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Estimation of acoustic echoes using
expectation-maximization methods
Usama Saqib1,2†, Sharon Gannot1† and Jesper Rindom Jensen1*†

Abstract

Estimation problems like room geometry estimation and localization of acoustic reflectors are of great interest and
importance in robot and drone audition. Several methods for tackling these problems exist, but most of them rely on
information about times-of-arrival (TOAs) of the acoustic echoes. These need to be estimated in practice, which is a
difficult problem in itself, especially in robot applications which are characterized by high ego-noise. Moreover, even if
TOAs are successfully extracted, the difficult problem of echolabeling needs to be solved. In this paper, we propose
multiple expectation-maximization (EM) methods, for jointly estimating the TOAs and directions-of-arrival (DOA) of the
echoes, with a uniform circular array (UCA) and a loudspeaker in its center for probing the environment. The different
methods are derived to be optimal under different noise conditions. The experimental results show that the proposed
methods outperform existing methods in terms of estimation accuracy in noisy conditions. For example, it can provide
accurate estimates at SNR of 10 dB lower compared to TOA extraction from room impulse responses, which is often
used. Furthermore, the results confirm that the proposed methods can account for scenarios with colored noise or
faulty microphones. Finally, we show the applicability of the proposedmethods in mapping of an indoor environment.

Keywords: TOA estimation, DOA estimation, Expectation-maximization, Active source localization, Robot/drone
audition, Prewhitening

1 Introduction
During the past decade, there has been an increased
research interest in robot and drone audition [1–3]. Hear-
ing capabilities enable robots to understand and interact
with humans [4]. Moreover, it has also been proven useful
for sensing the physical environment. For example, it can
be used for estimating the locations of acoustic sources,
the position of a robot or drone, and the positions of
acoustic reflectors and for inferring room geometry [5, 6].
Potentially, this can enable autonomous indoor operation
of robots and drones.
Some different approaches for tackling the above esti-

mation problems have already been considered. In a broad
sense, these can be classified as being either passive or
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active. The passive approach relies on using external
sound sources in the environment to conduct the local-
ization. Examples of such sources could be human speech,
noise from machinery, or ego-noise from other robots
or drones. This approach was, e.g., used for solving the
acoustic simultaneous localization and mapping (aSLAM)
problem [7–9]. With aSLAM, it is possible to estimate
the robot location relative to a number of passive acoustic
sources in its vicinity. One obvious advantage of such pas-
sive approaches is that they are non-intrusive since only
already existing sounds are used in the estimation. This
comes at a price, however, since many acoustic sources,
such as human speech, contains periods of inactivity,
which can lead to unreliable estimates. This is particu-
larly true with moving objects such as robots and drones.
Moreover, to facilitate autonomous indoor operation, it
is of great importance to also estimate the location of
acoustic reflectors, e.g., walls, which is difficult with the
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passive approach, where only relative timing information
is available.
The alternative, which we consider in this paper, is the

active approach. In this approach, one or more loudspeak-
ers are used to probe the environment using a known sig-
nal. Subsequently, a number of microphones are used to
record the sound after it has propagated through the envi-
ronment. Compared to the passive approach, this facilitate
the estimation of the times-of-arrival (TOAs) of both
the direct and reflected sound components. With this
information, the localization accuracy can be increased
significantly compared to the passive approach, and the
task of acoustic reflector localization becomes less com-
plex. In the following, we briefly outline some of the most
recent and relevant work on active approaches. Some
authors have considered the problem of estimating both
room geometry and a robot’s position with a setup con-
sisting of a collocated microphone and speaker pair [10].
To achieve this, they utilize TOA estimates of the first
order reflections. The TOAs are assumed known or esti-
mated beforehand. To tackle the estimation problem with
the considered single-channel setup (i.e., one microphone
and one loudspeaker), they considermultiple observations
from different time instances and locations, i.e., move-
ment is assumed. Based on this, they then proposed two
different methods: a method based on basic trigonome-
try, and another one based on Bayesian filtering. A similar
approach also based on a priori RIR/TOA knowledge was
considered using a multichannel setup in the context of
robotics in [11]. Other authors considered an approach
where the TOAs of the first order echoes are utilized
for estimating the arbitrary convex room shapes [12]. As
briefly mentioned, these as well as other active approaches
do not consider the TOA estimation problem, which is
an equally important and difficult problem in itself due
to, e.g., spurious estimates [13]. Moreover, methods rely-
ing on first- and second-order reflections only suffer from
the inevitable problem of echolabeling [14]. In addition to
this, many methods are based on only one microphone
and one loudspeaker, but this lead to ambiguity in the
mapping of the TOA estimates of the first-order reflec-
tions unless more transducers are included or movement
is exploited.
These issues will be addressed in this paper, where we

consider a setup consisting of a microphone array which
is collocated with a single loudspeaker. More specifically,
we consider a uniform circular array that could be placed
on the perimeter of, e.g., a drone or robot platform, with a
loudspeaker located in its center. With this setup in mind,
we propose a number of expectation-maximization (EM)
methods for estimating both the TOAs and directions-
of-arrival (DOA) of a number of the acoustic reflections.
This has the benefit of not only yielding more accurate
TOAs compared to a single-channel approach, but also of

reducing the ambiguity of the estimated reflections since
the DOA is estimated simultaneously. In fact, this means
that the estimates directly reveal the locations of mir-
ror sources, which greatly simplifies the task of localizing
the acoustic reflector positions. The proposed methods
are derived in the time-domain, and, thus, estimates the
parameters of interest directly from the recorded sig-
nals, i.e., not from estimated room impulse responses as
in numerous state-of-the-art methods. While joint TOA
and DOA estimation is a new topic in the context of
robot and drone audition, it has been considered previ-
ously in multiuser and multipath communication systems
[15–17]. However, it has not yet been considered for
acoustic reflector localization to the best of our knowl-
edge. The paper builds on the results reported in our
earlier paper [18] and extends on this work in several
ways. First, we relax our previous noise assumptions and
derive the optimal estimators for these more realistic sce-
narios. The first scenario deals with spatially independent
white Gaussian noise with different noise variances across
the microphones, e.g., to simulate low quality or faulty
microphones. The second scenario considered deals with
spatio-temporarily correlated noise, which we tackle using
prewhitening. Here, we include different approaches for
the prewhitening. Moreover, we have included a beam-
former interpretation of one of the proposedmultichannel
estimators, which provides an intuitive understanding of
the EM-based method. In addition to this, we included
further experimental work to show case the merits of the
different proposed estimators and how they compare with
traditional methods.
The rest of the paper is organized as follows. In

Section 2, we propose the signal model for the con-
sidered setup along with a problem formulation. Then,
in Section 3, we briefly revisit the single-channel EM
method for TOA estimation, which serves as our refer-
ence method. Inspired by this, we then proceed with the
derivation of the different TOA and DOA estimators in
Section 4. Finally, the paper closes with the experimental
results and conclusions in Sections 5 and 6, respectively.

