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ABSTRACT In significant cases, the generated voltage needs to be step-up with high conversion ratio by
using the DC-DC converter as per the requirement of the load. The drawbacks of traditional boost converter
are it required high rating semiconductor devices and have high input current ripple, low efficiency, and
reverse recovery voltage of the diodes. Recently, the family of Multilevel Boost Converter suggested and
suitable configuration to overcome the above drawbacks. In this article, hybrid DC-DC non-isolated and
non-inverting Nx Interleaved Multilevel Boost Converter (Nx-IMBC) is analyzed in Continuous Conduction
Mode (CCM) and Discontinuous Conduction Mode (DCM) with boundary condition and investigated in
detail. The Nx-IMBC circuit combined the features of traditional Interleaved Boost Converter (IBC) and
Nx Multilevel Boost Converter (Nx-MBC). The modes of operation, design of Nx-IMBC and the effect
of the internal resistance of components are presented. The comparison study with various recent DC-DC
converters is presented. The experimental and simulation results are presented with or without perturbation in
input voltage, output power and output reference voltage which validates the design, feasibility, and working
of the converter.

INDEX TERMS DC-DC, high step-up, hybrid converter, interleaved, low voltage stress, low current ripples,
multilevel, non-isolated, non-inverting, voltage multiplier.

I. INTRODUCTION
When the current world energy scenario is analyzed, all
the nations of the world is riveted towards ingestion of
exhaustible sources to beget the energy and to feed the energy

The associate editor coordinating the review of this manuscript and

approving it for publication was Eklas Hossain .

requisites. The idea of energy generation is entirely unafford-
able, which would eventually create paucity of fossil fuels
soon. As a result, the entire focus has increasingly shifted
towards inexhaustible energy sources [1]–[5]. There are so
many ways to generate power using these sources like solar,
wind, fuel-cell, tidal etc. Among these sources, solar energy is
one of the conventional renewable sources due to abundance,
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FIGURE 1. Power circuit of recently addressed converter (a) Conventional Boost Converter, (b) Single switch Quadratic Boost Converter (QBC),
(c) Switched Inductor (SI) Boost Converter, (d) Conventional Three-Level Boost Converter, (e) Quadratic Three-Level Boost Converter, (f) Converters using
bootstrap capacitors and boost inductors, (g) Switched-Capacitor Based Boost Converter, (h) Two-phase quadrupled interleaved boost converter, (i) Extra
high voltage (HV) dc-dc converter, (j) High-voltage gain two-phase interleaved boost converter using one VMC, (k) Nx Multilevel Boost Converter (MBC),
(l) inverting Multilevel Buck-Boost Converter (MBBC). Note: Shaded area denotes the structure of the Boost converter.

eco-friendly, free of cost and continuously developing with
the advancement in photovoltaic cells which is leading to
the high efficiency of the solar system. Photovoltaic technol-
ogy is tenaciously growing with betterment in photovoltaic
cells which ultimately leads to the priceless powered nation
and the world too [6]. More and more renewable energy
sources such as solar arrays, wind turbines, and fuel cell
stacks are widely employed for front-end DC/DC applica-
tions [7], [8]. These inexhaustible energy sources need a
DC-DC converter with a high conversion ratio to augment the
voltage magnitude to feed the power grid or power DC-AC
converter (Inverter) [9], [10]. The solar arrays give out low

output voltage which certainly cannot suffice the voltage
requisite. Therefore, the low voltage fed to boost converter
to inflate the voltage level to suffice the application require-
ments [11]–[13]. A traditional Boost converter (Fig. 1(a)) is
not preferred practically to fulfil the high voltage demand
due to its design constraints, low efficiency and diode reverse
recovery problem etc. [14], [15].

For attain a high voltage conversion ratio, many DC-DC
converters with the different boosting technique are reviewed
in [16]. Isolated topologies introduce transformer, results in
bulky and costly circuitry [17], [18]. Unfortunately, a signif-
icant voltage spike across the switch observed due to leakage
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TABLE 1. Conversion ratio Of recent DC-DC converter.

inductance of the transformer. Thus, energy regeneration and
clamping techniques are employed to recycle the energy and
to limit the voltage stress [19], [20]. However, these tech-
niques make the circuit complex and increase the cost of
the converter. Coupled Inductor employed in the converter,
e.g., coupled inductor-based boost converter [21], three wind-
ing coupled inductor [22], [23] to attain high voltage conver-
sion ratio. However, additional input filter and active clamped
techniques are required to minimize the input current ripple
when turns ratio increased to meet desired voltage level,
and complex structure is the main drawbacks of these con-
verters [24], [25]. Interleaved converters based on coupled
inductor are proposed to attain higher voltage conversion
ratio with minimum input current ripple and higher effi-
ciency [26], [27]. Nevertheless, complicated design, control,
winding arrangement, and high frequency coupled inductor
are the main challenges for these converters.

Numerous non-isolated converters are proposed to achieve
high voltage conversion ratio without using a transformer
and coupled inductor [28], [29]. Several existing DC-DC
converter topologies are analyzed, and the power circuits
of DC-DC converter topologies are depicted in Fig. 1 and
their voltage conversion ratio is given in the Table-1. Cas-
caded Boost Converter (CBC) and Quadratic Boost Converter
(QBC) are employed in [29], [30], whereas the method of
cascading the necessary converters causes very high volt-
age stresses across the switches. Moreover, the efficiency is
likely to get lessened with rising stages because of the sev-
eral synchronous control switches and semiconductor device
losses. In QBC (Fig. 1(b)), when the control switch turned
OFF, the voltage across control switch is equal to the output
voltage. Thus, high voltage rating control switch is required
to design QBC, which increases the cost and decreases the
efficiency of the converter due to higher conduction and
switching losses [31]–[33].

