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Abstract: This paper presents a finite control-set model predictive control (FCS-MPC) based technique
to reduce the switching loss and frequency of the on-grid PV inverter by incorporating a switching
frequency term in the cost function of the model predictive control (MPC). In the proposed MPC,
the control objectives (current and switching frequency) select an optimal switching state for the
inverter by minimizing a predefined cost function. The two control objectives are combined with a
weighting factor. A trade-off between the switching frequency (average) and total harmonic distortion
(THD) of the current was utilized to determine the value of the weighting factor. The switching,
conduction, and harmonic losses were determined at the selected value of the weighting factor
for both the proposed and conventional FCS-MPC and compared. The system was simulated in
MATLAB/Simulink, and a small-scale hardware prototype was built to realize the system and verify
the proposal. Considering only 0.25% more current THD, the switching frequency and loss per phase
were reduced by 20.62% and 19.78%, respectively. The instantaneous overall power loss was also
reduced by 2% due to the addition of a switching frequency term in the cost function which ensures a
satisfactory empirical result for an on-grid PV inverter.

Keywords: inverter; predictive models; predictive control; model predictive control; power system
analysis computing; on-grid PV inverter; photovoltaic systems

1. Introduction

In an on-grid photovoltaic (PV) system, the inverter is considered the most vital component
of the system. An apposite inverter controlling is necessary for achieving moderate power loss,
total harmonic distortion (THD), and the safety and reliability of the grid [1,2]. Various types
of control mechanisms, including linear (proportional–integral (PI) [3,4], proportional–resonant
(PR) [5], repetitive [6], deadbeat control [7], etc.) and nonlinear techniques (sliding mode control
(SMC) [8], space vector modulation (SVM) [9–11], predictive [12,13], etc.) are available in the literature.
Various control variables, such as current, voltage, real, and reactive power, are considered in
the abovementioned controllers. Over the other controllers, the current controller provides a higher
input/output response time, easiness to mitigate the harmonic component using an active filter, inherent
over-current protection, and easier control to inject power into the system. Therefore, a current-based
control technique was mainly considered in this research work. The advantages and disadvantages of
the various current based controls are shown in Table 1.
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It can be seen that predictive controllers overcame the tracking accuracy, transient response,
and higher THD problems of the other controllers and became popular due to the fact of their
eye-catching advantages. Predictive controllers underwent several developments over the years and
are classified into several categories as shown in Figure 1 [14,15]. Among these control strategies,
model predictive control (MPC) is treated as a favorable strategy because of its quick response, lucidity,
nonlinearity, and capacity to handle numerous systems constraints [16–18].

Table 1. Comparison of the different current controllers [5,19,20].

Controllers Advantages Disadvantages

Hysteresis

• Easily implementable
• Highly sophisticated technology is

not needed
• Modulator is not needed

• Less effective for low power applications
because of switching losses

• Switching frequency is variable as it
depends on the width of the hysteresis,
load parameters, nonlinearity, and
operating conditions

• Requires expensive filters to remove
spectral components of it

Proportional- Integral
• Less costly
• Simple and easily implementable
• Less complex

• Higher switching losses
• Contains lower order harmonics
• Poor power quality
• Less stable
• Higher steady-state error

Proportional- Resonant

• High gain around the
resonance frequency

• Lower steady-state error
• Faster dynamic response
• Able to compensate lower

order harmonics

• Complex in implementation

Space Vector Modulation

• Low total harmonic distortion
• Improved dc-link voltage usage in

contrast with the proportional
integral-pulse width modulation

• The model is little bit complex
• Higher computational burden

Predictive

• Provides faster dynamic response
• Simpler in design
• Higher tracking accuracy
• Inclusion of nonlinearity and constraint

is possible
• Less sensitive to the system model

• Computational complexity
• Switching frequency is variable
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The MPC can be partitioned into two subsets: a continuous control set (CCS) and a finite control
set (FCS) MPC [21]. In CCS MPC, a pulse width modulation (PWM)-based modulator is utilized
to transmit the output from the controller [22]. The modulator provides the switching signal to the
converter. Hence, the achievable reference esteems exchanged to the modulator must be determined
and a cost function is utilized to select the most appropriate reference set. However, FCS-MPC can
generate the switching signals for the converter without a modulator [23,24]. The optimization can
be improved to the expectation level, as the switching states are finite in number and can be used to
assess a cost function. The state with the least cost is chosen and applied to the converter. Therefore,
this FCS-MPC technique is utilized in the research work.

Recently, MPC is widely used for the on-grid PV inverter. For critically controlling the dc voltage
of an on-grid PV inverter, a predictive control strategy was proposed in Reference [25] based on the
relationship of the energy balance during the control period. For ameliorating the on-grid PV current,
the exact transient analytic model was proposed in Reference [26]. For an on-grid inverter utilizing a
PV source, a model predictive direct power control technique was designed in Reference [27] which
can efficiently track the insolation change and the output power with an improved steady-state and
dynamic response. Based on the mathematical model of the three-phase on-grid inverter, a predictive
current control technique in a static α–β frame was presented in Reference [28]. It was shown that the
controller can easily track the change of the maximum power point of the PV and penetrate active
power to the grid with low distortion. To improve the stability of the power system, an MPC-based
low voltage ride-through method was proposed in Reference [29] for the on-grid PV inverter, where a
detailed analysis of the power imbalance problem during the symmetrical grid voltage drop was
presented. The use of an LCL filter in the output of the on-grid inverter creates new resonance due
to the grid impedance variation. For damping these resonances, extra passive component or an
extra loop may be added to the controller which also adds complexity to the system. To solve this
problem, an MPC-based controller was proposed in Reference [30] without having extra sensors against
the variation of the grid impedance and LCL filter parameters. Again, due to the low number of
switching states in a single-phase on-grid inverter, a high-quality MPC-based controller was proposed
in Reference [31] with an LCL filter to reduce the THD of the injected current to the grid. The proposed
controller is robust, fast, and has an acceptable current THD with stability against the variation of the
grid impedance.

