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Abstract: This paper presents a comprehensive study on a novel voltage injection based offline
parameter identification method for surface mounted permanent magnet synchronous motors
(SPMSMs). It gives solutions to obtain stator resistance, d- and q-axes inductances, and permanent
magnet (PM) flux linkage that are totally independent of current and speed controllers, and it is able
to track variations in q-axis inductance caused by magnetic saturation. With the proposed voltage
amplitude selection strategies, a closed-loop-like current and speed control is achieved throughout
the identification process. It provides a marked difference compared with the existing methods that
are based on open-loop voltage injection and renders a more simplified and industry-friendly solution
compared with methods that rely on controllers. Inverter nonlinearity effect compensation is not
required because its voltage error is removed by enabling the motor to function at a designed routine.
The proposed method is validated through two SPMSMs with different power rates. It shows that
the required parameters can be accurately identified and the proportional-integral current controller
auto-tuning is achieved only with very limited motor data such as rated current and number of
pole pairs.

Keywords: PMSM drives; parameter identification; auto-tuning; current controller

1. Introduction

Surface mounted permanent magnet synchronous motors (SPMSMs) are widely used in servo
drives and electric vehicles due to their high efficiency, high torque density and good transient
performance [1–3]. In many control schemes of SPMSMs, such as current controller auto-tuning, model
predictive control and electromotive force (EMF) model based sensorless control, accurate values of
stator resistance (Rs), d- and q-axes inductances (Ld and Lq) and permanent magnet (PM) flux linkage
(ψf) are critical parameters that should be known to improve the control performance [4–6]. However,
in many cases, the parameters are designed by the motor manufacturers and will not be accurately
obtained prior to start up [7]. This has brought dilemmas in real applications and motivated the
research on offline parameter identification.

Offline parameter identification has been widely studied in recent decades [7–16] due to its
superior ability to provide motor parameters before the motor starts up [8,12]. Different signals are
used in the control strategy to fulfill the parameter identification. Generally speaking, offline parameter
identification can be divided into three categories: methods based on closed-loop controllers, methods
that use open-loop signal injections and methods that combine both of them, respectively.

The already tuned current controller or speed controller is a must for parameter identifications
that require closed-loop controllers [9,11,13–15]. A typical flow chart of this type of method is shown
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in Figure 1a [12]. With an already tuned current controller, Rs is calculated as the slope of voltage
and current curves by injecting an increasing current into the d-axis [9,11]. Ld and Lq identifications
are achieved by injecting high frequency (HF) sinusoidal current signals into d- and q-axes in [13,15],
and the magnetic saturation effect caused by inductance variation is also considered. In [14,15],
the ψf is identified with the already tuned speed controller and current controller, and issues that
may cause identification inaccuracy, such as the influence from dead-time effects, are eliminated.
However, it should be noted that the current and the speed controllers cannot be well-tuned without
the information about the Rs, Ld, Lq, ψf, rotor moment of inertia and viscous frictional coefficient [4,12].
Some papers cited above tuned their needed controllers by trial and error, but this is based on
experience and is rather time-consuming. By contrast, the identification methods based on open-loop
signal injection are much easier [4,10,12]. By injecting voltage signals into the d- and q-axes in an
open-loop manner, the required parameters are calculated according to the information of the injected
voltages and current feedback. However, due to the absence of closed-loop controllers, problems,
such as overcurrent protection, may potentially be triggered in the case of low-impedance motors [8].
In addition, the inductance cannot be identified at a specific saturation (current) point without the
help of the current controller. Furthermore, there are still no techniques to properly control the motor
speed without using a speed controller, which brings practical obstacles to ψf identification when using
open-loop voltage injection methods.

The influence from inverter nonlinearity effects must be considered in parameter identification [14,16].
A direct way is to introduce proper compensation into the identification strategy [14,17,18]. However, this
increases the complexity of the algorithm, and sometimes the inverter nonlinearities are too complex to
be well compensated. By comparison, offline parameter identification methods that do not need such
compensation have shown their unique superiority [12,13,16]. Notably, an open-loop based inductance
identification without need of inverter nonlinearity compensation is proposed in [12]. However, similar
methods to obtain Rs and ψf offline are still needed.
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Figure 1. Flow chart comparison of offline parameter identification for surface mounted
permanent magnet synchronous motors (SPMSMs): (a) flow chart of a traditional offline parameter
identification [12]; (b) flow chart of the proposed offline parameter identification.

To sum up, voltage injection based offline parameter identification with controllable current or
speed feedback and without requirement of inverter nonlinearity compensation is in great need in
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practical applications. Motivated by this, voltage signal injection based Rs, Ld, Lq and ψf identification
for SPMSMs, which meets all the above-mentioned requirements, is proposed in this paper. Thet overall
process can be achieved with very limited motor information such as the rated current (or maximum
current) and number of pole pairs. A flow chart of the proposed method is shown in Figure 1b.
More concretely:

(1) An increased voltage signal is injected through the d-axis, and the Rs is calculated using linear
regression (LR) at standstill using the information from the voltages and currents.

(2) Two HF voltage signals (with different amplitudes but the same frequency) are injected through
the d- and q-axes for Ld and Lq identification, and the Lq variation, which is caused by magnetic
saturation, is also considered. In addition, with a predesigned voltage amplitude selection process, the
desired HF voltage amplitudes are decided automatically, and current feedback is controlled properly.

(3) For ψf identification, a ramp voltage signal is given as the q axis voltage reference to excite the
back EMF, and a proportional-integral (PI) type voltage controller is first proposed to control the motor
speed. Influence from inverter nonlinearity is eliminated with the designed operation routine.

The rest of the paper is organized as follows: in Section 2, open-loop voltage injection based
offline parameter identification with controllable current and speed is proposed. Section 3 gives the
automatic tuning process of the PI current controller. In Section 4, the proposed method is verified on
two SPMSMs with different rated powers, and Section 5 concludes the whole paper.