2 Problem formulation
We now proceed to lay the foundation for the derivation
of EM-based methods for estimating the TOA and TDOA
of the acoustic echoes. This is done by formulating the
relevant temporal and spatial signal models.

2.1 Time-domain model
Consider a setup with a single loudspeaker and M micro-
phones that are assumed to be collocated on some hard-
ware platform, e.g., a mobile robot or a drone. The
loudspeaker is used to probe the environment with a
known sound while the microphones are used to record
the sound emitted by the loudspeaker including its
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Fig. 1 An example of a synthetic room impulse response illustrating its different parts, i.e., the direct-path component, early reflections and late
reflections/ reverberation

acoustic reflections from physical objects and bound-
aries, e.g., walls. Both the microphones and loudspeakers
are assumed to be omnidirectional and ideal. While this
assumptionmight not hold in practice, we do not consider
the handling of non-ideal characteristics in this paper. As
suggested in other work [5], this might be partly addressed
by estimating and introducing another filter account-
ing for the hardware characteristics, which may also be
included in the methods proposed later. Moreover, the
non-ideal characteristic of the hardware, i.e., loudspeakers
could be modeled as shown in [5], but this is not included
when formulating the following estimator.
We can then formulate a general model for the signal

recorded by microphonem, form = 1, . . . ,M, as

ym(n) = hm ∗ s(n) + vm(n) = xm(n) + vm(n), (1)

where, xm(n) = hm ∗ s(n), hm is the acoustic impulse
response as measured from the loudspeaker to the mth
microphone, and s(n) is a known signal being played back
by the loudspeaker. Finally, vm(n) is an additive noise term,
which is supposed to model ego-noise from a robot/drone
platform, interfering sound sources (e.g., human speak-
ers), thermal sensor noise, etc. , that is, the signal s(n) is
used to probe the environment to, eventually, facilitate the
estimation of the parameters of the acoustic echoes, such
as their TOA and TDOA. Thus, we proceed by rewrit-
ing the observation model as a sum of the individual
reflections1 in noise, i.e.,

ym(n) =
∞∑

r=1
gm,rs(n − τref,r − ηm,r) + vm(n), (2)

with gm,r being the attenuation of the rth reflection from
the loudspeaker to the mth microphone, e.g., due to
the inverse square law for sound propagation and sound

1In our definition, the direct-path component is one of the reflections, i.e., the
0th order reflection corresponding to r = 1.

absorption in the acoustic reflectors. Furthermore, ηm,r =
τm,r − τref,r is the TDOA of the rth component mea-
sured between a reference point and microphonem, while
τm,r and τref,r are the TOAs of the rth component on
microphonem and the reference point, respectively.
Acoustic impulse responses often exhibit a certain

structure, which can be characterized by two parts: the
early part, which is sparse in time and contains the direct-
path and early reflections, and the late part, which is a
more stochastic, dense, and characterized by decaying tail
of late reflections (Fig. 1). This suggests that we can split
the model as [19]

ym(n) =
R∑

r=1
gm,rs(n − τref,r − ηm,r) (3)

+ dm(n) + vm(n),

where R is the number of early reflections, and dm(n)

is the late reverberation. A common assumption is that
the late reverberation can be modeled as a spatially
homogeneous and isotropic sound field with time-varying
power but known coherence function [20]. If we collect
N samples from each microphone and assume stationar-
ity within the corresponding time frame, the vector model
for our observations becomes:

ym(n) =
R∑

r=1
gm,rs(n − τref,r − ηm,r) (4)

+ dm(n) + vm(n),

with ym(n), s(n), d(n), and vm(n) being vectors com-
prising N time samples of ym(n), s(n), dm(n), and vm(n),
respectively, e.g.,

ym(n) = [
ym(n) · · · ym(n + N − 1)

]T ,

This leaves us with the problem of estimating R
unknown TOAs and MR TDOAs from the observations
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ym(n), for m = 1, . . . ,M. However, if we know the
geometry of the loudspeaker and microphone array con-
figuration, we can significantly reduces the dimensionality
of this problem by further parametrizing the TDOAs in
terms of the directions-of-arrival (DOAs).

2.2 Array model
While the array model can in principle be chosen arbi-
trarily, we choose to exemplify the TDOA modeling with
a setup where the loudspeaker is placed in the center
of a uniform circular array (UCA). Such a setup could
be placed on, e.g., a robot or drone platform to enable
the estimation of the angle of and distance to acoustic
reflectors, e.g., to facilitate autonomous and sound-based
navigation.
If we assume the reference point to be the center of the

UCA, it can be shown that the TDOAs, for a setup like
this, can be modeled as

ηm,r = d sinψr cos(θm − φr)
fs
c

(5)

where d is the radius of the UCA,ψr and φr are the inclina-
tion and azimuth angles of the rth reflection, respectively,
and θm is the angle of the mth microphone on the cir-
cle forming the UCA. These definitions are illustrated in
the UCA example in Fig. 2. In addition to this, fs is the
sampling frequency, and c is the speed of sound.
The TDOA model in (5) can then be combined with

the observation model in (4). By doing this, the estima-
tion problem at hand is then simplified to the estimation
of 2R angles, i.e., ψr and φr , for r = 1, . . . ,R, rather than
MR TDOAs. It should be noted here that the consid-
ered UCA configuration introduces ambiguities, e.g., an
acoustic reflection impinging from an elevation of 0◦ will
result in the same TDOAs as an acoustic reflection mir-
rored around the UCA plane, i.e., at an elevation angle
of 180◦. However, this ambiguity can easily be accounted
for by applying the proposed methods on array structures

with microphones in all three dimensions, e.g., spherical
microphone arrays [21].

3 Single-channel estimation
Before presenting the proposed TOA and TDOA estima-
tors, we briefly revisit an EM-based method for single-
channel TOA estimation, i.e., that is with a setup consist-
ing of one loudspeaker and one microphone. The original
version of this method was proposed in [22] under a white
Gaussian noise assumption and serves as a reference for
the proposed methods.

3.1 White Gaussian noise
In the following, we leave out the microphone index,
i.e., subscript m, since only a single microphone is con-
sidered. We assume that the additive noise, i.e., both
the late reverberation and the background noise is inde-
pendent and identically distributed white Gaussian and
zero-mean. Later, as part of the proposed multichannel
methods, this assumption is substituted with a more real-
istic one, where the late reverberation is modeled as being
spatio-temporarily correlated. The signal model in (4)
then reduces to

y(n) =
R∑

r=1
grs(n − τr) + v(n), (6)

where v(n) is distributed as N (0,C), with 0 being a vec-
tor of zeroes, C = E[ v(n)vT (n)]= σ 2

v IN is the N × N
covariance matrix of v(n), σ 2

v is its variance, IN denotes
the N × N identity matrix, and E[ ·] is the mathemati-
cal expectation operator. The maximum likelihood (ML)
estimator of the unknown parameters, i.e., the gains and
the TOAs, is well known to be the nonlinear least squares
(NLS) criterion in this case, i.e.,

{̂τ , ĝ} = argmin
τ ,g

∥∥∥∥∥y(n) −
R∑

r=1
grs(n − τr)

∥∥∥∥∥

2

, (7)

Fig. 2 Example of a uniform circular array with six microphones
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where

τ = [τ1 · · · τR]T ,

g = [
g1 · · · gR

]T .