The abovementioned MPC optimizes the pre-defined cost function of the system based on the
system model and constraints [32,33]. Among each sampling instant, when the optimization is settled,
the controller will apply just the primary component of the succession utilizing the new estimated
information and obtaining another sequence of the optimal actuation each time. The control calculation
required long estimation times and, therefore, high switching frequency-based applications were
unrealistic before. The rapid technological advancement in the field of microprocessors shines new
light on solving the computational problem of MPC. However, the high switching frequency results in
a higher amount of switching loss, which is also responsible for the lower efficiency, stability, and safety
of the system. The most common strategy for lowering the switching loss is by reducing the switching
frequency. However, for maintaining the stability and limitable THD of the system, the switching
frequency cannot be lowered too much. Therefore, a trade-off between current THD and switching
frequency is always maintained. To overcome these existing problems, various strategies were
proposed in the literature [34–39]. A switching strategy-based FCS-MPC technique was proposed in
Reference [34] to reduce the switching loss and ensure stable operation. Again, two different predictive
current-controlled methods were presented in References [35,37] to reduce the switching frequency
and THD. Two different predictive power control techniques were presented in References [36,38]
to reduce the switching frequency. Furthermore, a model predictive voltage control was proposed
in Reference [39] to reduce the switching frequency. The mentioned strategies along the proposed
methodology are compared in Table 2. It can be seen that the existing techniques only consider the
switching loss of the system, but the other two-loss components (i.e., conduction and harmonic) are
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not considered, and they have a significant contribution to the power loss of the system. The presented
research work aimed to fill this research gap.

Table 2. Switching frequency and switching loss reduction-based techniques in predictive control.

Reference Strategy Cost Function Comment

[34]

Switching strategy based on
finite control set model
predictive control
(FCS-MPC)

g =
∣∣∣∣V∗α(K + 1) −Vα(K + 1)

∣∣∣∣+∣∣∣∣V∗β(K + 1) −Vβ(K + 1)
∣∣∣∣

• To ensure stable operation, the Lyapunov
stability theorem is utilized.

• The proposed controller selects an optimal
clamping phase and its duration in every
sampling period, irrespective of the load,
angles to successfully reduce the
switching loss.

• Because of the symmetrical patterns of the
switching pulse, equal stress is ensured.

• Proposes a 10% shorter execution time than
the conventional FCS-MPC.

[35] Predictive current
control strategy g =

∣∣∣∣i∗oα − ipoα
∣∣∣∣+∣∣∣∣i∗oβ − ipoβ

∣∣∣∣+A
∣∣∣QP

∣∣∣+ B
∑n

i=1 ∆i(i)c . ∆V(i)
ce

• The proposed technique increases the
efficiency from 89.6% to 90.7% without
affecting the performance of the drive.

• The switching frequency ( fsw = 13.2 kHz for
B = 0) is reduced to fsw = 11 kHz
(for B = 0.014) and is further reduced to
fsw = 7 kHz (for B = 0.02) by the strategy.

• Considering 19% more distortion, the
efficiency can be increased to 92.4% in the
proposed method.

[36]

Frequency reduction-based
model predictive direct
power control (MPDPC)
with multi-cost function

g =
∣∣∣∣P∗ − PK+1

∣∣∣∣+∣∣∣Q∗ −QK+1
∣∣∣+ λ1 f,, a,b,c

∣∣∣∣S(K+1)
i − SK

i

∣∣∣∣

• Single-cost function and multi-cost function
are analyzed to reduce the
switching frequency.

• The performance of the three control
strategies—MPDPC I, MPDPC II, and
MPDPC III—are compared in terms of
average switching frequency and total
harmonic distortion (THD), where MPDPC
III shows better performance.

• The multi-cost function ensures reduced
switching strategy and stability of power
tracking at the same time.

[37] Model predictive direct
current control (MPDCC)

C0......7 =
∣∣∣ed[K + 1]

∣∣∣+ ∣∣∣eq[K + 1]
∣∣∣

for transient state
C0......7 = 1

t0......7
for steady-state

• Switching frequency is reduced by 70%
compared to the linear controller

• The proposed controller provides a faster
dynamic response compared to the direct
torque control (DTC).

• The sampling frequency is 30–50 kHz which
increases the ripple of the current.

[38] MPDPC
g =

∣∣∣P∗ − PK+1
∣∣∣2 + ∣∣∣Q∗ −QK+1

∣∣∣2 + ∣∣∣P∗ − PK+1
∣∣∣2 +∣∣∣Q∗ −QK+1

∣∣∣2
• For reducing the switching frequency, a

two-step horizon prediction is developed.
• Flexible power regulation is achieved by

selecting the least power ripple voltage
vector selection.

[39] Model predictive
voltage control g =

∑N
n=1 αn‖Vo[K + n]∗‖−‖Vo[K + n]‖

• The proposed controller reduces the
switching frequency by reducing the
number of switching state calculations.

• Provides lower voltage tracking error and
less % THD in the output voltages for
balanced, unbalanced, and nonlinear
loading conditions.

Proposed
Controller FCS-MPC g =

∣∣∣∣i∗α(k + 1) − ipα(k + 1)
∣∣∣∣+∣∣∣∣i∗β(k + 1) − ipβ(k + 1)

∣∣∣∣+λnsw

• Switching frequency is reduced by adding a
switching frequency term in the cost
function which is easier to implement.

• Considering only 0.25% more THD, the
switching frequency and loss per phase are
reduced by 20.62% and 19.78%, respectively.

• The instantaneous overall power loss is also
reduced by 2% by the proposed controller.