2. Offline Parameter Identification Methodologies

2.1. PMSM Mathematical Model

If neglecting iron core saturation, losses and considering stator current as a symmetrical three
phase sinusoidal wave, the PMSM stator voltage Equations in a d-q frame can be described as in
Equation (1): [

ud
uq

]
=

[
Rs + pLd −ωeLq

ωeLd Rs + pLq

][
id
iq

]
+ωe

[
0
ψ f

]
(1)

where ud and uq are d- and q-axes voltages, respectively. Rs is the stator resistance. Ld, Lq are the d- and
q-axes inductances, respectively. ωe is the electrical angular velocity, id and iq are the current feedback
of the d- and q-axes, respectively. ψf is the PM flux linkage, and p is the d/dt operator in time domain.
For surface-mounted PMSM (SPMSM) and neglecting the inductance variation caused by magnetic
saturation, Ld = Lq = L.

2.2. Stator Resistance Identification

2.2.1. Voltage Injection Based Stator Resistance Identification Methodology

The Rs identification method solely based on voltage injection is proposed in the following.
Figure 2 shows the block diagram of the Rs identification. A linear increasing voltage signal, as
expressed in Equation (2), is injected through the d-axis, and the real position feedback from the encoder
is used for Park and inverse Park transmissions. By imposing voltage signals on u∗d only (u∗q = 0 V), the
induced current will keep the rotor self-fixed at its original position.[

u∗d(k + 1) u∗q(k + 1)
]T

=
[

u∗d(k) + ∆uRs
d 0

]T
(if id(k) ≤ Imax) (2)

where u∗d and u∗q refer to the d- and q-axes voltage references, respectively, ∆uRs
d is the incremental

voltage to be added at each step, and Imax (RMS) is the maximum current of a given motor.
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Figure 2. Block diagram of Rs identification.

When the motor shaft is at standstill, the values of elements with ωe in Equation (1) are 0.
Considering the voltage reference in Equation (2), Equation (1) is expressed by Equation (3). If the
current increasing speed is relatively slow by controlling the injected voltage, the value of Ldpid in
Equation (3) can be as small as several millivolts. Therefore, it can be ignored. Thus, the Rs can be
calculated as the gradient of the ud and id curve during the voltage injection. Moreover, for the safety
of a motor, a stop sign is added in Equation (4).[

u∗d u∗q
]T

=
[

Rsid + Ldpid 0
]T

(3)

[
u∗d(k + m) u∗q(k + m)

]T
=

[
0 0

]T
(if id(k) = Imax, m = 0, 1, 2 · · ·) (4)

When considering the voltage errors from the inverter nonlinearity, the relationship between u∗d
and id is described as u∗d = f (id) = R̂sid + ∆uerror during the voltage injection, where ∆uerror refers
to the lumped voltage errors caused by inverter nonlinearity effects and R̂s is the identified stator
resistance. By using the LR method for Rs identification, the relationship of R̂s and ∆uerror should

satisfy
n∑

j=1

(
∆uerror + R̂sidj − u∗dj

)2
= min. Then, Equation (5) should stand:


∂(∆uerror,R̂s)
∂∆uerror

=
n∑

j=1
2
(
∆uerror + R̂sidj − u∗dj

)
= 0

∂(∆uerror,R̂s)
∂R̂s

=
n∑

j=1
2
(
∆uerror + R̂sidj − u∗dj

)
idj = 0

(5)

In addition, the solutions of R̂s and ∆uerror are [11]
R̂s =

(∑n
j=1 idju∗dj

)
−

1
n

(∑n
j=1 idj

)(∑n
j=1 u∗dj

)
(∑n

j=1 i2dj

)
−

1
n

(∑n
j=1 idj

)2

∆uerror =
1
n

(∑n
j=1 u∗dj

)(∑n
j=1 i2dj

)
−

1
n

(∑n
j=1 idj

)(∑n
j=1 idju∗dj

)
(∑n

j=1 i2dj

)
−

1
n

(∑n
j=1 idj

)2

(6)

where u∗dj and idj are the d-axis voltage reference and current feedback at the j-th moment, and n is the
amount of sampling number. This is described as Equation (7):

n =
uRs

d_up − uRs
d_low

∆uRs
d

+1 (7)
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where uRs
d_up and uRs

d_low are voltages that induce the up current limit and the low current limit in the
selected current range when using Equation (6), respectively. The selection of these two current limits
will be further addressed in Section 2.2.2.

Moreover, since the voltage reference is used in Equation (6), R̂s should be the total values of
stator resistance, resistance in the cables and IGBT on-state resistances. However, it is acceptable to use
the identified Rs in algorithms such as current controller tuning and model predictive control, because
they also use the voltage references in their models.

2.2.2. Valid Current Range Selection for Stator Resistance Identification

One prerequisite to use Equation (6) for Rs identification is that the ∆uerror should be a constant;
otherwise, the varied ∆uerror may result in an ill convergence of the identified Rs. According to the
relationship of ∆uerror, id and u∗d, as briefly shown in Figure 3 [19], the ∆uerror only becomes a constant
when the current is relatively high. This is also the reason why Rs identification is always suggested to
be conducted at a high current level [9,20].
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However, the moment that ∆uerror becomes a constant is decided by configuration of the inverter
(rated current of the IGBTs and switching frequency) in the test but not by a specific current or voltage
value [19]. Thus, it is not reasonable to judge when to conduct Equation (6) only using current
feedback. Comparatively speaking, it is wiser to suggest when to conduct Equation (6) using the
variation of ∆uerror. Therefore, a method that takes the change of ∆uerror into consideration is proposed.
It guarantees that the current range in Equation (6) has fully entered the saturated zone in Figure 3,
and it is summarized in the following:

(1) The output voltage references are given according to Equation (2) from u∗d(0) = 0 V.
(2) Equation (6) is conducted when id is within a relatively low current range, say (Ilow, Imedium).