While this estimator is statistically efficient, it also
requires computationally costly search since the cost func-
tion is high-dimensional and non-convex with respect to
the TOAs.
A computationally more efficient way of implement-

ing this estimator could be to adopt the expectation-
maximization (EM) approach for superimposed signals
proposed in [22]. The concept behind this approach is to
define the complete data as the observation of all individ-
ual signals, i.e., each of the individual early reflections in
our case. According to the previously stated signal model
in (4), the individual observations can be modeled as

xr(n) = grs(n − τr) + vr(n), (8)

for r = 1, . . . ,R, where vr(n) is obtained by arbitrar-
ily decomposing the combined noise term, v(n), into R
different components adhering to

R∑

r=1
vr(n) = v(n). (9)

Moreover, the observed signal can be written as the sum
of individual observations such as:

y(n) =
R∑

r=1
xr(n). (10)

Following [22], we let the individual noise terms be inde-
pendent, zero-mean, white Gaussian, and distributed as
N (0,βrC). Furthermore, the scaling factors, βr are non-
negative, real-valued scalars that satisfy

R∑

r=1
βr = 1. (11)

Under these assumptions, it can be shown that the EM
algorithm for estimating the gains and the time-of-arrivals
is given by [22]
E-step: for r = 1, . . . ,R, compute

x̂(i)
r (n) = ĝ(i)

r s
(
n − τ̂ (i)

r

)
(12)

+ βr

[
y(n) −

R∑

k=1
ĝ(i)
k s

(
n − τ̂

(i)
k

)]
.

M-step:

{̂gr , τ̂r}(i+1) = argmin
g,τ

‖̂x(i)
r (n) − gs(n − τ)‖2, (13)

where (i) is denoting the iteration index. If the length, N,
of the analysis window is long compared to the length of

the known signal, s(n), the M-step can be simplified as

τ̂r = argmax
τ

x̂Tr (n)s(n − τ), (14)

ĝr = x̂Tr (n)s(n − τ̂r)

‖s(n)‖2 . (15)

We see that the estimation problem has been greatly
simplified with this signals decomposition, since we now
have 2R one-dimensional estimators rather than a 2R-
dimensional estimator as in (7). From this simplified
version of theM-step, we canmake some interesting inter-
pretations. First in (14), the individual observations are
applied with a matched filter based on the known source
signal. The TOA is estimated as the one maximizing the
output power of the matched filter. Secondly, the esti-
mated TOAs are used to obtain closed-form estimated
of the gains in (15), which is based on a least squares
fit between the known source signal and the estimated
contribution of the rth component.

4 Multichannel estimation
We now proceed to consider the multichannel case, where
we have one loudspeaker andmultiple microphones. First,
we consider a white Gaussian noise scenario similar to
Section 3.1 where the noise is independent across the
microphones, after which we turn to the more realistic
scenarios with correlated noise.

4.1 Spatially independent white Gaussian noise
If we first assume that the noise is temporally white
Gaussian and independent and the late reverberation is
negligible, the signal model in (4) reduces to

ym(n) =
R∑

r=1
gm,rs(n − τref,r − ηm,r) + vm(n), (16)

for m = 1, . . . ,M. Subsequently, we can aggregate the
observations from all microphones in one model as

y(n) =
R∑

r=1
H(ηr , gr)s(n − τref,r) + v(n) (17)

= [
y1 y2 · · · yM

]T ,

where v(n) is the stacked noise terms from each micro-
phone defined similarly to y(n), and

ηr = [
η1,r η2,r · · · ηM,r

]T ,

gr = [
g1,r g2,r · · · gM,r

]T .

In addition to this, we note that, under the assumptions of
spatial independent white Gaussian noise, the covariance
matrix, C of the stacked noise, v(n) is diagonal and given
by

C = diag
(
σ 2
v1IN , σ

2
v2IN , . . . , σ

2
vM IN

)
, (18)
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where diag(·) is the operator constructing a diagonal
matrix from the input of scalars(/matrices) and C is the
MN × MN covariance matrix. Furthermore,

H(ηr , gr) =
[
g1,rDT

η1,r · · · gM,rDT
ηM,r

]T
, (19)

and Dη is a circular shift matrix which delays a signal by
−η samples.
With these definitions, the ML estimator for the prob-

lem at hand becomes

{̂g, τ̂ , η̂} = argmin
g,τ ,η

J(g, τ , η), (20)

where

J(g, τ , η) =
∥∥∥∥∥y(n) −

R∑

r=1
H(ηr , gr)s(n − τref,r)

∥∥∥∥∥

2

C−1

(21)

such that ‖x‖2W = xTWx, where W denotes the weighted
2-norm of x. Moreover, g, τ , and η are the parameter vec-
tors containing all unknown gains, TOAs and TDOAs,
respectively. In the single-channel case, the ML estimator
ends up being high-dimensional and non-convex, result-
ing in a practically infeasible computational complexity if
implemented directly. Therefore, we propose to adopt the
EM framework also for the multichannel scenario.
Like in the single-channel approach, we consider the

complete data to be all the individual observations of the
reflections, but in this case from all the M microphones.
Each of the observations can thus, for r = 1, . . . ,R, be
modeled as

xr = H(ηr , gr)s(n − τref,r) + vr(n). (22)

The decomposition is assumed to satisfy the conditions
in (9)–(11). Then, it can be shown that the EM-algorithm
for the multichannel estimation problem is given by

E-step: for r = 1, . . . ,R, compute

x̂(i)
r (n) = H

(
η̂(i)
r , ĝ(i)

r

)
s
(
n − τ̂

(i)
ref,r

)
(23)

+ βr

[
y(n) −

R∑

k=1
H

(
η̂

(i)
k , ĝ(i)

k

)
s
(
n − τ̂

(i)
ref,k

)]
.