An FCS-MPC-based two-level, three-phase, on-grid PV inverter (as shown in Figure 2) is proposed
in this research work. The proposed controller simultaneously controls the inverter side current
employing reference current tracking and switching frequency. The controller generates an optimal
switching state for the insulated gate bpolar transistor (IGBT)-based inverter according to a predefined
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cost function. The cost function is designed to improve the tracking accuracy and reduce the number
of switching commutations. The system parameters are initialized properly, and the simulation works
along with the hardware realization of the controller being performed. In brief, the contributions of
this research work are:

i. Design of an MPC-based, on-grid PV inverter for energy-efficient control;
ii. Analysis of the effect of adding a switching frequency in terms of the cost function of MPC and to

reduce the switching frequency of the control device with an appropriate weighting factor;
iii. Calculating and analyzing the overall power loss of the proposed system and comparing it with a

conventional MPC-based system.
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Figure 2. Block diagram of the proposed controller-based system, where the photovoltaic (PV) array is
connected with the dc/dc converter via maximum power point tracker (MPPT) to provide the requisite
dc-link voltage to the on-grid inverter, and the switching signals are selected by the proposed model
predictive control based controller.

The paper is organized into six sections. The motivation behind the research work and the
contributions of it are presented in Section 1. Section 2 presents the design of the proposed controller.
Section 3 presents the analysis of the power loss in the system. The simulation results and hardware
deployment are delineated in Section 4. The comparison between the proposed controller and
conventional FCS-MPC is presented in Section 5. Finally, the outcomes are summarized and a
conclusion is drawn in Section 6.

2. Proposed MPC-Based Controller

The block diagram of the proposed controller-based, on-grid PV system is shown in Figure 2,
where the PV system includes a maximum power point tracker (MPPT) [40,41], and the dc/dc converter
is utilized to provide the constant dc-link voltage to the inverter. The inverter controller is the main
focus of the research work. Therefore, the operating principle, controller modeling, cost function
design, and working algorithm of the proposed controller is panned below.
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2.1. Operating Principle

For demonstrating the working strategy of the proposed controller, an illustration is presented in
Figure 3 [42]. The future predictive load transitions xp(tk+1) are evaluated by utilizing the measured
parameter x(tk) for all the available switching voltage vectors in a predictive model

{
x(tk), N

}
. The N

represents the step-size of the model and is referred to as the short-horizon control for N = 1 and
long-horizon control for N > 1. For simplicity, the short-horizon control is considered in this paper.
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Figure 3. An illustration showing the process of vector selection and estimation of MPC.

The discrete time model was derived from the predictive model directly and relies on the control
parameters [43]. As a paradigm, for N = 1, the future predictive value at k + 1 time can be determined
from the measured x(tk) value and for n number of voltage vectors results in n possible predictive
values such as xp1, xp2, xp3 . . . . . . xpn as shown in Figure 3. To determine the effectiveness of all possible
voltage vectors on the system, a cost function was developed. The voltage vector that produced the
minimum value of the cost function was selected for the next state. For instance, xp3 was the nearest
value to the reference x∗ and, as a result, xp3 was selected during k and k + 1 instant.

2.2. Proposed Controller Modeling

Due to the widespread utilization in the commercial industry, the commonly used two-level
voltage source inverter (VSI) was considered in the proposed system. The power circuit diagram of the
three-phase, two-level inverter used in this work can be found in References [44,45]. The inverter was
designed with IGBT switches, taking into account that the two switches in every inverter phase were
working in the complementary mode to keep the dc source from short-circuiting. The switching states
Sa, Sb, and Sc of the inverter can be expressed as below [46].

Sa =

{
1 i f S1 on and S4 o f f
0 i f S1 o f f and S4 on

(1)

Sb =

{
1 i f S2 on and S5 o f f
0 i f S2 o f f and S5 on

(2)

Sc =

{
1 i f S3 on and S6 o f f
0 i f S3 o f f and S6 on

(3)
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Now, the vector form of S can be expressed as [43]:

S =
2
3

(
Sa + aSb + a2Sc

)
(4)

The total number of switching states will be the result of the different switching state combinations
minus the impossible state. Here, the switching state that may be the reason for short-circuiting is
defined as the impossible state. In general, the switching state’s number, Ns, can be obtained as:

Ns = SNP (5)

where the possible numbers of states are presented by S of each leg, and NP presents the number of
phases. For instance, a four-phase, three-level converter has 34 = 81 switching states. If all the possible
combinations are considered for a two-level, three-phase converter, eight possible voltage vectors are
available. The voltage vectors can be represented in a two-dimensional αβ plane and are shown in
Figure 4 [47–50].
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Taking into account the definitions of the variables of the three-phase, two-level inverter,
the equations for output current dynamics for each phase can be written as [12]:

VaN = L
dia
dt

+ Ria + ea + VnN (6)

VbN = L
dib
dt

+ Rib + eb + VnN (7)

VcN = L
dic
dt

+ Ric + ec + VnN (8)

where R is the line filter resistance and L is the line filter inductance. Considering the space vector
definition for the inverter voltage, the output current and grid voltage space vectors can be expressed
as [12]:

i =
2
3

(
ia + aib + a2ic

)
(9)
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eg =
2
3

(
ea + aeb + a2ec

)
(10)

The output voltage vector can be presented as:

v =
2
3

(
VaN + a ×VbN + a2

×VcN
)

(11)

Therefore, the dynamic output current equation can be expressed as:

v = L d
dt

(
2
3

(
ia + aib + a2ic

))
+ R

(
2
3

(
ia + aib + a2ic

))
+ 2

3

(
ea + aeb + a2ec

)
+ 2

3

(
VnN + aVnN + a2VnN

) (12)

and assuming the last term of Equations (6)–(8) equal to zero:

2
3

(
VnN + aVnN + a2VnN

)
=

2
3

VnN
(
1 + a + a2

)
= 0 (13)

The output current dynamics can be described by the vector differential equation [12]:

v = Ri + L
di
dt

+ eg (14)

In the proposed controller, a fixed amplitude and frequency grid voltage was considered.
The output current derivative di

dt can be supplanted by a forward Euler approximation which can be
presented as [51]:

di
dt
≈

i(k + 1) − i(k)
Ts

(15)

Now, the predictive current ip at (k + 1) time can be expressed as:

ip(k + 1) =
(
1−

RTs

L

)
i(k) +

Ts

L

(
v(k) − eg(k)

)
(16)

where the grid voltage at time k is denoted by eg(k).