∆uerror and R̂s, calculated using Equation (6), are defined as ∆u(1)
error and R̂(1)

s .
(3) Equation (2) is continued and Equation (6) is repeated when id is between a specific current

range, say (Imedium, Iup). ∆uerror and R̂s are calculated using Equation (6), and are renamed as ∆u(2)
error

and R̂(2)
s . The Ilow, Imedium and Iup are defined according to Equation (8), in which the α1, α2 and α3

should satisfy Equation (9).

Ilow =
√

2·α1·Imax, Imedium =
√

2·α2·Imax, Iup =
√

2·α3·Imax (8)

α1 < α2 < α3 < 1, α3 − α2 = α2 − α1 (9)
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(4) The values of ∆u(1)
error and ∆u(2)

error and the values of R̂(1)
s and R̂(2)

s are compared if:
Condition1: ∆u(1)

error , ∆u(2)
error or R̂(1)

s , R̂(2)
s ,

Condition2: ∆u(1)
error ≈ ∆u(2)

error and R̂(1)
s ≈R̂(2)

s (say, the difference between ∆u(1)
error and ∆u(2)

error is less
than 0.02 V and the difference between R̂(1)

s and R̂(2)
s is less than 0.02 Ω).

If the result meets Condition2, then the correct Rs is identified and R̂(1)
s is regarded as the result.

The current range I > Ilow of Condition2 is designated as the valid current range for Rs identification
under the specific inverter configuration used for test.

If the result meets Condition1, then α1, α2 and α3 are redefined in (10), but they should still satisfy
Equation (9), and the processes in Equations (1)–(4) will be redone until the results meet Condition2
and finish an Rs identification. The repetitive current increase process from a low current is shown by
the diagram at the bottom of Figure 3.

αn = αn + ∆α (∆α < 1, n = 1, 2, 3) (10)

For Condition1, ∆u(1)
error , ∆u(2)

error or R̂(1)
s , R̂(2)

s indicates that the current is still in the linear zone
or straddles the linear zone and saturated zone, whereas for Condition2, ∆u(1)

error ≈ ∆u(2)
error and R̂(1)

s

≈ R̂(2)
s represent that the current is sufficiently high and has fully entered the saturated zone. The

identified Rs is the desired value.
It should be noted, as stated above, the current value necessary for the ∆uerror curve in Figure 3 to

enter its saturated zone is decided by the configuration of the inverter. Therefore, the rated current
of the power device can also be used as the baseline current to evaluate the valid current range for
Rs identification. The reasons to use the Imax of a tested motor as the baseline in Equation (8) are
as follows:

(1) The induced test current during the voltage injection should not exceed the Imax of a given
motor; otherwise, safety issues such as overcurrent may occur in the motor.

(2) The rated current of the inverter is always higher than the Imax of the motor in a typical drive
system, and if the induced current is smaller than Imax, then the safety of both the motor and the driver
is guaranteed.

(3) The investigations in [9,20] show that the Imax of the tested motor is always beyond the current
value corresponding to the knee point of ∆uerror in Figure 3, so it is reasonable to use the Imax as a
gauge to evaluate when ∆uerror enters the saturated zone.

2.3. Voltage Injection Based d- and q-Axes Inductances Identification

The HF signal is one of the most commonly used methods for inductance identification. When an
HF voltage in (11) is injected into the motor, the d-axis HF current response is in Equation (12):[

u∗d u∗q
]T

=
[

Ud_inj sin(ωht) 0
]T

(11)

id = Idh sin(ωht + ϕ) (12)

where Ud_inj is the magnitude of the injected HF voltage, ωh = 2 × pi × f h (pi ≈ 3.1416 and f h is the
injected frequency), ϕ is the phase angle between the resultant stator terminal voltage and current, and
Idh is the amplitude of the induced HF current. From the Laplace transform and substituting s = jωh,
the expression of Ud_inj is in Equation (13):

Ud_inj =
√

R2
s + L2

dω
2
h × Idh (13)
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As seen from Equation (13), if the f h is high enough, the ωh will be sufficiently high, then the
voltage drop on inductive reactance is much higher than that on stator resistance. Thus, the solution of
Ld is [9]:

L̂d = Ud_inj/Idhωh (14)

where L̂d is the identified d-axis inductance. In addition, it should be noted that the current distortion
near the zero current clamping (ZCC) zone may affect the identification accuracy. In order to pull the
induced current out of the ZCC zone, a small fixed dc voltage Ud_dc is added to u∗d in Equation (11) to
guarantee a more precise Ld identification.

As stated in [8], the values of stator inductances are affected by the magnetic saturation level
(current magnitude). Since the SPMSM is mostly operated under i∗d = 0 (i∗d is the d-axis current reference),
the influence of the saturated effect on Ld can be neglected. However, the variations in Lq caused by
the saturated effect should be considered. In this paper, the “dc+ac” voltage injection is used to extract
Lq at a random saturation level, where the dc signal determines the saturation point and the ac signal
is used to identify the Lq at that saturation point. When an HF voltage in Equation (15) is injected into
the motor, the q-axis HF current response is in Equation (16):[

u∗d u∗q
]T

=
[

0 Uq_dc + Uq_inj sin(ωht)
]T

(15)

iq = Iq_dc + Iqh sin(ωht + ϕ) (16)

where Uq_inj is the magnitude of the injected HF voltage, Iqh is the amplitude of the induced HF current,
Uq_dc is the dc voltage signal, and its induced dc current is Iq_dc. The identified Lq is calculated in
Equation (17) using a similar derivation of Equation (13) and Equation (14):

L̂q = Uq_inj/Iqhωh (17)

where L̂q is the identified q-axis inductance.
However, when using the HF voltage signals for stator inductance identification, the following

dilemmas are unavoidable:
(1) Due to the existence of inverter nonlinearity effects, the Ud_inj in Equation (14) and Uq_inj in

Equation (16) are not the real voltages that impose on the motor. When considering the voltage errors
caused by inverter nonlinearity effects, the real voltages that impose on the motor are rewritten using
Equation (18):

Ux_inj_r = Ux_inj − ∆uerror (x = d or q) (18)

where Ud_inj_r and Uq_inj_r refer to the real voltages that impose on a motor and they should be used to
replace Ud_inj and Uq_inj in Equation (14) and Equation (17), respectively.

