics. Figure 8(b)
compares the results for the three studied modulations. While
losses in SPWM and SVPWM are similar, a drastic reduction
of the power losses is achieved with DPWM. This reduction
increases with the modulation index, being higher than 45 %
for ma > 0.9 The reason is the saturation of the modulation
signal during 1/6 of the fundamental period, shown in Fig. 5,
which causes that the switch does not switch during that time.
Hence, no switching losses are generated, which is highly
beneficial when switching at high frequencies.

IV. MONITORING RESULTS WITH DPWM

In this section, the results of the implementation of the
proposed DPWM in the presented prototype are shown. Figure
9 shows the measured output of the inverter prototype with
DPWM implemented: the output phase currents and the drain-
to-source voltage of the DUT. The measurements are presented
for low, medium and high (0.2, 0.6 and 1) modulation indexes
ma in Figures 9(a) to 9(c), respectively. It can be seen that the
VDS of the DUT is held in the DC-Link voltage during 1/6
of the fundamental period and at its saturation voltage during
another 1/6. Moreover, the filtered VDS reflect the employed
modulation signal.

The results of the high-frequency ripple current of the
proposed modulation have been compared with those of the
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Fig. 9. Inverter output phase current iphase and drain-to-source voltage VDS of the DUT with DPWM at switching frequency fsw = 50 kHz and different
modulation indexes ma: (a) ma = 0.2, (b) ma = 0.6, (c) ma = 1.0.

Fig. 10. Measurement results of the on-state resistance RDS and temperature
estimation Tj at switching frequency fsw = 50 kHz and varying the
modulation index.

TABLE II
RIPPLE CURRENT CALCULATION COMPARISON.

ma Calculated ∆ipp [A] Measured ∆ipp [A] Error [%]

0.2 5.79 5.11 11.72
0.6 10.47 10.19 2.64
1.0 9.31 8.93 4.06

prototype considering a LFilter = 120µH . Again, a lower
LFilter has been employed in order to increase the current
ripple and hence reduce measurement errors. From the phase
current measured with a current probe (Tektronix TCP305-A),
the FFT has been calculated, then the terms at the fundamental
frequency neglected and finally the current has been recon-
structed via inverse FFT to determine the high-frequency peak-
to-peak phase current ripple. The measured and calculated
results, presented in Table II, shown a maximum error of
11.72 % at low modulation index.

Monitoring tests have also been carried out in order to
verify the performance of the monitoring system at different
operating points. Figure 10 shows the measurement results of
the RDS acquired with the device switching at 50 kHz for
a modulation index range between 0.35 and 1. The results
show how the acquired RDS increases with the modulation
index due to the higher circulating current, which causes more

Fig. 11. Measurement results of the on-state resistance RDS and temperature
estimation Tj at modulation index ma = 0.95 and varying the switching
frequency.

Measured
Filtered

Fig. 12. Measurement results of the on-state resistance RDS and temperature
estimation Tj in long-term monitoring test at fsw = 50 kHz and ma =
0.95.

power losses. This is reflected in an increase of the junction
temperature, estimated through the correlation presented in (1).

Moreover, in Figure 11, the results of a test in which the
switching frequency is varied between 10 and 50 kHz while the
modulation index is maintained at ma = 0.95 are presented.
Again, increasing the switching frequency involves higher
power losses, resulting in higher measured RDS and higher
estimated junction temperatures.
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Finally, Figure 12 presents the long-term monitoring results
of the prototype tested at fsw = 50 kHz and ma = 0.95.
Here, measurements are acquired once per second, and then
translated to temperature. The temperature increase during the
test is patent.

V. CONCLUSIONS

This paper presents a condition-monitoring system based on
discontinuous PWM targeted for three-phase inverters operat-
ing at high switching frequencies. Employing this modulation,
the device does not switch during part of the fundamental
period of the inverter. This way, the output of the VDS

monitoring circuit is stable, and measurement accuracy is
not compromised. However, power losses and output phase
currents are also affected.

An inverter prototype has been designed, and the limitations
of the monitoring with regular modulations have been pre-
sented. A 350 µs minimum on-state time has been determined
for correct measurement, which limits the switching frequency
and modulation index of the DUT. The proposed modulation
is presented to overcome this issue and compared with the
previous modulations in terms of current ripple and power
losses. While high-frequency phase current ripple is increased,
the power losses are drastically reduced due to the absence of
commutation during 1/6 of the fundamental period.

Measurement results are presented with the proposed mo-
dulation in an inverter for various operating points. Moreover,
based on a thermal characterization test carried out on a sample
module, an online estimation of the junction temperature has
been carried out.
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