2.3. Cost Function Design

The switching loss will eventually increase if the switching frequency is high, which also increases
the overall losses. Therefore, the main purpose of the proposed controller was to reduce the loss
as well as maintain the stability of the system. The possible switching movement in the next state
in a three-phase, two-level inverter is shown in Figure 5. It is seen that the maximum switching
commutation can be 3 and the minimum can be 0. The switching commutation can be determined by
Equation (17) [36]:

nsw(k + 1) =
∑

x={a,b,c}

∣∣∣Si(k + 1) − Si(k)
∣∣∣ (17)

where the current and the future predictive switching states are presented by Si(k) and Si(k + 1), and i
is the index voltage vectors {Vo . . .V7}. For instance, if the current and future voltage vectors are V3(010)
and V5(001), then Sa(k) = 0, Sb(k) = 1, Sc(k) = 0 and Sa(k + 1) = 0, Sb(k + 1) = 0, Sc(k + 1) = 1.
Therefore, the switching commutation can be determined as follows:

nsw = |0− 0|+ |0− 1|+ |1− 0| = 2 (18)

The switching frequency reduction term, nsw, can be added to the cost function in two ways.
One is a single-cost function frequency reduction strategy and the second is a multi-cost function
frequency reduction strategy [36]. The single-cost function strategy is simpler than the multi-cost
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function and efficient in reducing the switching frequency. Therefore, a single-cost function strategy
was utilized in the research work during the design of the cost function.Energies, 2020, 9, x FOR PEER REVIEW 10 of 27 
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Figure 5. Switching path action for the three-phase, two-level inverter.

The proposed cost function for the designed controller of this work was:

g =
∣∣∣i∗α(k + 1) − ipα(k + 1)

∣∣∣+ ∣∣∣∣i∗β(k + 1) − ipβ(k + 1)
∣∣∣∣+ λnsw (19)

where iα is the real and iβ is the imaginary component of current i, respectively. The real and
imaginary components of the predictive (ip) and reference (i∗) currents are represented by ipα, i∗α and
ipβ, i∗β, respectively. The first term in Equation (19) is to reduce the reference tracking error. The term
nsw was added into the cost function which makes the difference of the proposed controller from the
conventional MPC-based controller. The average switching frequency, fsw, per switching device was
determined by Equation (20) using the total number of switching transitions, nsw, over the sampling
time duration Ts [52].

fsw = nsw/12/Ts (20)

The switching state which yields the lowest number of commutation will be selected. Therefore,
the use of nsw in Equation (20) will have a direct effect on the switching frequency of the converter.
The two terms in the cost function are combined by a weighting factor λ. The value of λ is determined
by a heuristic process which suggests that the value of λ varies from 0 to below 1 and affects the
controller. If the value of λ is larger, it emphasizes a greater value to the reduction of the switching
frequency than the tracking error, and if lower, it emphasizes the reduction of the tracking error.
Therefore, the value of λ is a crucial factor to maintain both the minimal value of switching frequency
and tracking error at the same time, and hence, this phenomenon was carefully considered during the
design of the controller.

2.4. Control Algorithm

The strategy utilized in the proposed controller can be sub-divided into five parts which were
repeated several times until the optimal voltage vector was found and produced the minimum value
for the cost function. After selecting the optimal vector, the newly selected vector was applied to the
inverter. Therefore, to realize the control strategy, the five parts were: (i) assessment of the initial
input parameters, (ii) calculation of controlling parameters, (iii) prediction of future behavior of
the controlling parameters, (iv) making optimization between the calculated and predicted values,
and (v) selection and application of the newly optimized value. The flowchart of the algorithm
(shown in Figure 6) consisted of two loops: an inner and outer loop. For each of the seven different
voltage vectors, the inner loop was executed, and the outer loop was executed at every sampling time
for determining the optimal switching state related to the corresponding voltage vector. Therefore,
the selected switching state for the optimized cost function gopt was applied to the next sampling
period. The five steps of implementing the control algorithm are presented in Algorithm 1 below.
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Algorithm 1. Algorithm utilized in the proposed controller

Input: Vdc, i(k), eg(k)
Output: Sa, Sb, Sc

1. The inverter input voltage Vdc, output current i(k), and grid voltage eg(k) are measured.
2. The future predictive current ip(k + 1) and the switching transitions from the immediate future state
nsw(k + 1) are calculated for all the possible eight states of the inverter using Equations (16) and (17),
respectively.
3. Estimation of the value of the proposed cost function g using Equation (19).
4. Selection of apposite switching state for the optimized cost function gopt.
5. Application of the newly elected switching state S

(
jopt

)
to the next sampling state and return to Step 1.
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Figure 6. Flowchart of the proposed predictive controller for selecting the optimal switching vector
that implies minimal switching commutation.

3. Power Loss Analysis

The loss of power occurs due to the switching devices used in the circuit, which significantly
influence the efficiency of the inverter [53–55]. The harmonic content in the output current and heat
generated during the conduction of the switching device also provides a significant contribution to the
overall loss of the system. Therefore, the overall loss of the system consists of conduction, switching,
and harmonic loss. The conduction loss depends on the collector–emitter voltage and collector–current
of the switching device. The inherent material used during the manufacturing of the switching device
significantly affects the conduction loss. Hence, the reduction of the collector–emitter terminal voltage
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is the only way to lessen the conduction loss. Moreover, the temperature of the junction also influences
the value of the losses. For estimating the average conduction loss, the following expressions were
used [53,56].