(2) Due to the absence of a current controller, it is not easy to precisely determine the dc current
Iq_dc in Equation (16). A strategy is proposed in [10] to approximate the Iq_dc using calculation of
“Uq_dc/Rs”, but it should be noted that due to the influence of inverter nonlinearity effects, the induced
Iq_dc is not a simple division of Uq_dc by Rs, and an incorrect Iq_dc will inevitably cause error to
Lq identification.

(3) Due to the open-loop voltage injection based character, such as the method in [9,21],
the amplitude of the excited HF current is not predictable. This may potentially trigger overcurrent
protection, especially in case of low-impedance motors.

To solve the above-mentioned dilemma (1), two sets of HF voltage signals, with the same frequency
(f h), same dc voltage component but different amplitudes Ud_inj1 and Ud_inj2 (or Uq_inj1 and Uq_inj2),
are sequentially injected through the d-axis or q-axis voltage for Ld or Lq identification. According
to Equation (14), if the detected current amplitude excited by Ud_inj1sin(ωht) is Idh1 and that excited
by Ud_inj2sin(ωht) is Idh2, then the identified Ld can be calculated in Equation (19), and the Lq can be
calculated in Equation (20) using a similar derivation. There are two advantages for using this method.
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(i) Both the dc voltage bias and current bias are removed by simple subtraction in denominators and
numerators in Equation (19) and Equation (20). (ii) The voltage errors caused by inverter nonlinearity
effects are eliminated; the detailed reasons for this will be further explained at the end of this Subsection.

Ud_inj2 = L̂dIdh2ωh, Ud_inj1 = L̂dIdh1ωh

⇒ L̂dωh(Idh2 − Idh1) =
(
Ud_inj2 −Ud_inj1

)
⇒ L̂d =

Ud_inj2−Ud_inj1

(Idh2−Idh1)ωh

(19)

L̂q =
Uq_inj2 −Uq_inj1(

Iqh2 − Iqh1

)
ωh

(20)

To solve the aforementioned dilemma (2) and dilemma (3), a general approach is proposed here
which preserves the character of voltage injection and achieves a controllable current feedback during
the stator inductance identification. First, a voltage signal, which is defined in Equation (21), is given as
u∗q to detect every Uq_dc that should exert on the motor for each desired saturation point (Iq_dc), while
the u∗d is kept as 0 V. The duration between every k to k+1 period in Equation (21) should be enough
to make sure the induced Iq_dc has been fully stabilized at every dc voltage step. When the induced
current achieves at a steady state, the excited Iq_dc(k) and its corresponding Uq_dc(k) are recorded
accordingly. Second, in order to make sure the excited Idh and Iqh are in the controllable range, a voltage
amplitude selection strategy to determine the values of Ux_inj1 and Ux_inj2 (x = d or q) is designed in
the following:

After knowing the desired dc voltage at a specific saturation point (current level), two current
thresholds are subjectively decided (defined as IL

low and IL
up). They are bigger than the dc current but

close to each other. Then, a fixed frequency HF voltage signal is superposed upon the predetermined
Ud_dc (for Ld identification) or Uq_dc (for Lq identification). The amplitude of the HF voltage signal is
increased from 0 V. Voltage references during this process are shown by Equation (22), and the voltages
that induce IL

low and IL
up are set as Ux_inj1 and Ux_inj2 (x = d or q), respectively. The incremental voltage

at each step can be relatively small for more accurate Ux_inj1 and Ux_inj2 (x = d or q) detection.

u∗q(k + 1) = u∗q(k) + ∆uL
q

∣∣∣k∈N+ (21)

u∗x = Ux_dc + Ux_inj(k) sin(ωht)
∣∣∣
k∈N+

Ux_inj(k) = Ux_inj(k− 1) + ∆uL

Ux_inj(0) = 0
, (x = d or q) (22)

where ∆uL
q in Equation (21) and ∆uL in Equation (22) are incremental voltage values to be added at

each step.
Figure 4 is the block diagram of the proposed d- and q-axes inductances identification. Position

information from the encoder is used to give the real position. For Ld identification, the signal injected
in the d-axis enables the rotor to be self-fixed and the identification is achieved at standstill. For Lq

identification, the q-axis current produces electromagnetic torque, which may rotate the rotor and affect
the identification results, so the rotor shaft should be locked using a proper torque for Lq identification.
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The reason that Equation (19) and Equation (20) can eliminate the voltage errors caused by inverter
nonlinearity effects is as follows:

The numerators of Equation (19) and Equation (20) can be expressed by Equation (23). According
to Equation (18), Equation (23) is rewritten as Equation (24).

Ux_inj2 −Ux_inj1 (x = d or q) (23)

Ux_inj2_r + ∆uerror2 −Ux_inj1_r − ∆uerror1 (x = d or q) (24)

The inductance is identified under standstill, so the position feedback is a constant during the
identification. As seen from Figure 3, when the current is high enough, the ∆uerror is in the saturated
zone, then ∆uerror2 = ∆uerror1 stands. When the current is in the linear zone, ∆uerror2 , ∆uerror1, but
with the proposed method to control the induced current, Equation (22) is able to decide Ux_inj2 and
Ux_inj1 (x = d or q) and make their excitation current amplitudes Ixh2 and Ixh1 (x = d or q) quite close.
Then, ∆uerror2 ≈ ∆uerror1 stands. That is to say that ∆uerror is eliminated at both high current levels and
low current levels by the two HF voltage injection method.