M-step: for r = 1, . . . ,R,

{̂gr , τ̂r , η̂r}(i+1) = argmin
g,τ ,η

Jr(g, τ , η), (24)

with Jr(g, τ , η) being a weighted least squares estimator
defined as

Jr(g, τ , η) =
∥∥∥̂x(i)

r (n) − H(η, g)s(n − τ)

∥∥∥
2

C−1
. (25)

If we explicitly write the cost function, we get

Jr(g, τ , η) =
M∑

m=1

‖̂xm,r(n)‖2
σ 2
vm

+ ‖s(n − τ)‖2
M∑

m=1

g2m,r
σ 2
vm

− 2
M∑

m=1

gm,rx̂Tm,r(n)Dηm

σ 2
vm

s(n − τ), (26)

This can be used to simplify the M-step by making a few
observations. Clearly, the first term in this expression does
not depend on any parameter of interest. Moreover, if we
assume that the analysis window is long compared to the
length of the known source signal, s(n), we observe that
the second term does not depend on either the TOAs or
the TDOAs. That is, to estimate these time parameters, we
only need to consider the maximization of the last term,
i.e.,

{̂τref,r , η̂r} = argmax
τ ,η

M∑

m=1

gm,rx̂Tm,r(n)Dηm

σ 2
vm

(27)

× s(n − τ),

The gains, gm,r , and the noise statistics, σ 2
vm , are unknown

in practice. However, if the noise is assumed (quasi-
)stationary, its variance can be estimated from micro-
phone recordings acquired before emitting the known
source signal, s(n). By taking the partial derivative of (26)
with respect to gm,r , we obtain the following closed-form
estimate for gm,r

ĝm,r = x̂Tm,r(n)Dη̂ms(n − τ̂ref,r)

‖s(n)‖2 , (28)

If the reflections are assumed to be in the far-field of the
array, we can further simplify the estimators. In this case,
the gains of reflection r will be the same across all micro-
phones for r = 1, . . . ,R. That is, we can instead estimate
the TOAs and TDOAs as

{̂τref,r , η̂r} ≈ argmax
τ ,η

( M∑

m=1

x̂Tm,r(n)Dηm

σ 2
vm

)
(29)

× s(n − τ).

Subsequently, the gain estimator can then be reformulated
as

ĝr =
( M∑

m=1

1
σ 2
vm

)−1 M∑

m=1

x̂Tm,rDη̂m

σ 2
vm

s(n − τ̂ref,r)

‖s(n)‖2 , (30)

If the geometry of the loudspeaker and microphone con-
figuration is known, we further reduce the dimensionality
of the estimation problem. This is achieved by parameter-
izing the TDOAs, ηm,r , for r = 1, . . . ,R andm = 1, . . . ,M
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using the array model, e.g., the one for a UCA config-
uration formulated in (5). Then, the TOA and TDOA
estimator in the M-step can be written as

{̂τref,r , φ̂r , ψ̂r} ≈argmax
τ ,φ,ψ

( M∑

m=1

x̂Tm,r(n)Dηm

σ 2
vm

)

× s(n − τ), (31)

where ηm is replaced by the expression in (5). In this way,
we only need to estimate two angles for each reflection,
whereas the estimator in, e.g., (30) requires the estima-
tion of M TDOAs (or M − 1 if one of the microphone
positions is used as the reference point). That is, the com-
putational benefits of using the array model increases as
we increase the number of microphones. It can be shown
that the resulting estimators in the M-step has an inter-
esting interpretation as minimum variance distortionless
response (MVDR) beamforming followed by a matched
filter as we show in the following subsection.

4.2 Beamformer interpretation
Intuitively, if we were able to observe the reflections indi-
vidually in noise and the noise is differently distributed
across the microphones, then it would be natural to apply
an MVDR beamformer to these to optimally account for
the noise when estimating the TOAs and TDOAs. Let us
consider the scenario where we have a filtering matrix,
W, which we use to process the individually observed
reflections in (22):

z(n) = WTxr(n). (32)

Then, we define the residual noise power after this filter-
ing as the normalized sum of the residual noise variances
over the different time indices included in z(n), i.e., n, n+
1, . . . , n + N − 1. Mathematically, this is equivalent to

σ 2
v,f = E

[
1
N
Tr

{
WTvr(n)vTr (n)W

}]

= βr
N
Tr

{
WTCW

}
, (33)

where Tr{·} is the trace operator. Obviously, by inspection
of the individual observation model in (22), we can see
that the following expression needs to be satisfied for the
filter to be distortionless with respect to the known source
signal:

WTH(ηr , gr) = IN . (34)

That is, omitting the arguments of the steering matrix
H(ηr , gr) for brevity, the problem of finding the MVDR
solution forW can be formulated as

min
W

Tr
{
WTCW

}
s.t. WTH = IN . (35)

It can be shown that the solution to the quadratic opti-
mization problem with linear constraints is given by

WM = C−1H
(
HTC−1H

)−1
. (36)

If we then apply the MVDR filtering matrix to the esti-
mated observation of the rth reflection in noise, careful
inspection reveals that

xTr (n)WM =
∑M

m=1
gmxTm,r(n)Dηm

σ 2
vm

∑M
m=1

g2m
σ 2
vm

. (37)

The denominator is clearly independent of either the TOA
or the TDOAs of the rth reflection, so if the objective is
to estimate these, we only need to consider the numera-
tor. Interestingly, the numerator resembles the first part of
the cost function in (28). This reveals the following inter-
pretation of the M-step. First, the individual observations
of the reflections are filtered by an MVDR filter, and the
resulting output is then processed by a matched filter with
the transmitted signal. The TOA and TDOAs that max-
imizes the output power of this operation are then the
estimates for the rth reflection. This is in line with the
findings in [23–25], where it was shown that the output
of an MVDR/LCMV beamformer provide the sufficient
statistics for estimating individual signals.

4.3 Spatio-temporarily correlated noise
We now consider the scenario, where the noise is spatio-
temporarily correlated, a scenario practically encoun-
tered. For example, the late reverberation is oftenmodeled
as spatially homogeneous and isotropic sound field [19],
resulting in a degree of spatial coherence which is depen-
dent on the distance between the measurement points.
Moreover, theremight be interfering, quasi-periodic noise
sources in the recording environment, like human talkers,
ego-noise from a drone/robot, etc. For such scenarios, we
can rewrite the model in (4) as

y(n) =
R∑

r=1
H(ηr , gr)s(n − τref,r) + d(n), (38)

where

d(n) =
[
dT1 (n) dT2 (n) · · · dTM(n)

]T
. (39)

To deal with scenarios like this, we can preprocess the
observed signals, such that the white Gaussian noise
assumptions of the EM method is satisfied.
One way to achieve this is to use spatio-temporal decor-

relation technique. Let us consider the correlated noise
terms of the model in (4), i.e., dm(n), for m = 1, . . . ,M.
First, we define the spatio-temporal correlation matrix as

Cd = E
[
d(n)dT (n)

]
. (40)
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If we assume that this matrix is Hermitian and positive
definite, the Cholesky factorization of it is given by

Cd = LLT , (41)

where L is a lower triangular matrix with real and positive
diagonal entries. That is, to whiten the noise term before
estimating the unknown parameters, we can left-multiply
the observation in (38) with L−1 [26]. The prewhitened
observations are thus given by

y(n) = L−1y(n) (42)

= L−1
R∑

r=1
H(ηr , gr)s(n − τref,r) + d(n),

where d(n) = L−1d(n). Based on this and [22], we end up
with the following EMmethod for estimating the acoustic
reflection parameters when the noise is correlated in time
and space:
E-step: for r = 1, . . . ,R, compute

x̂(i)
r (n) = H

(
η̂(i)
r , ĝ(i)

r

)
s
(
n − τ̂

(i)
ref,r

)
(43)

+ βr

[
y(n) −

R∑

k=1
H

(
η̂

(i)
k , ĝ(i)

k

)
s
(
n − τ̂

(i)
ref,k

)]
.