Pcon =

(
1

T0

) ∫ T0
2

0
Pconinst(t)dt (21)

and Pconins(t) = (Vceo + Ix(t) ∗Rce ) ∗ Ix(t) ∗ τ(t) (22)

where the threshold voltage and the differential resistance of the switching device (IGBT) are denoted
by Vceo and Rce, respectively. The value of them at a fixed temperature is collected from the datasheet
provided by the manufacturer [57]. The value of output frequency f0 was considered 50 Hz and was
utilized to determine the value of T0 as T0 = 1/ f0. Moreover, another value was needed, the upper
IGBT arm current, which was denoted by Ix(t). The following expression in Equations (23) and (24)
were utilized to determine the value of Ix(t) and Rce .

Ix(t) = (Idc /3) + (Iac/2) (23)

Rce =
Vce2 −Vce1

Ice2 − Ice1
(24)

Equation (22) contains a term τ(t) which is mainly dependent on the value of the modulation
index. However, one benefit of FCS-MPC is that this method is free from the requirement of the
modulation index. Hence, the value of τ(t) is considered unity during the calculation. The turning on
and off process of the switching device causes losses in the system that are referred to as switching loss.
This loss is influenced by the input dc voltage and output current of the inverter, and by the variable
parameters of the switching device. Besides, the terminal temperature of the device and resistance
of the gate driver circuit affects the switching loss. To reduce the mentioned loss, several methods
are available in the literature and mentioned in Table 2. For estimating the average switching loss,
the following expressions are used [53,56].

Psw =
( 1

To

) ∫ T0
2

0
Pswins(t)dt (25)

and Pswins(t) = fsw ∗
(
Eon + Eo f f

)
∗

( Vdc
Vcenom

)
∗

(
Ix(t)
Iccnom

)
(26)

where the switching frequency is presented by fsw, Vdc is the inverter input voltage, Vcenom and Iccnom

are the voltage across the collector–emitter terminal and the collector current of the switching device,
respectively. From the datasheet provided by the manufacturer, the values of Vcenom, Iccnom, Eon,
and Eo f f are collected [57]. The presence of THD or harmonics in the output current of the inverter
leads to an extended power loss which is referred to as harmonic loss. Therefore, the THD of the
injected grid current should be under the acceptable limit. As a result, to verify the performance of
the proposed controller, the calculation of the harmonic loss is also necessary. Since the THD and
switching frequency has an opposite effect on each other, there should be a trade-off between the
harmonic and switching loss to have a lower overall loss in the system. The expressions in Equations
(27) and (28) were utilized to determine the current THD (THDI) and harmonic loss Pharmonic of the
proposed system [58].

THDI(%) = 100×

√√∑
∞

n=2 I2
n_rms

I2
1_rms

(27)

Pharmonic = 3R
∞∑

n=2

I2
n_rms = 3RI2

1_rms THD2
I (28)
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where, I1_rms, THDI, and In_rms are the fundamental current, THD of the output current, and amount of
current for the different harmonic components, respectively.

4. Results Analysis

A simulation of the proposed system, as well as the hardware realization of the blocks,
was performed for the verification of the result. A 39 kW PV system was connected to the proposed
controller-based inverter via a closed-loop boost converter. One hundred and sixty-eight modules
having an individual capacity of 235 W were connected in a series and parallel connection to design the
mentioned PV array. According to the simulation environment, a hardware prototype was considered
for data acquisition and verification. The hardware system consisted of dc-link voltage provided by the
PV system and a dc/dc converter, proposed MPC-based two-level, three-phase inverter, current sensor,
a gate driver circuit, sensor connecting circuit, capacitor bank, desktop computer as a control desk,
dSPACE 1104 as micro-processor, oscilloscope, R–L line filter, and the grid as shown in Figure 7.
Table 3 presents the value of the parameters used in the presented work. For the inverter control
platform, the dSPACE 1104 board was utilized, because it provided the linking between the real-time
system to the MATLAB/Simulink model [59]. The dSPACE 1104 provided the linkage by utilizing its
input/output interface such as DS1104_BIT_OUT_CX, DS1104ADC, DS1104DAC, etc. It converted the
Simulink model to the C-code automatically by utilizing a built-in function named MATLAB/Simulink
Real-Time Workshop (RTW) [60]. The converted C-code was then complied and made a linkage to the
dSPACE board. A graphical user interface (GUI) software, named dSPACE ControlDesk, provided
the real-time performance monitoring facility and also enabled to change the control variables and
monitor the performance of the system in real-time. The dSPACE DS1104 real-time interface (RTI)
implementation for generating the switching pulses for the proposed controller-based on-grid PV
inverter is shown in Figure 8.
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Figure 7. Block diagram of the experimental setup for the proposed MPC-based controller for the
on-grid PV inverter.

Table 3. Parameter values for the simulated system.

Parameter Value

Inverter dc-link voltage (Vdc) 850 V
Reference current (i∗) 96 A
Output frequency ( fo) 50 Hz
Line filter resistance (R) 3.44 mΩ
Line filter inductance (L) 3 mH
Grid voltage (eg) 120 V
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controller-based, on-grid PV inverter.

The dSPACE DS1104ADC_CX block was utilized for taking the reading of the inverter output
current which converts the currents into a digital form that is required by the controller. A current
sensor, named “LA55p”, was used for sensing the output current of the inverter. Both the three-phase
reference and measured current quantities were then transformed to αβ coordinates for ease of control
by using an abc to αβ conversion block. For real-time implementation, the dc-link voltage was scaled
down to 30 V instead of 850 V, and the other parameters were also changed with the apposite ratios.
The switching signals generated by the controller were then delivered to the hardware (inverter)
through a data type conversion “Boolean” block and a DS1104BIT_OUT_CX block. The controller
generated only three switching signals (Sa, Sb, Sc) of the upper IGBTs, and the complements of
them were generated by a gate driver named “IR2110” to provide the six required switching signals.
The pictorial view of the implemented hardware of the proposed controller is shown in Figure 9.
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The performance of the proposed controller in terms of steady-state analysis, current tracking
accuracy, and the effect of adding the switching function in the cost function are described below.