2.4. Voltage Injection Based PM Flux Linkage Identification

The q-axis voltage Equation is expressed in Equation (25). It can be seen that the ψf is associated
with electrical angular velocityωe, so the rotor movement is needed to excite the back-emf and compute
the ψf accordingly. In this paper, the ψf identification is conducted under no load condition, and motor
shaft free rotation is allowed.

u∗q = Rsiq + pLqiq + Ldωeid +ωeψ f (25)

As seen from Equation (25), when the motor is at standstill, the existence of u∗q will excite iq, and
the iq will generate shaft torque, which enable the movement of the rotor. The induced back-emf will
lessen the voltage drop on Rs, so the iq (shaft torque) is decreased. If the u∗q is controlled properly,
balanced voltage drops on Rsiq and ωeψf can be achieved, then the motor can be regulated at a speed
steady state by controlling the u∗q only. The reason for the existence of iq under no load is to generate
proper torque to overcome the friction on the motor shaft. In addition, since the id of the SPMSM
is always controlled to be 0 A and the Ld is very small (just several milli-henry), the value of Ldωeid
in Equation (25) can be ignored compared with the value of ωeψf when the speed is not too low.
An example can be given using parameters of motor #1 in Table 1. Supposing the speed is 300 r/min
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(which is 125.6 rad/s for ωe) and the variation on id is about 0.2 A, the maximum variation of Ldωeid is
only 0.06, whereas the value of ωeψf is 13.95 V.

Table 1. Main parameters of SPMSMs.

Parameter Symbol Motor #1 Motor #2

Rated power P0 1.0 kW 2.5 kW
Rated torque T0 4 N·m 10 N·m
Rated speed n0 2500 r/min 2500 r/min

Rated current (RMS 1) I0 4.5 A 10.0 A
Maximum current (RMS) Imax 13.5 A 30.0 A

dc bus voltage Udc 300 V 300 V
Number of pole pairs p0 4 4

Stator resistance 2 Rs 1.05 Ω 0.35 Ω
d- and q-axes inductances 2

(unsaturated)
L 2.58 mH 1.04 mH

Rotor PM flux linkage 2 ψf 0.111 Wb 0.122 Wb
1 RMS is short for Root Mean Square. 2 For reference, the parameters are measured offline in advance.

As stated in [14], the influence from inverter nonlinearities is a key factor influencing the
identification accuracy of the ψf. Under the steady state condition and considering the influence from
inverter nonlinearity effects, Equation (25) is rewritten as [16]:

u∗q = Rsiq +ωeψ f −DqVdead (26)

where DqVdead is the lumped voltage errors caused by inverter nonlinearity effects, Vdead is a constant
that is related to the parameters of power devices, dc bus voltage and load condition, and Dq is a
function of electrical angle θe and directions of the three phase currents [14]. The expression of Dq is in
Equation (27), and the simulated waveform of Dq when using i∗d = 0 control is shown in Figure 5.

Dq = 2 cos(θe) × sign(ia)+2 cos(θe − 2/3× pi) × sign(ib) − 2 cos(θe − 1/3× pi) × sign(ic) (27)

where ia, ib and ic are A, B and C phase currents, pi ≈ 3.1416, and sign(i) =
{

1, i > 0
−1, i < 0

.
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As seen from Figure 5, the voltage distortion caused by inverter nonlinearity effects on u∗q is
a combination of a dc component and a sixth-order distortion. It will deteriorate ψf identification
accuracy, especially when the speed is relatively low. In order to get rid of the influence from DqVdead,
different compensation methods are adopted in [14,22]. However, the methods also have some practical
limitations. First, the polarity of phase currents cannot be accurately detected due to the zero current
clamping effect. Second, the electrical angle detection error is inevitable, so the accuracy of Dq is
affected, which consequently will affect ψf identification.
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In this paper, ψf identification which does not need inverter nonlinearity compensation and the
establishment of a speed controller and current controller is proposed. The overall process is achieved
by controlling the u∗q, and its block diagram is shown in Figure 6. It is described as follows:

While the motor is at standstill under no load, the u∗q is gradually increased, while the u∗d is held
as constant at 0 V. The torque excited by u∗q will enable the speed to accelerate from 0 r/min. When the
speed feedback arrives at ωm1, the speed is maintained to be ωm1 as much as possible by controlling u∗q
in Equation (28), and the speed steady state is kept at ωm1 for at least time period T1. The averages
of the accumulated u∗q, iq and ωe within T1 are calculated using Equation (29). Next, the u∗q continues
to increase in the ramp manner until the speed arrives at ωm2, similar to the process when the speed
is at ωm1. The speed is maintained at ωm2 as much as possible by controlling u∗q in Equation (28) for
the duration of T2. Then, the mean values of the accumulated u∗q, iq and ωe within T2 are calculated
using Equation (30). Finally, the u∗q is decreased gradually to 0 V and the ψf identification is finished.
In addition, in order to guarantee that all the information is acquired under the speed steady state,
the accumulation processes in T1 and T2 are started only when the speed has arrived at ωm1 and ωm2

after a little while.Energies 2020, 13, x FOR PEER REVIEW 11 of 21 

 

 324 

Figure 6. Block diagram of ψf identification. 325 

* *

n n=1 or 2

* *

n n=1 or 2

( ) ( 1) , if ( 1)

( ) ( 1), if ( 1)

f

q q q m m

q q m m

u k u k u k

u k u k k


 

 

= − + − 

= − − 
 (28) 

where Δu
ψf 

q  is the adjustment voltage on u
* 

q  to control the speed feedback and is designed to be 326 
relatively small so that the speeds in T1 and T2 will not suffer drastic variation and a speed steady 327 

state is achieved. 328 

( ) ( ) ( )
1 1 1

* *
_1 _1_1 1 1 1

1 1 1

1/ , 1/ , 1/
N N N

q eq q q e

k k k

u N u k i N i k N k 
= = =

= = =    (29) 

( ) ( ) ( )
2 2 2

* *
_ 2 _ 2_ 2 2 2 2

1 1 1

1/ , 1/ , 1/
N N N

q eq q q e

k k k

u N u k i N i k N k 
= = =

= = =    (30) 

where *

_1qu , _1qi  and _1e  are the average values of the q-axis voltage, q-axis current and electrical 329 

angular velocity within T1, and *

_ 2qu , _ 2qi  and _ 2e  are those within T2. Besides, N1 = T1/Ts and N2 330 

= T2/Ts, Ts is the sampling period. In this paper the Ts is equal to the pulse width modulation (PWM) 331 

switching period. 332 

With Equation (29), Equation (30) and the already identified sR , expressions of *