M-step: for r = 1, . . . ,R,

{̂gr , τ̂r , η̂r}(i+1) = argmin
g,τ ,η

Jr(g, τ , η). (44)

where

Jr(g, τ , η) =
∥∥∥L−1

(
x̂(i)
r (n) − H(η, g)s(n − τ)

)∥∥∥
2
, (45)

Eventually, we can explicitly write the cost function for the
M-step as

Jr(g, τ , η) = xTr (n)C−1
d xr(n)

+ sT (n − τ)HT (η, g)C−1
d H(η, g)s(n − τ)

− 2xTr (n)C−1
d H(η, g)s(n − τ), (46)

Compared with the cost function in (26), the minimiza-
tion of (46) is more challenging. For example, the second
term in (46) will generally depend on the DOA/TDOAs.
That is, if we assume the reflections to be in the far-field
of the array, we can adopt an iterative estimation scheme,
where we first estimate the TOA and TDOAs, then update
the TDOAs, and, finally, estimate the gains, i.e., for r =
1, . . . ,R:
Step 1: Obtain estimates of the TOA and TDOAs as

{̂τr , η̂r} = argmax
τ ,η

xTr (n)C−1
d H(η, g)s(n − τ), (47)

where

H(η) =
[
DT

η1 · · · DT
ηM

]T
.

Step 2: Update the TDOA estimates as

η̂r = argmin
η

J2,r(gr , η) + J3,r(gr , η), (48)

where

J2,r(gr , η) = g2r s (n − τ̂r)H
T
(η)C−1

d H(η) (49)
× s(n − τ̂r)

J3,r(gr , η) = −2grxTr (n)C−1
d H(η)s(n − τ̂r). (50)

Step 3: Estimate the unknown gain as

ĝr = xTr (n)C−1
d H(η̂r)s(n − τ̂r)

sT (n − τ̂r)H
T
(η̂r)C−1

d H(η̂r)s(n − τ̂r)
. (51)

with the TOA and TDOA estimates from (47) and (48),
respectively. If needed, these steps can then be repeated
until convergence. It is also possible to simplify theM-step
further by using particular signals as the known signal,
s(n). By close inspection of the second term of the cost
function in (48), we get

J2,r(gr , η) = g2r
M∑

i=1

M∑

j=1
ci,j (52)

× sT (n − τ − ηi) s
(
n − τ − ηj

)
,

where ci,j denotes the (i, j)th element of C−1
d . This reveals

that, if the known probe signal is an uncorrelated noise
sequence, it is reasonable to assume that this term is inde-
pendent of both the TOA and the TDOAs, meaning that
we can skip the update step in (48).

4.4 Kronecker decomposition
Another challenge with the prewhitening based estima-
tor is the inversion of the noise covariance matrix, Cd,
which has a high dimension of NM × NM. However, if
we assume that the covariance matrix is separable, we can
approximate it with two smaller matrices [27], i.e.,

Cd ≈ Cs ⊗ Ct. (53)

where Cs and Ct represents the spatial and temporal cor-
relation matrices of dimensions M × M and N × N ,
respectively, and ⊗ denotes the Kronecker product oper-
ator. Since (Cs ⊗ Ct)−1 = C−1

s ⊗ C−1
t , we now only need

to invert these smaller matrices, which is both numeri-
cally and computationally preferable. Moreover, we can
now conduct the prewhitening using the Cholesky factor-
ization of these smallermatrices due to themixed-product
property, yielding

Cs ⊗ Ct = LsLTs ⊗ LtLTt = (Ls ⊗ Lt)(LTs ⊗ LTt ). (54)

In other words, by assuming separability, we can approx-
imate L in (41) by Ls ⊗ Lt. Eventually, it can be shown
that, for uncorrelated probe signals, the Kronecker prod-
uct decomposition allows us to rewrite the first step of the
M-step in (44) as
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Step 1:

{̂τr , η̂r} = argmax
τ ,η

xTr (n)
(
C−1
s ⊗ C−1

t

)
H(η, g)s(n − τ),

= argmax
τ ,η

tr
(
XT
r (n)C−1

t Sτ ,η(n)C−1
s

)
(55)

= argmax
τ ,η

M∑

m=1
x̃Tm,r(n)̃s(n − τ − ηm) (56)

where

Xr(n) = [
x1,r(n) · · · xM,r(n)

]
, (57)

Sτ ,η(n) = [
Dη1s(n − τ) · · · DηMs(n − τ)

]
,

= [s(n − τ − η1) · · · s(n − τ − ηM)] ,
(58)

and the vectors x̃m,r(n) and s̃(n − τ − ηm) are the
prewhitened observation and probe signals for micro-
phone m, respectively, defined as the mth columns of the
following matrices:

X̃r(n) = L−1
t Xr(n)L−T

s (59)
S̃τ ,η(n) = L−1

t Sτ ,η(n)L−T
s . (60)

These expressions can be interpreted in the following way.
The left handmultiplication with L−1

t corresponds to tem-
poral prewhitening of all the microphone signals, whereas
the right hand multiplication with L−T

s corresponds to
spatial prewhitening of all time snapshots.
Step 2: With the Kronecker decomposition, the second

term of the cost function in (49) becomes

J2,r(gr , η) = g2r tr(̃STτ ,η(n)̃Sτ ,η(n)). (61)

This does not depend on the TOAs and TDOAs, so the
Kronecker decompositions allow us to skip the interme-
diate step of updating the TDOAs as in (48). We can
therefore directly proceed to conducting the closed form
estimate of the gains as

ĝr =
∑M

m=1 x̃Tm,r(n)̃s(n − τ − ηm)

M‖̃s(n)‖2 . (62)

Even after all the presented simplifications and assump-
tions, the computational complexity of the proposed
methods might still be considered relatively high due
to their iterative and multidimensional nature. However,
although not considered in this paper, we expect that fur-
ther reductions in the computational complexity can be
obtained by employing, e.g., the space alternating gen-
eralized expectation (SAGE) algorithm rather than the
EM algorithm [28], or through a recursive EM proce-
dure as suggested in [29], where the number of iterations
per time instance can be reduced by instead tracking the
parameters of interest over time.