4.1. Steady-State Analysis

The performance of the proposed controller was analyzed through steady-state analysis.
The algorithm was implemented by the cost function as presented by Equation (19). The reference
current utilized during the simulation was sinusoidal and having an amplitude of 96 A with a frequency
of 50 Hz. The phase voltages (Va, Vb, Vc) across the load before the LC filter is shown in Figure 10.
Figure 11 shows the phase voltages (Va, Vb, Vc) across the load after the LC filter.
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The steady-state, three-phase load currents (Ia, Ib, Ic) using the proposed controller are presented
in Figure 12 which indicates a sinusoidal nature load current with low distortion.
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4.2. Current Tracking Accuracy

The accuracy of the tracking output current of the proposed controller was checked by observing the
behavior of the controller under steady-state and transient conditions. For evaluating the steady-state
condition, a three-phase reference current was assumed to have an amplitude of 96 A and a frequency
of 50 Hz. At time 0.015 s, a step reduction was done in the reference current (only in the real parameter
I∗α) by reducing it to half of its value for observing the transient behavior. The response of the output
(Iα, Iβ) and reference (I∗α, I∗β) current under the transient condition in the αβ frame was delineated in
Figure 13. Figure 14 shows that the proposed controller provided a negligible mean absolute tracking
error (MATE) at steady-state and transient conditions, which was only 0.025 (i.e., 2.5%). The MATE
wasa determined by the following expression [23]:

MATE =
1
n

∑n

i=1

∣∣∣∣∣∣ i∗ − iP

i∗

∣∣∣∣∣∣ (29)

where the reference and future predictive currents are indicated by i∗ and iP, respectively, to determine
the MATE.

Figure 14 suggests that during both the steady-state and transient conditions, the tracking accuracy
of the controller was under the acceptable limit.Energies, 2020, 9, x FOR PEER REVIEW 17 of 27 
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4.3. Effect of Switching Frequency Term in the Cost Function

As mentioned earlier, the cost function designed for the proposed controller included two
components. One was for lessening the tracking error of the measured current and the other one was
for lessening the switching transitions. The two terms were added with a weighting factor λ. Therefore,
the value of λ is an important factor for determining an optimized cost function. For determining
the effect of switching transitions reduction, the simulation of the whole system was done for λ = 0,
i.e., neglecting the term nsw in the cost function. Harmonic analysis was done for the output load
current by using the fast Fourier transform (FFT) analysis and is shown in Figure 15, where the term
“fundamental” denotes the desired frequency of the output current, which was 50 Hz, and the peak
value of the output current with fundamental frequency was 95.97 A. In Figure 15, the illustration
is zoomed in to show the contribution of the other frequency components, i.e., the harmonics in
comparison with the fundamental frequency component. Thereafter, the r.m.s. value of the output
current with a fundamental frequency was utilized to determine the THD of it using Equation (27).
It can be seen that the current THD without the switching transitions reduction term was 1.82%.
The experimentation was also performed with the addition of the switching frequency reduction terms
in the cost function utilizing Equation (19). The value of weighting factor λ was varied over a range of
0.01 to 0.7, and the value of the switching frequency and the corresponding current THD are calculated
and shown in Table 4. It can be seen that the switching frequency was 4.46 kHz and the corresponding
current THD was 1.82% for λ = 0. 
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Table 4. Current THD, average switching frequency, and conduction and switching losses with the
variation of the weighting factor, λ.

Weighting Factor, λ Average Switching
Frequency, (kHz) Conduction Loss, (W) Switching Loss, (W) Current THD, (%)

0 4.46 30.62 7.53 1.82
0.01 4.28 29.73 7.51 1.89
0.05 4.20 29.73 7.22 1.87
0.1 4.08 29.70 7.01 1.94
0.2 3.84 29.69 6.65 1.95
0.3 3.70 29.71 6.34 2.06
0.4 3.54 29.72 6.04 2.07
0.5 3.34 29.73 5.79 2.20
0.6 3.27 29.74 5.60 2.28
0.7 3.03 29.77 5.38 2.38

If the value of λ increased, the switching frequency decreased, while the current THD increased.
For λ = 0.7, the switching frequency was 3.03 kHz which is the lowest one for the observed datasheet
as shown in Table 4, while the current THD value was 2.38% which is the highest one. The current
THD should be lower to having a lower harmonic loss. The switching frequency should also be lower
for a lower switching loss in the semiconductor device. The switching frequencies, current THDs with
the variation of λ are shown in Figure 16. It can be seen that the average switching frequency, fsw,
and the current THD curve intersected at λ = 0.4, where the switching frequency was 3.54 kHz and
the corresponding current THD was 2.07%.Energies, 2020, 9, x FOR PEER REVIEW 19 of 27 
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Figure 16. Switching frequencies and current THDs with the variation of the weighting factor, λ.
The trade-off point of λ was found to be 0.4.

It is noteworthy that, considering only 0.25% more current THD, the switching frequency was
found to be a lower one. Hence, for energy-efficient operation of the inverter, it was operated at this
trade-off point (i.e., λ = 0.4) of the average switching frequency and the current THD. The steady-state
current response of the output load current with λ = 0.4 is shown in Figure 17. Figure 17 indicates that
the waveform did not change much from the waveform for λ = 0.
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Figure 17. Steady-state phase currents (Ia, Ib, Ic) using the proposed controller for λ = 0.4.

5. Comparison with Conventional MPC

For the value of λ = 0.4, a loss analysis was conducted. The utilized value of the power loss
analysis parameters is presented in Table 5. At that condition, the instantaneous behavior of switching
and conduction loss is delineated in Figure 18, using Equations (22) and (26), respectively. The average
value of the switching, conduction, and harmonic losses are calculated for both the proposed and
conventional controller and are shown in Figure 19.

Table 5. Parameters for the power loss analysis [2,57].