_1qu  and *

_ 2qu  333 

can be expressed as follows: 334 

( )
1

*
_1 _1_1 1

1

1/
N

s q eq f dead

k

u R i N DqV k 
=

= + −   (31) 

( )
2

*
_ 2 _ 2_ 2 2

1

1/
N

s q eq f dead

k

u R i N DqV k 
=

= + −   (32) 

In this way the sixth-order distortion on DqVdead becomes a constant. Subtracting Equation (31) 335 

from Equation (32), the ψf is calculated as: 336 

( )_ 2 _1_ 2 _1 /s sq qf q q eu R i u R i = − − +   (33) 

where f  is the identified PM flux linkage, and _ 2 _1e ee   = − . The value of DqVdead is affected 337 

by load condition, since the ψf is identified under no load and the motor torque is mainly used to 338 

overcome the shaft friction. Thus, ( )
1

1

1

1/
N

dead

k

N DqV k
=

  and ( )
2

2

1

1/
N

dead

k

N DqV k
=

  in Equation (31) and 339 

Equation (32) can be regarded as having the same values [16,23], and they are eliminated by the 340 
subtraction in Equation (33). Hence, the voltage error caused by inverter nonlinearity is removed. 341 

dq


*u


*u


PMSM

abc


a

i

b
i

i


i




dq

e


d
i

q
i

*

q
u

f


SVPWM
*

d
u

0

Eq.(28)

ψf identified result

( )Eq. 33

*

q
u

m


e


sR

AC

DC

R
S

T

p0p0

d

dt

Figure 6. Block diagram of ψf identification.

u∗q(k) = u∗q(k− 1) + ∆u
ψ f
q , if ωm(k− 1) < ωmn|n=1 or 2

u∗q(k) = u∗q(k− 1), if ωm(k− 1) ≥ ωmn|n=1 or 2
(28)

where ∆uψ f
q is the adjustment voltage on u∗q to control the speed feedback and is designed to be

relatively small so that the speeds in T1 and T2 will not suffer drastic variation and a speed steady state
is achieved.

u∗q_1 = 1/N1

N1∑
k=1

u∗q(k), iq_1 = 1/N1

N1∑
k=1

iq(k), ωe_1 = 1/N1

N1∑
k=1

ωe(k) (29)

u∗q_2 = 1/N2

N2∑
k=1

u∗q(k), iq_2 = 1/N2

N2∑
k=1

iq(k), ωe_2 = 1/N2

N2∑
k=1

ωe(k) (30)

where u∗q_1, iq_1 and ωe_1 are the average values of the q-axis voltage, q-axis current and electrical

angular velocity within T1, and u∗q_2, iq_2 and ωe_2 are those within T2. Besides, N1 = T1/Ts and
N2 = T2/Ts, Ts is the sampling period. In this paper the Ts is equal to the pulse width modulation
(PWM) switching period.
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With Equation (29), Equation (30) and the already identified R̂s, expressions of u∗q_1 and u∗q_2 can
be expressed as follows:

u∗q_1 = R̂siq_1 +ωe_1ψ f − 1/N1

N1∑
k=1

DqVdead(k) (31)

u∗q_2 = R̂siq_2 +ωe_2ψ f − 1/N2

N2∑
k=1

DqVdead(k) (32)

In this way the sixth-order distortion on DqVdead becomes a constant. Subtracting Equation (31)
from Equation (32), the ψf is calculated as:

ψ̂ f =
(
uq_2 − R̂siq_2 − uq_1 + R̂siq_1

)
/∆ωe (33)

where ψ̂ f is the identified PM flux linkage, and ∆ωe = ωe_2 −ωe_1. The value of DqVdead is affected
by load condition, since the ψf is identified under no load and the motor torque is mainly used to

overcome the shaft friction. Thus, 1/N1

N1∑
k=1

DqVdead(k) and 1/N2

N2∑
k=1

DqVdead(k) in Equation (31) and

Equation (32) can be regarded as having the same values [16,23], and they are eliminated by the
subtraction in Equation (33). Hence, the voltage error caused by inverter nonlinearity is removed.

3. Current Controller Parameters Configuration

The tuning process of the PI current controller with the identified motor parameters has been well
explained in [4], the schematic of the d- and q-axes current controller is shown in Figure 7, where i∗d and
i∗q are the d- and q-axes current references. The decoupling voltages ud0 and uq0 are in Equation (34).
According to [4], for q-axis, if the transfer function of the current controller is GACR = Kp_iq(1 + Kiq_iq/s),
then the Ki_iq = Rs/Lq according to Rs – L pole cancellation, and the q-axis current closed-loop transfer
function is in Equation (35).

ud0 = −Lqωeiq
uq0 = Ldωeid +ωeψ f

(34)

iq
i∗q

=

Kp_iq
Lq

s +
Kp_iq

Lq

=
ωiq

s +ωiq
(35)

where s is the Laplace operator. ωiq is the cutoff frequency of q-axis current controller, and it can be set
by the users. According to Equation (35), Kp_iq = Lqωiq. The gains for the d-axis current controller can
be configured accordingly.
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4. Experiment Results

The proposed parameter identification scheme is verified on two different SPMSMs: motor #1
is 110SJT-M040D with rated power as 1 kW, and motor #2 is 130SJT-M100D with rated power as
2.5 kW (GSK CNC EQUIPMENT CO., LTD, Guanzhou, China). Their available parameters on the
datasheet are listed in Table 1. Both motors are controlled by a servo driver (GE2030T-LA1) (GSK CNC
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EQUIPMENT CO., LTD, Guanzhou, China) with digital signal processor (DSP) TMS320F28377s (Texas
Instruments, Dallas, TX, USA) as the control chip. The current sampling frequency and the voltage
reference update frequency are both 8 kHz, the speed sampling frequency is 4 kHz and the dead-time
is 1.6 µs. A Magtrol dynamometer (Model: HD-815-8NA from Magtrol, Buffalo, NY, USA) is used to
provide torque to lock the motor shaft under Lq identification. The experiment platform is shown in
Figure 8.