Switched Capacitor (SC) and Switched Inductor (SI) are
other possible solutions to increase the voltage conversion
ratio of the converter. In [34], SI is employed in boost con-
verter to step up the voltage. However, the voltage conversion
ratio is not improved by several times and the voltage stress

across the switch is equal to the output voltage. To overcome
this drawback, several DC-DC converters, e.g. Three-level
boost converter, Quadratic Three-level converter, converter
using a bootstrap capacitor and inductor, switched capaci-
tor boost converter are proposed [28], [35], [36]. However,
the converter voltage conversion ratio is not enhanced by
a higher factor even though multiple switches and boosting
stages are employed. A high voltage converter is proposed
in [37] using several reactive stages. However, it required a
large number of inductors, capacitor and diodes.

For overcome the abovementioned drawback, the ground-
breaking solution is voltage multipliers to raise the output
voltage, which is the most affordable and frugal way to
increase the gain of the converter [38]. Non-inverting, as well
as inverting boost converter topologies with a combination
of the traditional converter with voltage multiplier, are dis-
cussed [39]. Later, in [40] Nx inverting configuration of the
boost converter is also recommended for photovoltaic DC
Link applications. These multiplier boost converter topolo-
gies provide a practical solution to intensify the voltage
conversion ratio. The multilevel DC-DC converters circuit
avail Cockcroft Walton (CW) voltage multiplier which can
be a crucial solution for the voltage conversion ratio inten-
sification. Fig. 1(k) and 1(l) show the power circuit of Nx
Multilevel Boost Converter (Nx MBC) and Nx Multilevel
Buck-Boost Converter (Nx MBBC), respectively [38]–[40].
Reactive elements incorporated in the power converter topol-
ogy, and operating frequency holds a pivotal role in the
designing of the reactive element. Lower magnitudes of
reactive components along with high switching frequency
serves an acceptable magnitude of the output voltage. How-
ever, it also produces a noticeable amount of ripple at the
input side.

For clarify the issue of current ripple across the induc-
tor, the value of inductance designed according to applica-
tion requirement, which may increase the cost, size of the
converter and its transient response time. In the original,
the configuration of the interleaved structure of positive out-
put multilevel converter for two levels (parallel connected
at both input side and load side) is discussed to minimize

VOLUME 8, 2020 87311



M. Sagar Bhaskar et al.: Analysis and Investigation of Hybrid DC–DC Non-Isolated and Non-Inverting Nx-IMBC

the input current ripple and the size of the passive compo-
nents [39], [41]. However, the only circuitry suggested, and
the work extended to another CW multiplier based high gain
interleaved DC-DC converter with centralized source using
negative and positive multiplier for input ripple cancellation
(parallel connected at the input side and series-connected
at output side) [39], [41], [42] to attain high voltage con-
version ratio with minimum input ripple. Two input boost
stage interleaved converters [43] is proposed to attain high
voltage conversion ratio with minimum input ripple. How-
ever, in [43], two sources and load capacitor with a high
voltage rating increases the cost of the converter. Modified
Dickson charge pump is used to achieve high step-up volt-
age by reducing the number of semiconductor devices [44].
However, the converter is limited in the number of stages,
and further addition of more number of levels is not possible
to achieve high voltage as per requirement. Also, the high
rating output capacitor is required to attain a constant output
voltage. In [45], the structure of 2x interleaved multilevel
converter [39] is extended for higher levels (N), and four
different modes of operation are suggested with simulation
results for renewable energy applications to boost the voltage
with high conversion ratio. In [45], the interleaved multilevel
structure is obtained from two same Nx multilevel DC-DC
converters [38] connected in parallel at the input side and
combined at output side and operated at a higher duty cycle.
It reduces the current rating of the components as well as
reduces the input current distortion compared to Nx MBC
suggested in [38].

In light of the advantages of interleaved structure and
voltage multiplier, this article contributes to the following:
Detail analysis and investigation of a non-isolated Nx Inter-
leaved Multilevel Boost Converter (Nx-IMBC) with hard-
ware implementation for different operationmodes to achieve
high output voltage and minimum input ripples. Possible
modes of operation are discussed with analysis of CCM and
DCM boundary condition. The effect of internal inductor
resistance and semiconductor devices is analyzed in detail.
The design of reactive components and the selection of
semiconductor devices are discussed. The comparison of
the suggested converter and recently addressed converter is
provided in detail to show the benefits. The performance of
Nx-IMBC converter is tested through numerical simulation
and hardware implementation of 100W three-level prototypes
with or without perturbation in input voltage, output reference
voltage and power.

This article is structured as follows: Introduction and
several existing derived DC-DC converters, the motiva-
tion of converter, and the main contribution are discussed
in section-I. The circuit description, modes of operation
(CCM and DCM) of hybrid non-isolated and non-inverting
Nx-IMBC are discussed in section-II. The effect of inductor
internal resistance and semiconductor devices on a voltage
conversion ratio of Nx-IMBC, steady-state analysis for CCM
andDCM, efficiency and power losses are provided in section
III. Various range of operation and waveforms discussed in

section IV. The design, current and voltage stress, and selec-
tion of semiconductor devices for Nx-IMBC are explained
in section-V. Also, comparison of Nx-IMBC with recently
addressed converters is provided in section V. Experimental
and numerical simulation results of Nx-IMBC are discussed
with applications in section-VI. Finally, based on the detailed
investigation of obtained experimental and simulation results,
the conclusion is provided in section-VII.

II. HYBRID DC-DC NON-ISOLATED AND NON-INVERTING
NX INTERLEAVED MULTILEVEL BOOST
CONVERTER (NX-IMBC)
A. CIRCUIT DESCRIPTION OF NX-IMBC
Hybrid DC-DC non-isolated and non-inverting Nx-IMBC
power circuit is depicted in Fig. 2. Nx-IMBC circuitry
combines the features of traditional Interleaved Boost Con-
verter (IBC) and Cockcroft Walton (CW) voltage multiplier.
3N2 capacitors, 4N−2 diodes, two equal rated inductors
along with 2 power switches are required to design circuitry
of Nx IMBC, where N is the number of levels at the output
side. Nx-IMBC provides N times conversion ratio (N/(1−D))
compared to traditional boost converter and same ratio as
compared to Nx MBC. Fig. 3(a)-(d) show the graph of the
required number of capacitors, diodes, inductor and switches
versus the number of levels, respectively.