4.5 Temporal prewhitening with filter
One issue with this prewhitening approach still is that
the number samples in time might be relatively high in
practice. The consequence of this is that, even with the
Kronecker decomposition of the noise correlation matrix,
the inversion of Lt might be intractable in practice since its
dimensions equal the number of time samples. An alter-
native approach could be to use a lower order filter for
the prewhitening instead [30]. If we assume that the noise
follows an autoregressive model, we can approximate it as:

d(n) ≈
P∑

p=1
apd(n − p). (63)

Given the noise correlation matrix, Ct, we can obtain the
AR coefficients of the noise using the Levinson-Durbin
recursion. The prewhitening filter is then formed using
the AR coefficients as the coefficients of a Pth order FIR
filter, hpw(p) = ap. Subsequently, the prewhitened signals
are obtained as

x̃m,r(n) =
P∑

p=0
hpw(p)xm,r(n − p), (64)

s̃(n) =
P∑

p=0
hpw(p)s(n − p), (65)

where hpw(0) = 1.

4.6 Covariance estimation
In the previous subsections, we have considered the
covariance matrices as known quantities. However, we
need to estimate these from the observed data in practice.
If no particular structure is assumed for the covariance
matrix, a common approach is to use the following esti-
mator [31]

Ĉd = 1
N − K + 1

N−K∑

n=0
d(n)d(n)T , (66)

where

d(n) = [d1(n) · · · dM(n)]T , (67)

dm(n) = [dm(n) · · · dm(n + K − 1)]T . (68)

As evident from, e.g., (47), the estimated covariance needs
to be invertible. This requires that

K ≤ N + 1
M + 1

. (69)

where K is the number of snapshots, N is the num-
ber of samples of the signal, and M is the number of
microphones. Consequently, we can only use relatively
short temporal subvectors, dm(n) in the estimation of the
covariance matrix when the number of microphones is
increased.
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Algorithm 1: Flip-flop algorithm [32].
Result: Estimates of temporal and spatial covariance

matrices, Ĉt and Ĉs.
D(n) = [d1(n) · · · dM(n)];
Ĉs = I;
Ĉt = 1

M(N−K+1)
∑N−K

n=0 D(n)Ĉ−1
s DT (n);

repeat
Ĉs = 1

K(N−K+1)
∑N−K

n=0 DT (n)Ĉ−1
t D(n);

Ĉt = 1
M(N−K+1)

∑N−K
n=0 D(n)Ĉ−1

s DT (n);
until convergence;

If it is assumed that the multichannel noise samples
in d(n) follows a multichannel matrix normal distribu-
tion, the maximum likelihood (ML) estimator for the
noise covariance matrix can be derived [32]. Unfortu-
nately, the resulting estimator is not closed form, but
it can be implemented using the iterative flip-flop algo-
rithm in Algorithm 1. In some cases, e.g., if one of the
covariance matrices are close to being rank deficient,
this iterative procedure can be problematic, since their
inverses are required. Different approaches for dealing
with this and the computational complexity of the iterative
procedure have been considered [31, 33]. Alternatively, a
non-iterative estimator can be used such as [31]

Ĉs = 1
(N − K + 1)tr (Ct)

N−K∑

n=0
DT (n)D(n), (70)

Ĉt = 1
(N − K + 1)tr

(
Ĉs

)
N−K∑

n=0
D(n)DT (n), (71)

where

D(n) = [d1(n) d2(n) · · · dM(n)] . (72)

As indicated in (70), the trace of the temporal covari-
ance is assumed to be known. This might not be the case
in practice; however, in most situations, we can simply
replace it by an arbitrary value, since its main purpose is
to resolve the ambiguity

Cd = Cs ⊗ Ct =
(
1
α
Cs

)
⊗ (αCt). (73)

4.7 Non-stationary noise
While the stationarity assumption may not hold in prac-
tice, there are a number of ways to address this prob-
lem. For example, we may reduce the length, N, of
the probe signal and the analysis window, which would
naturally increase the validity of the assumption. Alter-
natively, we may decouple the prewhitening and esti-
mation parts, as suggested in Section 4.5. In this way,
we may first prewhiten our signal using a filter, and

then apply the proposed estimators with a white Gaus-
sian noise assumption on the prewhitened signals. This
approach can be exploited to take the non-stationarity
of the noise into account by updating the prewhitening
filters over time, according to the changing AR coef-
ficients of the noise. Estimating non-stationary noise
parameters, however, is more difficult, since the statis-
tics need to be tracked during the presence of the
desired signal, i.e., the probe signal and its reflections
in our case. This problem has been well-investigated in
other audio signal processing problems, such as speech
enhancement [34–37].

5 Results and discussion
In this section, we investigate the performance of the
different variants of the proposed EM method. More
specifically, we consider the variant assuming spatially
independent white Gaussian in Section 4.1 resulting in
noise variance weighting (EM-UCA-NW), and its spe-
cial case where the noise variance is assumed equal
(EM-UCA) [18]. Moreover, we consider the setup with
correlated noise proposed in Section 4.3 resulting in
the prewhitening-based approach (EM-UCA-PW). The
experiments were carried out using signals that were gen-
erated using the room impulse response generator [38].
The dimensions of the simulated room were set to 8 ×
6 × 5 m, the reverberation time (T60) was set to 0.6
s while the speed of sound is fixed at 343 m/s. The
loudspeaker was positioned at the center of an UCA at
(1 × 1.5 × 2.5) m while the UCA has M = 4 micro-
phones with a radius of d = 0.2 m. Although, any type
of known broadband signal could be used to probe the
environment, such as a chirp signal or maximum length
sequences (MLS) [39], we decided to use a white Gaus-
sian noise sequence as the known sound source, s(n),
consisting of 1,500 samples from a Gaussian distribu-
tion. This sequence was subsequently zero-padded to get
a total signal length of 20,000 samples. The objective
of the zero-padding was to get a longer analysis win-
dow to ensure that the first few reflections are present
in the observation. Moreover, as discussed in Section 4.3,
the reason for using a WGN sequence is that the EM
estimator can be simplified if the probe signal is an uncor-
related signal. In addition to this, using such a broadband
sequence minimizes the effects of spatial aliasing [40].
The sampling frequency fs was set to 22,050 Hz. We
assumed that the direct component is subtracted from
the observed signal given that we know the arrangement
of the loudspeaker and the microphones. Knowing the
array geometry enables either offline measurement of the
impulse response of the direct-path component offline
or analytical computation of the impulse response of the
direct-path component based on the geometry. The back-
ground noise comprises of two components: one being
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diffuse spherical noise and the other being thermal sensor
noise. The diffuse spherical noise was generated using the
method described in [41] using the rotor noise of a drone
from the DREGON database [3]. The drone audio file
used to generate the diffuse spherical noise corresponds
to rotors running at 70 revolutions per second (RPS). The
thermal sensor noise was simulated as spatially indepen-
dent white Gaussian noise. Both these noises were added
to the observed signal before estimating the parameters.
The evaluation was then conducted for different signal-
to-diffuse noise ratios (SDNRs) and signal-to-sensor noise
ratios (SSNRs). In the following subsections, we evalu-
ate the performance of our propose method in various
conditions.