Parameters Value Parameters Value

Switching frequency, fsw 3.54 kHz DC link voltage, Vdc 850 V
Turn-on energy, Eon 1.4 mJ Turn-on/Threshold voltage of IGBT, Vce0 1.5 V
Turn-off Energy, Eoff 2.0 mJ Output frequency, fo 50 Hz
Voltage across Vce during Test, Vccnom 400 V IGBT differential resistance, Rce 0.0147 Ω
Collector current during Test, Icnom 50 A

Energies, 2020, 9, x FOR PEER REVIEW 20 of 27 

 

Collector current during Test, Icnom 50 A   

From Figure 19a, the continuous conduction losses per phase of a three-phase system were 
30.62 W and 29.72 W for the conventional FCS-MPC and proposed FCS-MPC, respectively. 
Therefore, it can be said that 3% conduction loss was reduced due to the addition of  in the cost 
function. From Figure 19b, the continuous switching losses per phase of a three-phase system were 
7.53 W and 6.04 W for the conventional FCS-MPC and proposed FCS-MPC, respectively. It can be 
seen that a 19.78% loss was reduced due to the addition of . The harmonic loss was also 
calculated for the same case and is shown in Figure 19c. It is noted that the continuous harmonic 
losses calculated up to 19th harmonics with and without  were 6.79 W and 5.25 W, respectively. 
Hence, the proposed system suffers from 1.54 W due to the trade-off of the current THD and 
switching frequency as shown in Figure 19c. 

 
Figure 18. Waveforms of the instantaneous conduction and switching losses in MPC using Equations 
(22) and (26) respectively. 

  
(a) (b) 

30.62

29.72

29

29.5

30

30.5

31

Conventional
FCS-MPC

Proposed FCS-
MPC

Lo
ss

 (W
)

Conduction Loss
7.53

6.04

0

2

4

6

8

Conventional
FCS-MPC

Proposed FCS-
MPC

Lo
ss

 (W
)

Switching Loss

Figure 18. Waveforms of the instantaneous conduction and switching losses in MPC using Equations (22)
and (26) respectively.



Energies 2020, 13, 4669 19 of 25

Energies, 2020, 9, x FOR PEER REVIEW 20 of 27 

 

Collector current during Test, Icnom 50 A   

From Figure 19a, the continuous conduction losses per phase of a three-phase system were 
30.62 W and 29.72 W for the conventional FCS-MPC and proposed FCS-MPC, respectively. 
Therefore, it can be said that 3% conduction loss was reduced due to the addition of  in the cost 
function. From Figure 19b, the continuous switching losses per phase of a three-phase system were 
7.53 W and 6.04 W for the conventional FCS-MPC and proposed FCS-MPC, respectively. It can be 
seen that a 19.78% loss was reduced due to the addition of . The harmonic loss was also 
calculated for the same case and is shown in Figure 19c. It is noted that the continuous harmonic 
losses calculated up to 19th harmonics with and without  were 6.79 W and 5.25 W, respectively. 
Hence, the proposed system suffers from 1.54 W due to the trade-off of the current THD and 
switching frequency as shown in Figure 19c. 

 
Figure 18. Waveforms of the instantaneous conduction and switching losses in MPC using Equations 
(22) and (26) respectively. 

  
(a) (b) 

30.62

29.72

29

29.5

30

30.5

31

Conventional
FCS-MPC

Proposed FCS-
MPC

Lo
ss

 (W
)

Conduction Loss
7.53

6.04

0

2

4

6

8

Conventional
FCS-MPC

Proposed FCS-
MPC

Lo
ss

 (W
)

Switching Loss

Energies, 2020, 9, x FOR PEER REVIEW 21 of 27 

 

 
(c) 

 

Figure 19. (a) Conduction, (b) switching, and (c) harmonic loss in the conventional FCS-MPC and the 
proposed FCS-MPC based controller. 

The contribution of conduction, switching and harmonic loss per phase in percentage for 
conventional and proposed MPC-based controllers are shown in Figure 20. It can be seen that the 
conduction and switching loss was reduced by 0.72% and 3.33% per phase in the proposed controller 
than the conventional controller. A 3.86% more harmonic loss per phase was considered in the 
proposed controller to reach the optimal point of the weighting factor. Although the proposed 
controller suffered from a slightly higher harmonic loss, it provided a lower overall loss than the 
conventional MPC. 

 
Figure 20. The contribution of conduction, switching, and harmonic loss per phase in percentage in 
the (a) conventional FCS-MPC and (b) the proposed FCS-MPC based controller. 

Now, the comparison between the conventional FCS-MPC based controller and the proposed 
controller is shown in Table 6, which highlights the reduction of switching frequency, switching loss, 
and the overall power loss of the system instead of using the conventional FCS-MPC based 
controller. It is seen that the total per phase continuous loss for the conventional FCS-MPC and 
proposed FCS-MPC were 43.40 W and 42.56 W, respectively. Therefore, 0.84 W was reduced per 
phase due to the switching frequency reduction. For the three-phase system, the total reduced loss is 
(0.84 × 3) = 2.52 W, which shows a significant amount of loss reduction due to the incorporation of 

 in the cost function. 
  

5.25
6.8

0

2

4

6

8

Conventional FCS-
MPC

Proposed FCS-
MPC

Lo
ss

 (W
)

Harmonic Loss
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proposed FCS-MPC based controller.

From Figure 19a, the continuous conduction losses per phase of a three-phase system were
30.62 W and 29.72 W for the conventional FCS-MPC and proposed FCS-MPC, respectively. Therefore,
it can be said that 3% conduction loss was reduced due to the addition of nsw in the cost function.
From Figure 19b, the continuous switching losses per phase of a three-phase system were 7.53 W and
6.04 W for the conventional FCS-MPC and proposed FCS-MPC, respectively. It can be seen that a
19.78% loss was reduced due to the addition of nsw. The harmonic loss was also calculated for the
same case and is shown in Figure 19c. It is noted that the continuous harmonic losses calculated up
to 19th harmonics with and without nsw were 6.79 W and 5.25 W, respectively. Hence, the proposed
system suffers from 1.54 W due to the trade-off of the current THD and switching frequency as shown
in Figure 19c.