FIGURE 2. The power circuit of Nx IMBC.

The main advantages of Nx-IMBC are that in case if one
phase of the converter is failing, then also Nx –IMBC pro-
vides the same voltage conversion ratio. Additionally, it is
also possible to feed Nx-IMBC with two different sources,
which required in several applications like PV–FC feeds DC
microgrid.

Others merits of Nx-IMBC topology are
1) The non-inverting output voltage,
2) Non-isolated configuration,
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FIGURE 3. Number of components and semiconductor devices versus the number of levels (a) number of
capacitors (b) number of diode (c) number of inductor (d) number of switches.

3) N-times high voltage conversion ratio compared to tra-
ditional Boost converter (N is the number of levels),

4) Low input current and output voltage ripple,
5) Suitable to feed MLI due to capacitor stack, and
6) Voltage stress across semiconductor devices is low.

Additionally, Nx-IMBC circuitry is simple, and the number
of output levels can be easily increased by adding diode-
capacitor circuitry to increase the voltage conversion ratio.
The output voltage is calculated by adding the voltage across
output side capacitors C1, C2. . . , and CN as follows,

VO = VC1 + VC2 + . . . . . . . . . . . .+ VCN =
N∑
r=1

VCr

}
(1)

B. THE POSSIBLE STATES IN CONTINUOUS
CONDUCTION MODE
To explain the states of operation, 3x Interleaved Multilevel
Boost Converter (Nx-IMBC with N = 3) is assumed with
ideal components, capacitors are large enough to provide
constant voltage, and the circuit operated in Continuous Con-
duction Mode (CCM). The proposed converter can exercise
in four states of operations.

1) STATE-1: WHEN SWITCHES S1 AND S2 ARE ON
When the switches (S1 and S2) are ON, inductors L1 and
L2 magnetized from the input source (Vin), and the capac-
itors C1, C2 and C3 are discharged through the load (Ro).

The voltage across the capacitors make diodes D21, D22, D41
and D42 forward biased and the load side capacitors C1, C2
discharged through the path of diodes to charge capacitors
C21, C22 and C31 and C32, respectively. Fig. 4(a) shows the
equivalent power circuit when both the switches S1 and S2 are
ON. In this mode, diodesD11,D12,D31,D32,D51 andD52 are
reversed biased. The voltage across inductors and capacitors
are calculated as follows,

VL1 = VL2 = L1
diL1
dt
= L2

diL2
dt
= Vin

VC21 = VC22 = VC1

VC21 + VC31 = VC22 + VC32 = VC1 + VC2

Vo = VC1 + VC2 + VC3

 (2)

2) STATE-2: WHEN SWITCH S1 IS ON,
AND SWITCH S2 IS OFF
The equivalent power circuit when switch S1 is ON and
switch S2 is OFF is depicted in Fig. 4(b). The inductor L1
is magnetized from input voltage (Vin) and at the same time,
the capacitors C1, C2 and C3 charged by inductor L2 and
capacitors C22 and C32. The inductor L2 and capacitors C22
and C32 also charge capacitors C21, C31 of the multiplier
cell and provides energy to load (Ro). In this mode, diodes
D11, D31, D51, D22, D42 are reversed biased, and diodes D21,
D41,D12,D32 andD52 are forward biased. The voltage across
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FIGURE 4. Equivalent circuit of Nx IMBC (a) Switches S1 and S2 are ON, (b) Switch S1 is ON and switch S2 is
OFF, (c) Switches S1 and S2 are OFF, (d) Switches S1 is OFF and Switch S2 is ON.

inductors and capacitors are calculated as follows,

VL1 = L1
diL1
dt
= Vin

VC21 = VC1 ,VC21+VC31 = VC1+VC2

VC1 = Vin−L2
diL2
dt

VC2+VC1 = Vin−L2
diL2
dt
+VC22

Vo = VC3+VC2+VC1 = Vin−L2
diL2
dt
+VC22+VC32


(3)

3) STATE-3: WHEN SWITCH S1 AND SWITCH S2 ARE OFF
The equivalent power circuit when switches S1 and S2 are
OFF is depicted in Fig. 4(c). In this mode, inductors L1 and L2
are demagnetized to charge output side capacitors. Capacitors
C1,C2 andC3 are charged by series combination Vin, L1,C21,
C31 and series combination of Vin, L2, C22 and C32. Diodes
D11, D31, D51, D12, D32, D52 are forward biased, and diodes
D21, D41, D22, D42 are reversed biased. The voltage across

inductors and capacitors are calculated as follows,

VC1 = Vin − L1
diL1
dt
= Vin − L2

diL2
dt

VC2+VC1 = Vin − L1
diL1
dt
+VC21 = Vin − L2

diL2
dt
+VC22

VC3+VC2+VC1 = Vin − L1
diL1
dt
+VC21+VC31

Vo = VC3
+VC2+VC1 = Vin − L2

diL2
dt
+VC22+VC32


(4)

4) STATE-4: WHEN SWITCH S1 IS OFF,
AND SWITCH S2 IS ON
The equivalent circuit of the proposed converter when switch
S1 is OFF and switch S2 is ON is depicted in Fig. 4(d). The
inductor L2 is magnetized from input voltage (Vin) and at the
same time, the capacitors C1, C2 and C3 charged by inductor
L1 and capacitorsC21 andC31. The inductor L1 and capacitors
C21 and C31 also charge capacitors C22, C32 of the multiplier
cell and provides energy to load (Ro). In this mode, diodes
D11, D31, D51, D22, D42 are forward biased, and diodes D21,
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D41, D12, D32, D52 are reversed biased.

VL2 = L2
diL2
dt
= Vin

VC22 = VC1 ,VC22+VC32 = VC1+VC2

VC1 = Vin − L1
diL1
dt

VC2+VC1 = Vin − L1
diL1
dt
+VC21

Vo = VC3+VC2+VC1 = Vin − L1
diL1
dt
+VC21+VC31


(5)

The CCM inductor current and voltage waveforms for all
the state are shown in Fig. 5.