All experiment data are sampled using the DSP and transmitted to the upper monitor software in
the computer: the transmission frequency is 8 kHz.
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4.1. Voltage Injection Based Stator Resistance Identification

For Rs identification, motor #1 is used for valid current range selection first. ∆uRs
d is designed

small enough as 7.5 × 10−5 V, the initial values of α1, α2 and α3 in Equation (10) are set as 0.05, 0.1 and
0.15, respectively, and ∆α is set as 0.05. It should be noted that the values of αn (n = 1, 2, 3) and ∆α
can also be set as other values, the settings detailed in this section are just to offer verification that the
proposed method in Section 2.2.2. has the ability to find the valid current range for Rs identification.
Related waveforms obtained by Rs identification using the LR method are shown in Figure 9; the shaft
is aligned to θe = 0◦ during Rs identification. For better presentation, we divided the results into dots.
The duration between two dots is 500 ms. The identified Rs of motor #2 is 0.37 Ω and the related
waveforms are similar to those of motor #1 in Figure 9. Furthermore, it is noteworthy that the proposed
method is able to determine the Rs but without the need to consider the current delay induced by
inductance on the motor phase.

As seen from Figure 9, the results in Figure 9f meet Condition2: ∆u(1)
error ≈ ∆u(2)

error and R̂(1)
s ≈ R̂(2)

s in
Section 2.2.2., whereas the results of Figure 9a–e belong to Condition1: ∆u(1)

error , ∆u(2)
error or R̂(1)

s , R̂(2)
s

in Section 2.2.2, and it is apparent that the R̂s in Figure 9a–e has bigger deviation compared with the
R̂s in Figure 9f. It approves the effectiveness of the method in Section 2.2.2, which selects a valid
current range for LR to obtain an accurate Rs identification. Moreover, according to the results in
Figure 9f, it should be noted that the selected valid current range (Ivalid > 5.73 A) for Rs identification is
already beyond the 1 p.u. of the rated current of motor #1. This further shows that the concept “the Rs

should be identified beyond 80% of the rated current” in [20] may not be suitable in all conditions,
especially for motors with relatively low rated currents. Thus, the current range selection method for
Rs identification proposed in this paper is more reasonable.
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Figure 9. Experiment Rs identification results (Motor #1,
√

2Imax= 19.1A): (a) Ilow = 0.96 A,
Imedium = 1.91 A, Iup = 2.87 A; (b) Ilow = 1.91 A, Imedium = 2.87 A, Iup = 3.82 A; (c) Ilow = 2.87 A, Imedium

= 3.82 A, Iup = 4.78 A; (d) Ilow = 3.82 A, Imedium = 4.78 A, Iup = 5.73 A; (e) Ilow = 4.78 A, Imedium =

5.73 A, Iup = 6.69 A; (f) Ilow = 5.73 A, Imedium = 6.69 A, Iup = 7.64 A.

4.2. Voltage Injection Based d- and q-Axes Inductances Identification

As stated above, due to the fact that i∗d = 0 for SPMSMs, Ld only needs to be identified under
unsaturated condition, whereas the Lq variation caused by the magnetic saturation effect should be
considered. The selection of the injected frequency f h is also a tricky task for HF based inductance
identification. On the one hand, the f h should be as high as possible to increase the inductive impedance.
On the other hand, a too high f h will result in very limited sampling points in a HF current period,
which will influence the detection of Idh and Iqh. The f h is commonly set as or below one tenth of the
sampling frequency (8 kHz in this paper). For tradeoff between identification accuracy and sampling
rate, the f h is set as 500 Hz.

By injecting a stepped increase dc voltage in the q-axis in Equation (21), the relationship between
iq and u∗q of motor #1 at standstill is shown in Figure 10a; similar results for motor #2 at standstill
are shown in Figure 11a. Values of u∗q and iq in Figures 10a and 11a can be regarded as Uq_dc and
Iq_dc in Equation (15) and Equation (16) in Lq identification. In this way, the Lq can be identified at a
random saturated point by voltage injection only. The identified Lq of motor #1 and motor #2 using
the proposed method under different current levels are shown by red curves in Figures 10b and 11b,
respectively. Moreover, the identified Lq of motor #1 and motor #2 using methods in [9] are shown by
blue curves in Figures 10b and 11b, respectively. Good consistency of the results using two methods
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verifies the correctness of the proposed method. In order to avoid undesired shaft rotation, the motor
shaft should be locked by the dynamometer with proper torque during the whole Lq identification in
Figures 10 and 11.
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Figure 10. Lq identification results of motor #1: (a) relationship of u∗q and iq; (b) Lq identification results
under different saturated conditions.
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Figure 11. Lq identification results of motor #2: (a) relationship of u∗q and iq; (b) Lq identification results
under different saturated conditions.

It should be noted that the inductance identification in [9] requires inverter nonlinearity
compensation, and it is achieved using the look up table based compensation method in [24].
The voltage ∆uerror that is used for inverter nonlinearity compensation is expressed in Equation (36),
and the relationship of ∆uerror and id at θe = 0◦ is shown in Figure 12.

∆uerror(k) = u∗d(k) − R̂sid(k) (36)
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Figure 12. Waveforms of id and ∆uerror of motor #1 under θe = 0◦.

As seen from Figure 12, the ∆uerror increases with the increase of id at the beginning and becomes
a constant eventually. Moreover, the ∆uerror has fully entered the saturated zone (with a value of
5.81 V approximately) when id = 5.73 A. This further verifies the valid current range selection for Rs

identification in Figure 9.
The Lq identification process of motor #1 at x A (x = 8, 9 and 10) is shown in Figure 13.
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Figure 13. Lq identification results of motor #1 at 8 A, 9 A and 10 A.