The contribution of conduction, switching and harmonic loss per phase in percentage for
conventional and proposed MPC-based controllers are shown in Figure 20. It can be seen that the
conduction and switching loss was reduced by 0.72% and 3.33% per phase in the proposed controller
than the conventional controller. A 3.86% more harmonic loss per phase was considered in the proposed
controller to reach the optimal point of the weighting factor. Although the proposed controller suffered
from a slightly higher harmonic loss, it provided a lower overall loss than the conventional MPC.

Now, the comparison between the conventional FCS-MPC based controller and the proposed
controller is shown in Table 6, which highlights the reduction of switching frequency, switching
loss, and the overall power loss of the system instead of using the conventional FCS-MPC based
controller. It is seen that the total per phase continuous loss for the conventional FCS-MPC and
proposed FCS-MPC were 43.40 W and 42.56 W, respectively. Therefore, 0.84 W was reduced per
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phase due to the switching frequency reduction. For the three-phase system, the total reduced loss is
(0.84 × 3) = 2.52 W, which shows a significant amount of loss reduction due to the incorporation of nsw

in the cost function.

 

 
Figure 15. Current THD without 𝑛  in the cost function. 
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Figure 20. The contribution of conduction, switching, and harmonic loss per phase in percentage in the (a) 
conventional FCS-MPC and (b) the proposed FCS-MPC based controller. 
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Figure 20. The contribution of conduction, switching, and harmonic loss per phase in percentage in the
(a) conventional FCS-MPC and (b) the proposed FCS-MPC based controller.

Table 6. Comparison of the proposed controller with conventional FCS-MPC based controller.

Parameters Conventional FCS-MPC Proposed FCS-MPC

Cost function
g =

∣∣∣i∗α(k + 1) − ipα(k + 1)
∣∣∣+∣∣∣∣i∗β(k + 1) − ipβ(k + 1)

∣∣∣∣ g =
∣∣∣i∗α(k + 1) − ipα(k + 1)

∣∣∣+∣∣∣∣i∗β(k + 1) − ipβ(k + 1)
∣∣∣∣+ λnsw

Switching Frequency 4.46 kHz 3.54 kHz
Switching loss 7.53 W 6.04 W

Conduction loss 30.62 W 29.72 W
Harmonic loss 5.25 W 6.80 W

Overall loss per phase 43.40 W 42.56 W

To verify the performance of the proposed controller, the chosen reference current (96 A) varied
over a range of 91 to 100 A, and each time the conduction and switching loss was determined (as shown
in Figure 21). The linear variation of both the losses ensured that the losses did not depend on the
variation of reference parameters.
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6. Conclusions

For penetrating maximum power to the grid and to reduce the overall loss of the system, an on-grid
inverter controlling was proposed based on the MPC method. The proposed controller was first
designed in the MATLAB/Simulink platform and then small-scale hardware was realized to verify it.
For lessening the tracking error of the output current and switching loss, an effective cost function was
designed with an apposite weighting factor. The performance of the proposed MPC was observed with
and without a switching frequency reduction term (nsw) in the cost function. The tracking error was
found at 2.5% during the steady-state and transient conditions, which is under the considerable limit.
The current THD, average switching frequency, and switching loss were 1.82%, 4.46 kHz, and 7.53 W,
respectively, without nsw. After adding nsw in the cost function, the current THD, switching frequency,
and the switching loss became 2.07%, 3.54 kHz, and 6.05 W, respectively, with a weighting factor
of λ = 0.4. This means that the average switching frequency was reduced by 20.62% (920 Hz) and
the corresponding switching loss was reduced by 19.78% (1.49 W) per phase, while the current THD
increased by only 0.25%. The overall loss of the inverter was also calculated. It was shown that
the overall losses for the proposed and conventional controller were 42.56 and 43.40 W, respectively,
considering only 0.25% more current THD had minimized the average switching loss as well as reduced
the continuous overall losses by 2% (for the three-phase). The experiment could also be conducted
with AC-tied energy storage inverter, the analysis, and the results of which will be explored in-depth
in future research.
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Nomenclature

CCS Continuous Control Set
DTC Direct Torque Control
FCS-MPC Finite Control Set Model Predictive Control
FFT Fast Fourier Transform
IGBT Insulated Gate Bipolar Transistor
MATE Mean Absolute Tracking Error
MPC Model Predictive Control
MPPT Maximum Power Point Tracking
MPDPC Model Predictive Direct Power Control
MPDCC Model Predictive Direct Current Control
PV Photovoltaic
PR Proportional Resonant
PI Proportional Integral
PWM Pulse Width Modulation
P&O Perturb and Observe
SMC Sliding Mode Control
SVM Space Vector Modulation
THD Total Harmonic Distortion
VSI Voltage Source Inverter
Sa, Sb, and Sc IGBT switching states
xp(tk+1) Future predictive load transitions
x(tk) Measured parameters
x∗ Reference parameter
N Step-size of the model
Ns Switching state number
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NP Number of phases
v Output voltage vector
Vdc DC link voltage
i Load current
e Grid electromotive force
g Cost function
eg(k) Grid voltage
iα and iβ Real and imaginary components of the output current i
ip(k + 1) Future predictive current
nsw Number of transitions of the switching devices
Ts Sampling time duration
fsw Switching frequency
λ Weighting factor
Vopt Optimal voltage vector
S
(
jopt

)
selected switching state

Vceo IGBT turn-on/threshold voltage
Rce IGBT differential resistance
Pcon Average conduction loss
Pconins (t) Instantaneous conduction loss
Psw Average switching loss
Pswins (t) Instantaneous switching loss
Ix(t) Arm current through the upper IGBT
Vcenom Collector-emitter terminal voltage
Iccnom Collector current
Eon Turn-on energy
Eo f f Turn-off energy
I1_rms Fundamental current
In_rms Harmonic component current
THDI Value of current THD
Pharmonic Harmonic loss
R Line filter resistance
f0 Output frequency
Va, Vb, Vc Phase voltages
Ia, Ib, Ic Phased currents
Iα,Iβ Phase currents in αβ domain
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