FIGURE 5. CCM inductor current and voltage waveform for all the states.

C. THE POSSIBLE STATES IN DISCONTINUOUS
CONDUCTION MODE
When Nx-IMBC circuit operates in DCM, there are three
possible states which depend on the switching of the switches
S1 and S2.

1) STATE-1: WHEN SWITCH S1 IS ON, SWITCH S2
IS OFF, AND L2 CURRENT IS ZERO
The equivalent power circuit for this state is depicted in
Fig. 6(a). The inductor L1 is magnetized from input voltage
(Vin) and the capacitors C21 is charged by the capacitor C1
through diode D21 and switch S1. Capacitor C31 is charged
by the capacitor C2 through diode D41 and switch S1. At the
same time, capacitors C1, C2, C3 also discharged through the
load (Ro). In this mode, diodes D11, D12, D22, D31, D32, D42,
D51, and D52 are reversed biased and diodes D21, D41 are
forward biased. The slope of inductor current and capacitors
voltage is calculated as follows,

diL1
dt
=
Vin
L1
,
diL2
dt
= 0

VC21 = VC1 ,VC21 + VC31 = VC1 + VC2

Vo = VC3 + VC2 + VC1

 (6)

2) STATE-2: WHEN SWITCH S1 IS OFF, SWITCH S2
IS ON, AND L1 CURRENT IS ZERO
The equivalent power circuit for this state is depicted in
Fig. 6(b). The inductor L2 is magnetized from input voltage
(Vin) and the capacitor C22 is charged by the capacitor C1

through diodeD22 and switch S2. CapacitorC32 is charged by
the capacitorC2 through diodeD42 and switch S2. At the same
time, capacitors C1, C2, C3 discharged through the load (Ro).
In this mode, diodes D11, D12, D21, D31, D32, D41, D51, and
D52 are reversed biased, and diodes D22, D42 are forward
biased. The slope of inductor current and capacitors voltage
is calculated as follows,

diL2
dt
=
Vin
L2
,
diL1
dt
= 0

VC22 = VC1 ,VC22 + VC32 = VC1 + VC2

Vo = VC3 + VC2 + VC1

 (7)

3) STATE-3: WHEN SWITCHES S1, S2 are OFF,
L1 AND L2 CURRENT IS ZERO
The equivalent power circuit for this state depicted
in Fig. 6(c). In this mode, all the diodes are reversed biased
and capacitors C1, C2, C3 are discharged through the load
(Ro). The slope of inductor current and the output voltage is
calculated as follows,

diL2
dt
=
diL1
dt
= 0

Vo = VC3 + VC2 + VC1

}
(8)

Inductor current and voltage waveforms for all the state of
DCM are shown in Fig. 7.

D. BOUNDARY OF CCM AND DCM
In general, DCM is occurring when the inductor cur-
rent reaches zero. The condition for CCM and DCM for
Nx-IMBC is,

DCM ⇒ IL1 < 1iL1(t); IL2 < 1iL2(t)
CCM ⇒ IL1 > 1iL1(t); IL2 > 1iL2(t)

}
(9)

For simple calculation, assume all the components and
semiconductor devices are ideal. Consider D is the duty
ratio of gate pulses provided to switches S1 and S2 (Note:
Both switches have an equal duty cycle (D) and switching
frequency). The pulse given to switch S2 is delayed by 50%
compared to switch S1. Therefore, according to circuit topol-
ogy, the voltage across all the capacitors is the same, and the
voltage across the load is calculated as follows,

Vo = VNx−IMBC = N × VC1 =
N × Vin
1− D

}
(10)

It is noteworthy that, the current flowing through both the
inductors is same (IL1 = IL2 = IL). The condition for DCM
is obtained as,

IL =
N 2
× Vin

2Ro(1− D)2
<

VinD
L1 × fs

or
VinD
L2 × fs

fsL1
Ro

or
fsL2
Ro

<
2D× (1− D)2

N 2 ;B < Bcritical(D);

Boundary Surface = Bcritical(D) =
2D× (1− D)2

N 2


(11)

The boundary for DCM and CCM is shown in Fig. 8.
Investigated that Bcritical(D) decreases as the number of levels
increased, and 8/27N2 is the maximum value of Bcritical(D)
for N level at D = 1/3.
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FIGURE 6. Equivalent circuit of DCM states (a) Switches S1 ON, S2 is OFF, and L2 operated in DCM (b) Switches S1 is OFF, Switch S2 is ON, and L1 is
operated in DCM (c) Switches S1 and S2 are OFF, and L1 and L2 are operated in DCM.

FIGURE 7. DCM inductor current and voltage waveform for all the states.

III. STEADY-STATE ANALYSIS AND EFFECT OF INTERNAL
RESISTANCE OF INDUCTOR AND SEMICONDUCTOR
DEVICES FOR NX-IMBC
A. ANALYSIS IN CCM
In real-time applications, the voltage conversion ratio of
any DC-DC converter is restricted by parasitic resistance of
passive components or devices; specially inductor of the con-
verter. Parasitic RL1 and RL2 (Equivalent Series Resistance)
is considered in series with inductor L1 and L2 respectively.
The voltage across inductors L1 and L2 is calculated when
switches S1 and S2 are ON and OFF as follow,

S1ON ⇒ Vin − IL1RL1 = L1
diL1
dt

S2ON ⇒ Vin − IL2RL2 = L2
diL2
dt

S1OFF ⇒ Vin − IL1RL1 − VC1 = L1
diL1
dt

S2OFF ⇒ Vin − IL2RL2 − VC1 = L2
diL2
dt


(12)

FIGURE 8. The boundary for CCM and DCM.

Note: for simplicity, consider ideal diode (Vd= 0) and ideal
switch (VS= 0) in Nx- IMBC with load Ro.