In Figure 13, the dc voltages at these current levels are obtained from the results in Figure 10a
and are set as 13.51 V, 14.61 V and 15.73 V, respectively. Voltage thresholds Uq_inj1 and Uq_inj2 in
Equation (20) are chosen as ac voltage amplitudes that induce [x × (1 + 0.05)] A and [x × (1 + 0.1)] A
(x = 8, 9, 10), respectively. Figure 13 shows the injected voltage amplitude selection process (waveforms
in pink background), the 2 HF voltage injection process (waveforms in yellow background), and the
identified Lq under different saturation levels. A decrease Lq can be seen with the increase of dc current,
and this is caused by magnetic saturation effect.

The Ld only needs to be identified under unsaturated condition for SPMSMs, and the waveforms
for motor #1 and motor #2 are quite similar, so only the Ld identification results of motor #1 are shown
in Figure 14. In order to pull the excited id out of the zero current clamping zone, a small dc offset (2 A)
that will not cause a severe magnetic saturation effect is added to the HF voltage signal.
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Figure 14. Ld identification results of motor #1 at 2 A.

The waveforms in pink, grey and green background in Figure 14 represent the injected voltage
amplitude selection, two HF voltage injection and Ld calculation processes. The identified Ld for motor
#2 using similar methods under 2 A dc offset is 1.07 mH.

4.3. Voltage Injection Based PM Flux Linkage Identification

The waveforms of ψf identification in motor #1 are shown in Figure 15, in which the ωm1 is set as
300 r/min and ωm2 is set as 500 r/min.
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Figure 15. ψf identification results of motor #1: (a) waveform of q-axis voltage reference; (b) waveform
of q-axis current; (c) waveform of electrical angular velocity; (d) identified permanent magnet (PM)
flux linkage.

As seen from Figure 15a,c, the speed steady state can be easily achieved by controlling the u∗q. It is
noteworthy that big current oscillation happens on iq, and the oscillation frequency changes with the
speed variation. This might be caused by the current measurement offset error according to analysis
in [25]. The average calculation in Equation (31) and Equation (32) can be used to extract the average
values of iq under the conditions of ωm1 and ωm2. Moreover, it should be noted that in Figure 15b a
short time is needed for iq to reach the steady state after the speed arrives at ωm1 or ωm2. Therefore,
the calculations in Equation (31) and Equation (32) should also be started after the speed has reached
the preset reference for a while. The identified ψf of motor #2 using the same method is 0.127 Wb, and
the waveforms are similar to those in Figure 15.

To sum up, the identified Rs, Ld, Lq and ψf of motor #1 and motor #2 are shown in Table 2. For both
motors, the deviations between the identification results and the offline measured values are less than
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7%. The accuracy of the methods in this paper is adequate to be potentially applied for the purposes of
current controller tuning (PI parameter configuration) (the work in [4] allows a deviation less than
11%), current predictive control (where a 10% parameter deviation is allowed in model predictive
control without robust algorithms [26]) or sensorless control (the work in [10] allows a deviation less
than 7%).

Table 2. Identification results summary.

Motor #1 Motor #2

Parameter Rs (Ω) Ld
1 (mH) Lq

1 (mH) ψf (Wb) Rs (Ω) Ld
1 (mH) Lq

1 (mH) ψf (Wb)

Reference 1.05 2.58 2.58 0.111 0.35 1.04 1.04 0.122
Identified 1.08 2.68 2.67 0.116 0.37 1.07 1.11 0.127
Deviation 2.9% 3.9% 3.5% 4.5% 5.7% 2.9% 6.7% 4.1%

1 The identified stator inductances are compared under unsaturated condition, and Lq identification results under
saturated condition are compared in Figures 10 and 11.

4.4. Current Controller Auto-Tuning

With the identified parameters, the PI current controller of motor #1 is configured according to
the contents of Section 3. The expected cutoff frequencies of the current loop of the d- and q-axes are
both set as 1 kHz (namely, ωid = ωiq = 2 × pi × 1000). The sinusoidal (1kHz) and step reference tracking
tests are given through the d-axis and the results are shown in Figure 16. The d- and q-axes current
waveforms during the speed step (0–1000 r/min) process are given in Figure 17.
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Figure 16. Performance of auto-tuned current controller in motor #1: (a) 1 kHz sinusoidal waveform
tracking test; (b) step reference test.
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Figure 17. Speed step test of motor #1: (a) without the decoupling voltages (ud0 and uq0); (b) with
decoupling voltages (ud0 and uq0).

It can be seen from Figure 16a,b that good current tracking ability can be obtained when the
current controller is automatically tuned. In Figure 16a, the amplitude attenuation ratio between the
feedback current and reference current is about 0.71, and the phase delay between the sinusoidal
reference and feedback currents is about 32◦. In Figure 17, the q-axis current tracking performance is
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deteriorated at the q-axis current saturation zone when decoupling voltages are not added, and this
can be well enhanced when the decoupling voltages are added.

5. Conclusions

In this paper, a novel voltage injection based offline parameter identification is proposed to
obtain Rs, Ld, Lq and ψf in a given SPMSM and achieve an auto-tuned current controller, and the main
contributions are:

(1) The overall identification strategies are totally independent from the current controller and
speed controller. Moreover, they can be completed automatically with very limited data that are
accessible from the nameplate of an SPMSM, such as rated current and number of pole pairs. Thus,
they can be easily adopted in industrial applications.

(2) Simple voltage amplitudes selection processes are designed in this paper. Together with
the open-loop voltage injection strategies, the proposed methods are able to detect the inductance
variation at a random saturation (current) level for a given motor. Meanwhile, it achieves a controllable
current and speed by automatically deciding the voltage reference during the entire identification
process. These are not achievable in the conventional voltage injection based methods due to the
open-loop character.

(3) Practical issues that may influence the identification accuracy, such as valid current range
selection for Rs identification in a specific inverter configuration and identification errors that are
caused by inverter nonlinearity effects, are carefully addressed in this paper. This further improves the
accuracy of parameter identification.

The proposed method is experimentally validated through two SPMSMs with different power
rates. The results show that the identification errors are less than 7%, which is sufficient for high
dynamic current controller auto-tuning for SPMSM drive systems.
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