5.1 Comparison of with state-of-the-art
The aim of the first experiment was to compare the
proposed method with existing state-of-the-art methods.
The EM algorithm was set to estimate R = 3 reflec-
tions with 40 iterations and β was set to 1

R . The main
application for this manuscript is acoustic reflector map-
ping for robot audition. For this application, the mapping
should be possible in unknown, complex environments,
and we therefore do not rely on trivial room geometry
models as opposed to many of the traditional methods
for room geometry estimation [10–12]. Therefore, we
chose to use a small number of reflections in the estima-
tion (i.e., R = 3), to mainly estimate the TOAs/DOAs
of first-order reflections impinging from nearby acous-
tic reflectors. These can be directly mapped to acoustic
reflector positions based on the estimated time and angle
of arrival. While this will not facilitate the localization of
all acoustic reflectors at any given time instance, we can
carry out such estimation over time and space, to gener-
ate a map of an arbitrary room geometry (see Section 5.4).
An alternative to choosing a fixed reflection order would
be to combine the proposed method with order estima-
tion methods [42, 43]. To initialize the method, the gain
estimates, ĝm,r , were sampled from a uniform distribu-
tion over the interval [ 0; 1], the TOAs, τ̂1,r , were sampled
from a uniform discrete distribution over the time indices
corresponding to the analysis window, and the DOAs, φ̂r ,
were sampled from a uniform distribution over the inter-
val [ 0◦; 360◦]. After emitting and recording the known
source signal, an analysis window of each recording was
considered starting from τmin samples to τmax samples
after the source signal was emitted. In this experiment,
the analysis window was set such that the search is made
between 0.5 to 2 m. This was done to primarily capture
the first order reflections. The lower bound was cho-
sen because we can only search for reflectors that are
outside the geometry of the array, which, in our experi-
ments, had a radius of 0.2 m. After 2 m, the performance
of the proposed method degrades because the energy of

the reflected signals decrease quadratically over distance,
which motivated the choice of the upper limit.
The proposed EM method (EM-UCA) was compared

to the single-channel EM method (EM-SC) in [22] in
terms of TOA accuracy, applied to the first microphone.
Moreover, these were compared with a common approach
to extracting TOAs from estimated RIR through peak-
picking (RIR-PP). Finally, the performance was also com-
pared with our previous work [44] termed the non-linear
least squares estimator (NLS). The results for the TOA
estimation are shown in Fig. 3, where the accuracy was
defined as the percentage of TOA estimates that were
within ± 2% tolerance of one of the true parameters of the
first-order reflections computed using the image-source
method. This was measured for different SDNRs while the
SSNR was fixed to 10 dB, and for each SDNR, the accu-
racy was measured over 100 Monte-Carlo simulations. As
seen in Fig. 3, the proposed method clearly outperforms
the existing method by providing higher accuracy at lower
SDNRs.
Furthermore, the computation time of the RIR-PP and

the proposed method, EM-UCA, were measured. This
test was performed in MATLAB using the built-in func-
tion timeit on a standard desktop computer running a
Microsoft Windows 10 operating system with an Intel
Core i7 CPU with 3.40 GHz processing speed and 16 GB
of RAM. A Monte Carlo simulation with 100 trials was
performed on each method and an average time was cal-
culated. The measured computation times of the RIR-PP
and the EM-UCA were 0.0063 s and 25.74 s, respectively,
for R = 1 and an SDNR of 40 dB. This shows that the
improved estimation accuracy with the proposed method
comes at the cost of a higher computational complex-
ity. It is important to stress, however, that in applications
such as acoustic reflector localization with a drone, it is

Fig. 3 Comparison of the proposed EM-UCA method with
state-of-the-art methods in terms of TOA estimation accuracy
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common to have negative SNR conditions [45], where the
RIR-PP method may fail to provide accurate estimates as
opposed to the proposed method (see, e.g., Fig. 3). More-
over, the computational cost could be reduced further
by, e.g., employing the recursive EM approach [29, 46].
If the TOA/DOA estimation is carried out continuously
over time and space, the EM algorithm may be initialized
using previous estimates, which may significantly reduce
the number of iterations needed for convergence. Another
potential computational saving may be obtained by deriv-
ing the proposed methods in the frequency domain.

5.2 Evaluation for different diffuse noise conditions
In the second experiment, we evaluated the effect of the
proposed prewhitening approach under different diffuse
noise conditions. To test the performance of the EM algo-
rithm under such realistic scenarios, we test our estimator
for different SDNRs in the interval [− 40; 10] dB while set-
ting the SSNR to 40 dB. Here, we are comparing the EM
algorithm with and without the prewhitening in terms of
both TOA and DOA estimation accuracy as seen in Figs. 4
and 5, respectively. The diffuse rotor noise is indeed cor-
related with strong periodic components, but the results
show that the proposed prewhitening approach can suc-
cessfully account for this and can retain a high estimation
accuracy at SDNRs levels 20 dB lower than those needed
for the EM-UCA approach.

5.3 Evaluation for faulty/noisy microphone conditions
In this experiment, we consider a scenario where one
microphone is excessively noisy compared to the other
microphones. An example of this could be a robot plat-
form, where one microphone is placed closer to an ego-
noise source such as a fan, leading to TOA and DOA
estimation errors. To simulate this effect, we set thermal

Fig. 4 TOA estimation accuracy of the proposed EMmethod with and
without prewhitening

Fig. 5 DOA estimation accuracy of the proposed EM method with
and without prewhitening

noise of a single microphone to an SSNR level of − 10
dB, while the thermal noise of the remaining microphones
are set to an SSNR level of 40 dB. As seen in Figs. 6
and 7, the performance of the EM algorithm with noise
variance weighting is less affected by the high thermal
sensor noise in terms of both TOA and DOA estimation
accuracy. Moreover, we conducted an experiment without
diffuse noise, where the SSNR level of the faulty micro-
phone was changed from − 40 to 0 dB. These results are
shown in Figs. 8 and 9, and show that the estimation accu-
racy is already degrading from 0 dB SSNR and downwards
when using the EM-UCA approach, whereas the proposed
EM-UCA-NW approach retains a high accuracy.