Vin × Iin = Io × Vo =
N 2VinVC1
(1− D)Ro

Iin = IL1 + IL2 =
N 2
× VC1

(1− D)Ro

 (13)

Inductor volt balanced second method is applied and equa-
tions obtained as follow,

VL1 = D(Vin − IL1RL1)+ D(Vin − IL1RL1 − VC1) = 0

VL2 = D(Vin − IL2RL2)+ D(Vin − IL2RL2 − VC1) = 0


(14)

Vin =
IL1RL1 + IL2RL2

2
+ (1− D)VC1

}
(15)
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FIGURE 9. Voltage Conversion ratio plot versus the duty cycle for different cases of RL/Ro (a) N = 1, (b) N = 2, (c) N = 3, (d) voltage
conversion ratio plot versus duty cycle for N = 1 to 5 when RL = 0.

Noted that identical rating inductor are used. So, their
internal resistance is the same (RL1 = RL2 = RL). Thus,

Vin =
(IL1 + IL2)RL

2
+ (1− D)VC1

Vin =
IinRL
2
+ (1− D)VC1

 (16)

By the above equation, the voltage conversion ratio
obtained as,

Vo
Vin
=

1
1
2

N×RL
(1−D)Ro

+
D
N

=
N

(1− D)+ 1
2
N 2×RL
(1−D)Ro

 (17)

In Fig. 9(a) - 9(c), the voltage conversion ratio is a plot
against duty cycle for various cases ofRL/Ro whenN= 1 to 3.
In Fig. 9(d), the voltage conversion ratio is a plot against duty
cycle forN= 1 to 5 andRL= 0 (ideal case). Examined that the
voltage conversion ratio is linear increases up to duty cycle
80%, and this linear region called a Quasi Linear Region.

To calculate the efficiency of the converter, let us consider
voltage Vd and Vs is the drop of each diode and each switch,
respectively.

It is examined that capacitor C1 transfers its energy to
charge capacitor C21 through diode D21 and switch S1 in
state I and II. Also, capacitor C1 transfers its energy to
charge capacitor C22 through diode D22 and switch S2 in

state I and IV. The voltage across capacitor C21 and C22 are
obtained as follows,

VC21 = VC1 − Vd − VS
VC22 = VC1 − Vd − VS

}
(18)

The capacitor C21 and C22 transfer its energy to charged
capacitor C2. The voltage across C2 is obtained as follows,

VC2 = VC21 − 2Vd = VC1 − 3Vd − VS} (19)

The capacitor C2 transfers its energy to charge capacitor
C31 through diode D31 and switch S1 in state I and II. Also,
capacitor C2 transfers its energy to charge capacitor C32
through diodeD32 and switch S2 in state I and IV. The voltage
across capacitor C31 and C32 is obtained as follows,

VC31 + VC21 = 2VC1 − 5Vd − VS
VC32 + VC22 = 2VC1 − 5Vd − VS
∴ VC31 = VC32 = VC1 − 4Vd

 (20)

Further, observed that the voltage across capacitors C31,
C32, C41, C42 . . . ., CN1, and CN2 is same and equal to
VC1-4Vd . The total output voltage is calculated as fol-
lows (21), shown at the bottom of the next page.

VOLUME 8, 2020 87317



M. Sagar Bhaskar et al.: Analysis and Investigation of Hybrid DC–DC Non-Isolated and Non-Inverting Nx-IMBC

The efficiency (η) of the Nx-IMBC obtained as follows,

η=
(1−D)/N

1
2
N × RL
(1−D)Ro

+
D
N

−(4N−3)
(1−D)Vd
NVin

−
(1−D)VS
NVin

if RL → 0, then η = 1−(4N−3)
(1−D)Vd
NVin

−
(1−D)VS
NVin

if semiconductor devices are ideal, then

η =
(1−D)/N

1
2
N × RL
(1−D)Ro

+
(1−D)
N


(22)

The power loss due to semiconductor devices (PLS ) and
internal resistance of inductor (PLi) of the Nx-IMBC obtained
as follows,

PLS = Pin

(
1−

(
1−(4N−3)

(1−D)Vd
NVin

−
(1−D)VS
NVin

))

PLi = Pin

1−
(1−D)/N

1
2
N × RL
(1−D)Ro

+ (1−D)/N




(23)

B. ANALYSIS OF DCM
Let’s consider, switch S1 is ON and inductor L1 is magnetized
for the timeD1TS ; switch S1 is OFF and inductor L1 is demag-
netized for the time D2TS ; and switch S1 is OFF and inductor
L1 current is zero for the time D3TS . Similarly, at 180◦ phase
shift, switch S2 is ON and inductor L2 is magnetized for the
timeD1TS ; switch S2 is OFF and inductor L2 is demagnetized
for the time D2TS ; and switch S2 is OFF and inductor L2
current is zero for the timeD3TS . The time relations obtained
as follows,

One cycle Time = TS =
1
fS
= DTS + D1TS + D2TS

⇒ (D+ D1 + D2) = 1

 (24)

The voltage across inductor L1 and L2 for each time-period
obtained as follows,

Vin − IL1RL1 = VL1
Vin − IL2RL2 = VL2

}
for D1Ts (25)

Vin − IL1RL1 − VC1 = VL1
Vin − IL2RL2 − VC1 = VL2

}
for D2TS (26)

VL1 = 0,VL2 = 0
}
for D3TS (27)

By inductor volt-second balanced method, the equation
obtained as follows,

(Vin−IL1RL1)D1+(Vin−IL1RL1−VC1)D2 = 0
(Vin−IL2RL2)D1+(Vin−IL2RL2−VC1)D2 = 0

Vin (D1+D2) =
IL1RL1+IL2RL2

2
(D1+D2)+(D2)VC1


(28)

If RL1 = RL2 = RL then,

Vin (D1+D2) =
(IL1+IL2)RL

2
(D1+D2)+(D2)VC1

VC1
Vin
=

(
1−

(IL1+IL2)RL
2Vin

)(
D1

D2
+1
)

 (29)

For simple calculation, consider all the semiconductor
devices are ideal, and capacitors are large enough to provide
ripple-free voltage. The voltage across the load calculated as
follows,

Vo
Vin
= N

(
1−

(IL1 + IL2)RL
2Vin

)(
D1

D2
+ 1

)
where, D2 =

D1NVin
Vo − Vin

=
2L
Ro

Vo
VinD1

 (30)

If both inductors are identical and ideal then, L1 = L2 = L
and RL1 = RL2= 0;

V 2
o −

NV 2
inD

2
1

2B
− VoVin = 0

where, B =
L

RoTs

 (31)

The solution of (31) yields two roots. However, we know
that the output of the proposed converter is positive. Therefore
positive root is selected, and the voltage conversion ratio
obtained as follows,

Vo
Vin
= 0.5

1+

(
1+

2ND2
1

B

) 1
2
 (32)

Examined that the voltage conversion ratio is load-
dependent and consequent increasing converter output
impedance.

Vo =
1

1
2

N × RL
(1− D)Ro

+
D
N

Vin − (4N − 3)Vd − VS

where,
1
2

N × RL
(1− D)Ro

→ Effect of Intermal Resistance of Inductor

(4N − 3)Vd → Effect of diode
VS → Effect of switch




(21)
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FIGURE 10. Inductor L1 and L2 current waveform (a) when the duty cycle is higher than 50%, (b) when the duty cycle is lesser than 50%, (c) when the
duty cycle is equal to 50%.

IV. VARIOUS RANGE OF OPERATION AND INDUCTOR
CURRENT WAVEFORM
The converter is possible to control in three different range of
duty cycle i) duty cycle higher than 50% ii) duty cycle lesser
than 50% and iii) duty cycle is equal to 50%. The slope of the
inductor (L1 and L2) current waveforms are analyzed for three
different ranges of duty cycle, as shown in Fig. 10(a)-(c).
First, analyzed that the proposed converter operates in states
1, 2 and 4 when the duty cycle is higher than 50%. Second,
analyzed that the proposed converter operates in states 2,
3 and 4 when the duty cycle is lesser than 50%. Third,
analyzed that the proposed converter operates only in state
2 and 4 when the duty cycle equal to 50%.

V. DESIGN AND COMPARISON OF NX-IMBC
The slope of the inductor currents is used to calculate
the critical inductance such that considered current ripples
obtained. The critical inductance and current stress calculated
as follows,

Critical L1 =
Vin − IL1RL1

1IL1
DTs

Critical L2 =
Vin − IL2RL2

1IL2
DTs

(IL1 = IL2) >
Iin
2


(33)

The voltage across all the capacitors is precisely the same
if all the diodes are considered ideal. Therefore, due to the
balanced voltage structure of voltage multiplier, it is feasible
to select all the capacitors with an equal rating. The slope of
capacitor voltage is used to calculate the critical capacitance
such that considered voltage ripples obtained. The critical
capacitance and voltage rating of the capacitor decided as,

Critical C =
DVo

fs1vCRN
, VC >

Vo
N
=

Vin
1− D

}
(34)

It is also feasible to select all the diodes with equal rating
due to the benefits of voltage multiplier. The voltage and

current rating of the diode decided as,

VD >
Vo
N
=

Vin
1− D

, ID > IL >
Iin
2

}
(35)

The drain to source voltage of both switches S1 and S2
calculated and examined that each switch voltage is equal to
each capacitor voltage. The current flowing through switch
is equal to the addition of inductor current and capacitor
clamping current. Voltage and current rating of the switch are
decided as,

(VS1 = VS2) >
Vo
N
=

Vin
1−D

(iS1(t) = iS2(t)) > iin(t)+ Capacitor clamping current
(iS1(t) = iS2(t))� iin(t),


(36)

In Table-2, Nx-IMBC configuration compared with exist-
ing DC-DC converter in terms of voltage conversion ratio,
voltage stress, number of the inductor, number of the capac-
itor, number of diodes, number of switches, input current
behavior. It is noteworthy that the Nx-IMBC provides high
voltage conversion ratio with the low voltage across switch,
input current ripple cancellation, and without using a more
significant number of inductors and switches. In Fig. 11, the
Nx-IMBC and existing converters are compared in terms of
voltage conversion ratio. Notably, Nx-IMBC provides a prac-
tical solution to obtain high voltage with reduce input ripple,
and low rating components are suitable to design converter.

VI. NUMERICAL SIMULATION AND
EXPERIMENTAL RESULTS
Nx-IMBC configuration is simulated with ideal components
for three-level (i.e3x IMBC) with the designed parameter
to verify its functionality. The designed parameters given
in Table 3. Fig. 12(a) shows the output and input voltage
of three levels 3x IMBC, and investigated that the voltage
conversion ratio converter is 12 at 75% duty cycle. Thus,
the required output voltage 120V obtained from a 10V input
voltage at a 75% duty cycle. Fig. 12(b) shows the voltage
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TABLE 2. Comparison of Nx IMBC and existing DC-DC converter.

TABLE 3. Parameter of numerical simulation test.

FIGURE 11. Voltage conversion ratio versus duty cycle (A: Fig. 1(h), 1(i),
Nx MBC, Nx IMBC; B: Fig. 1(f); C: Fig. 1(b), 1(e); D: Fig. 1(d), 1(j);
E: Fig. 1(c), 1(g); F = Fig. 1(a)).

at a different output level. Observed that each level con-
tributes to equal voltage (Vo/3, i.e. 40V). Thus, the voltage
at the first level is 40V, the voltage at the second level is
80V, and the voltage at the third level is 120V. Fig. 12(c)
shows the voltage distribution across output side capacitors
(C1, C2 and C3). Investigated that voltage across output side
capacitors is equal to Vo/3 (i.e. 40V). The voltage distribution
across all the output side capacitors (C1, C2 and C3) shows
that the converter performs satisfactorily. Fig. 12(d) shows the
voltage distribution across multiplier capacitors. Investigated
that voltage across capacitors of the multiplier is equal to Vo/3

(i.e. 40V). The voltage distribution across all the capacitors
C21, C22, C31 and C32 shows that the converter performs
satisfactorily.