Fig. 6 TOA estimation accuracy of the proposed EMmethod with and
without noise variance weighting when 1 microphone has a lower
SSNR of − 10 dB while the remaining microphones has a SSNR of 40
dB
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Fig. 7 DOA estimation accuracy of the proposed EM method with
and without noise variance weighting when 1 microphone has a
lower SSNR of − 10 dB while the remaining microphones has a SSNR
of 40 dB

5.4 Application example of the proposedmethod
We consider an application example where the localiza-
tion of the acoustic reflectors is done using the proposed
EMmethod with and without prewhitening. More specif-
ically, we have used filter-based prewhitening approach as
discussed in Section 4.5. This experiment thus shows how
the proposed method can be used to map an environment
using a moving robot platform. The room parameters
were kept the same as the earlier experiment. Further-
more, the SDNR was set to − 10 dB corresponding to a
strong ego-noise. The loudspeaker-microphone arrange-
ment was similar to the previous experiments and follows
the a predefined path as shown in Fig. 10 indicated by the

Fig. 8 TOA estimation accuracy of the proposed EMmethod with and
without noise variance weighting for different SSNR levels for one of
the microphones

Fig. 9 DOA estimation accuracy of the proposed EM method with
and without noise variance weighting for different SSNR levels for
one of the microphones

blue dashed line. As depicted in the figure, the EM algo-
rithm with prewhitening performs better at estimating
acoustic reflector using the estimated TOAs and DOAs,
compared to EM algorithm without prewhitening.

6 Conclusion
In this paper, we consider the problem of estimating the
time- and direction-of-arrivals of acoustic echoes using a
loudspeaker emitting a known source signal and multiple
microphones. Among other examples, this is an impor-
tant problem in robot and drone audition, where these
parameters can reveal the positions of nearby acoustic
reflectors and thus facilitate mapping and navigation of
a physical environment. Some methods exist for solving

Fig. 10 Example of reflector localization for different array positions
using the proposed EM method with and without prewhitening
based on TOA and DOA estimates at an SDNR of − 10 dB
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the problems of acoustic reflector localization and room
geometry estimation; however, most of these rely on a pri-
ori information, e.g., of the TOAs or DOAs of the acoustic
echoes. However, estimating these is a difficult problem
on its own, which is dealt with by the methods proposed
herein. Moreover, even when the TOAs are estimated for
some of the traditional approaches, the difficult prob-
lem of echolabeling needs to be solved, since the order
of the corresponding reflection is generally unknown. We
therefore propose different methods for estimating, not
only the TOAs, but also the DOAs of acoustic echoes.
By estimating the DOAs also, it is possible to resolve
some of the ambiguity introduced by knowing only the
TOAs. The proposed method is based on the expectation-
maximization framework and are derived to be optimal
under different conditions ranging from the simple white
Gaussian noise scenario to scenarios with correlated and
colored noise. In the experiments, we show that pro-
posed methods are able to estimate the TOAs and DOAs
with higher accuracy and noise robustness compared to
existing methods. Moreover, we show that some of the
proposed variants can account for colored noise and sce-
narios where a microphone is faulty or more noisy than
the other microphones of the array. Finally, we con-
ducted a more applied experiment, where it is illustrated
how a room can be mapped from the estimated param-
eters, which is relevant to, e.g., autonomous robot and
drone applications. While the proposed method has a
higher computation time than traditional methods, this
can be reduced significantly by adopting the recursive
EM scheme and deriving the proposed methods in the
frequency domain.

Abbreviations
TOA: Time-of-arrival; EM: Expectation-maximization; UCA: Uniform circular
array; SNR: Signal-to-noise ratio; DOA: Direction-of-arrival; aSLAM: Acoustic
simultaneous localization and mapping; RIR: Room impulse response; TDOA:
Time difference-of-arrival; ML: Maximum likelihood; MVDR: Minimum variance
distortionless response; LCMV: Linearly constrained minimum variance; SAGE:
Space alternating generalized expectation; FIR: Finite impulse response; AR:
Autoregressive; EM-UCA: Proposed method without prewhitening or noise
weighting; EM-UCA-NW: Proposed method with only noise weighting;
EM-UCA-PW: Proposed method with only prewhitening; T60: Reverberation
time (60 dB); RPM: Revolutions per minute; DREGON: Database of drone audio
recordings; SDNR: Signal-to-diffuse-noise ratio; SSNR: Signal-to-sensor-noise
ratio; EM-SC: Single channel EM method; RIR-PP: RIR-based method with peak
picking; NLS: nonlinear least squares

Acknowledgements
Not applicable.

Authors’ contributions
JRJ and SG designed the idea for the manuscript. JRJ and US conducted the
experiments. All the authors contributed to the writing of this work. Moreover,
all author(s) read and approved the final manuscript.

Funding
This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement No. 871245.

Availability of data andmaterials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Audio Analysis Lab, CREATE, Aalborg University, Rendsburggade 14, 9000
Aalborg, Denmark. 2Bar-Ilan University, 5290002 Ramat-Gan, Israel.

Received: 13 April 2020 Accepted: 15 July 2020

References
1. C. Rascon, I. Meza, Localization of sound sources in robotics: a review.

Robot. Auton. Syst. 96, 184–210 (2017)
2. H. W. Löllmann, A. Moore, P. A. Naylor, B. Rafaely, R. Horaud, A. Mazel, W.

Kellermann, in Hands-free Speech Comm. andMicrophone Arrays.
Microphone array signal processing for robot audition, (2017), pp. 51–55

3. M. Strauss, P. Mordel, V. Miguet, A. Deleforge, in IEEE/RJS Int. Conf.
Intelligent Robots and Systems. DREGON: dataset and methods for
UAV-embedded sound source localization, (2018), pp. 5735–5742

4. F. Badeig, Q. Pelorson, S. Arias, V. Drouard, I. D. Gebru, X. Li, G. Evangelidis,
R. Horaud, in Int. Conf. Multimodal Interaction. A distributed architecture
for interacting with NAO, (2015)

5. F. Antonacci, J. Filos, M. R. P. Thomas, E. A. P. Habets, A. Sarti, P. A. Naylor, S.
Tubaro, Inference of room geometry from acoustic impulse responses.
IEEE Trans. Audio Speech Lang. Process. 20(10), 2683–2695 (2012)

6. M. Coutino, M. B. Møller, J. K. Nielsen, R. Heusdens, in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. Greedy alternative for room geometry
estimation from acoustic echoes: a subspace-based method, (2017),
pp. 366–370

7. J.-S. Hu, C.-Y. Chan, C.-K. Wang, M.-T. Lee, C.-Y. Kuo, Simultaneous
localization of a mobile robot and multiple sound sources using a
microphone array. Adv. Robot. 25(1–2), 135–152 (2011)

8. S. Ogiso, T. Kawagishi, K. Mizutani, N. Wakatsuki, K. Zempo,
Self-localization method for mobile robot using acoustic beacons.
ROBOMECH J. 2(1), 12 (2015)

9. C. Evers, P. A. Naylor, Acoustic SLAM. IEEE/ACM Trans. Audio Speech Lang.
Process. 26, 1484–1498 (2018)
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