Fig. 13(a) shows the inductor current waveform with the
gate pulse of switches. Investigated that 5.2A current is flow-
ing through the inductor (L1 and L2) which is nearly half of
the input current (Iin/2). Fig. 13(b) shows the drain to source
voltage of switches (VDS1 and VDS2) with gate to source
voltage of switches (VGS1 and VGS2). Observed that the drain
to source voltage of switches is equal to Vo/3 i.e 40V. This
drain to source voltage of switch remains same even also
of the voltage levels at the output. Output and input current
ripples shown in Fig. 13(c). Observed that the input current
and output current ripple is 600mA and 2mA, respectively.
Thus, 3Nx IMBC provides a low input and output current
ripple, and highly desired in photovoltaic application.

The 3x IMBC investigated experimentally, and the result
shows a good match with the simulation results. The detail of
the hardware components used for the experimental purpose
shown in Table 4. The hardware prototype of Nx IMBC
is designed for three-level (3x IMBC) and tested at power
100W, and gate pulses are generated through FPGA with a
classical PI controller to control the output voltage.

Fig. 14(a) shows the obtained output voltage, input volt-
age, output current and input current waveform. Examined
that output voltage (vo) 120.17V achieved by feeding input
voltage (vin) 10V. The observed input current (iin) and output
current (io) are 10.63A and 808.5mA, respectively. Fig. 14(b)
shows the obtained voltage waveform at various levels of the
designed converter. Examined that the voltage at level one,
two, and three are 40.13V, 80.19V, and 120.21V, respectively.
Separately, the voltage across each output side capacitor also
measured and shown in Fig. 14(c). The obtained voltage
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FIGURE 12. Simulation results of 3x IMBC (a) output voltage and input voltage, (b) output voltage at different levels, (c) voltage
distribution across capacitors C1, C2 and C3, (d) voltage distribution across capacitors C21, C31, C22 and C32.

TABLE 4. Hardware implementation detail.

FIGURE 13. Simulation results of 3x IMBC (a) Inductor current waveforms (IL1 and IL2) with gate pulse of switches (VGS1 and VGS2) (b) Voltage
stress across switches (VDS1 and VDS2), (c) Input and output current ripples.

across capacitor C1, C2, and C3 are 40.13V, 40.09V, and
40.05V, respectively. The voltage across multiplier capacitors
C21, C31, and C22, C32 is shown in Fig. 14(d) and Fig. 14(e),

respectively. The obtained voltage across capacitor C21, C31,
C22, and C32 is 40.07V, 40.05V, 40.09V, and 40.08V, respec-
tively. Based on the obtained results, it is clear that voltage
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FIGURE 14. Experimental results of 3x IMBC (a) Top to bottom: input voltage (vin), output voltage (vo), input current (iin), output current (io) (b) Top
to bottom: level 1 voltage (vC1), Level 2 voltage (vC1 + vC2), Level 3 voltage (vC1 + vC2 + vC3), (c) Top to bottom: voltage across capacitor C1 (vC1),
voltage across capacitor C2 (vC2), voltage across capacitor C3 (vC3), (d) Top to bottom: voltage across capacitor C21 (vC21), voltage across capacitor
C31 (vC31), (e) Top to bottom: voltage across capacitor C22 (vC22), voltage across capacitor C32 (vC32), (f) Top to bottom: Inductor currents (iL1 and
iL2) and input current (iin) (g) Top to bottom: voltage across switch S1 (vDS1), inductor L1 current (iL1), voltage across switch S2 (vDS2), inductor L2
current (iL2), (h) Top to bottom: inductor L1 current (iL1), ), inductor L1 voltage (vL1), inductor L2 current (iL2), ), inductor L2 voltage (vL2).

distributions in all the capacitors are equal, and the magnitude
is equal to the voltage at the first level of the converter.
Fig. 14(f) shows the waveform of inductor current (iL1, iL2)
and input current (iin). Noted that both the inductor current
are same, but shifted by 180◦. The ripple at the input side
is nearly cancelled, and 930mA ripple observed in the input
current (iin). Confirmed that if both the switches operated at
50% duty cycle, then the ripples in the inductor current is
zero. Fig. 14(g) shows the drain to source voltage waveform
of switches S1 and S2 (vDS1 and vDS2). During OFF state of
the respective switch, observed that voltage vDS1 and vDS2
are 41.23V and 41.17V, respectively. Seen that the inductor
L1 and L2 are charging and discharging when switches S1
and S2 turned ON and OFF, respectively. Fig. 14(h) shows
the waveform of inductor L1 and L2 voltage and current.
Observed that the inductor L1 voltage (vL1) during charging

and discharging is 10.05V and 30.13V, respectively. Also,
observed that the inductor L2 voltage (vL2) during charging
and discharging is 10.04V and 30.1V, respectively. It is clear
that the magnitude of both the inductor L1 and L2 voltage
waveform the same but shifted by 180◦.

The performance of the designed converter also tested
under the perturbation from the input side, load side and out-
put voltage reference. Note: State-space modelling skipped
from the article; however, the results discussed. Fig. 15(a)
shows the waveform of input voltage (vin), inductor L1 cur-
rent (iL1), output voltage (vo) and output current (io) when
power is abruptly changed from 100W to 120W and 120W
to 100W. Fig. 15(b) shows thewaveform of the drain to source
switch S1 voltage (vDS1), inductor L1 current (iL1), output
voltage (vo) and output current (io) when power is abruptly
changed from 100W to 120W and 120W to 100W.
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FIGURE 15. Experiment results of 3x IMBC (a) Top to bottom: input voltage (vin), inductor L1 currents (iL1), output voltage (vo), output current (io)
[A, C: Power 100W, B: power 120W, AB: change in power 100 to 120W, BC: change in power 120 to 100W], (b) Top to bottom: voltage across switch S1
(vDS1), inductor L1 currents (iL1), output voltage (vo), and output current (io) [A, C: Power 100W, B: power 120W, AB: change in power 100 to 120W,
BC: change in power 120 to 100W], (c) Top to bottom: input voltage (vin), inductor L1 currents (iL1), output voltage (vo), output current (io) [A: output
voltage 100V, B: Output voltage 110V, C: Output voltage 120V, AB: change in output voltage 100 to 110 V, BC: change in output voltage 110 to 120],
(d) Top to bottom: input voltage (vin), inductor L1 currents (iL1), output voltage (vo), output current (io) [A: input voltage 10V, B: input voltage 12V,
C: input voltage 14V, AB: change in input voltage 10 to 12V, BC: change in input voltage 12 to 14V], (e) Top to bottom: voltage across switch S1 (vDS1),
inductor L1 currents (iL1), output voltage (vo), output current (io) [A: input voltage 8V, B: input voltage 10V, C: input voltage 12V, D: input voltage 14V,
AB: change in input voltage 8 to 10V, BC: change in input voltage 10 to 12V, CD: change in input voltage 12 to 14V].

For convenient, the obtained waveforms sectioned in three
sections A, B and C. Section A and C are the obtained
waveform when the converter operated at 100W, and section
B are the obtained waveform when the converter operated at
120W. Highlighted part AB shows the transients when the
power of the converter abruptly changed from 100W to 120W.
Highlighted part BC shows the transients of the converter
when the power of the converter abruptly changed from 120W
to 100W. Notably, the output voltage is maintained; even
power abruptly changed with constant input voltage (vin).
Due to the constant input voltage (vin) and output voltage (vo),
inductor current (iL1) and output current (io) are changed to
fulfil the demand for power. There is no change in the drain
to source switch voltage (vDS1) even power changed 100W
to 120W and 120W to 100W because of constant output
voltage (vo).
Fig. 15(c) shows the waveform of input voltage (vin),

inductor L1 current (iL1), output voltage (vo) and output
current (io) when output reference voltage (voref ) is abruptly
changed from 100V to 110V and 110V to 120V at constant
load. For convenient, the obtained waveforms sectioned in
three sections A, B and C. Section A, B, and C shows the

obtained waveform when converter output reference (voref )
is set to 100V, 110V, and 120V respectively. Highlighted
part AB and BC shows the transients when the power of the
converter output reference (voref ) is changed from 100V to
110V and 110V to 120V, respectively. Noticed that expected
output voltage achieved even there is no change in input
voltage (vin). It is interesting to know that to maintain the
equal power at the input and output side, inductor current (iL1)
and outputs current a changed according to output voltage
reference (voref ).
Fig. 15(d) shows the waveform of input voltage (vin),

inductor L1 current (iL1), output voltage (vo) and output cur-
rent (io) when the input voltage (vin) abruptly changed from
8V to 10V and 10V to 12V. Section A, B, and C shows the
obtained waveform when the converter input voltage (vin) set
at 8V, 10V, and 12V, respectively. Highlighted part AB and
BC shows the transients when input voltage (vin) converter
abruptly changed from 8V to 10V and 10V to 12V, respec-
tively. Notably, constant output voltage (voref ) 120V achieved
even changed in input voltage (vin). For maintain the equal
power at the input and output side, the inductor current is
increased or decreased according to input side voltage (v1).
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FIGURE 16. Efficiency plots (a) Efficiency during various numbers of experimental tests at 100W,
(b) Efficiency versus variation in power level from 60 W to 120W.

FIGURE 17. Possible application of Nx IMBC in DC-DC-AC system.

Fig. 15(e) shows the waveform of the drain to source
switch S1 voltage (vDS1), inductor L1 current (iL1), output
voltage (vo) and output current (io), when the input voltage
(vin) abruptly changed from 8V to 10V, 10V to 12V, and
12 V to 14V. Section A, B, C and D show the obtained
waveform when the converter input voltage (vin) set at 8V,
10V, 12V and 14V, respectively. Highlighted part AB, BC and
CD shows the transients when input voltage (vin) converter
abruptly changed from 8V to 10V, 10V to 12V, and 12V to
14V respectively. Drain to source voltage of switch S1
(vDS1) and output voltage (vo) is constant even input voltage
changed. For maintain equal power at the input and output
side, the inductor current is increased or decreased accord-
ing to the input voltage (v1). Various tests conducted, and
observed efficiency at 100W shown in Fig. 16(a). It observed
that on an average 91.37% efficiency of the 3x IMBC. It noted
that the 3x IMBC is slightly improved when compared to the

multilevel boost converter (∼89%) at 100W proposed in [38],
Interleaved Converter (∼94%) at 150W proposed in [43], and
Interleaved converter (∼93.5%) proposed in 150W [44].

The converter is operated at various power levels from 60W
to 120W. The observed efficiency at various power levels
shown in Fig. 16(b). During power variation, the efficiency
of the 3x MBC is in range of 87 to 92%. Majorly, the PV to
the grid system, MLI circuitry needs several voltage sources
along with several DC-DC converters at the input side. The
Nx-IMBC configuration is suitable to feedMLI due to capac-
itor stack structure at the output side, as shown in Fig. 17.
The Nx IMBC provides a solution to feed MLI with single
DC-DC converter. Additionally, the Nx-IMBC configuration
finds the applications like automotive, renewable appliances,
electric vehicles and microgrid were low to high conversion
ratio is necessary. Further, it is also possible to increase the
phases of the interleaved converter based on the applications,
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FIGURE 18. Further improvement to increase phases of the interleaved converter (four-phase of Nx
IMBC).

e.g. four phases Nx IMBC possible configuration is shown
in Fig. 18.

VII. CONCLUSION
The detail investigation and boundary of CCM and DCM
with steady-state analysis of hybrid Nx-IMBC are presented.
Nx-IMBC converter topology extended the feature of 2x
interleaved boost converter and combines the features of
the interleaved converter and recently proposed Multilevel
Boost Converter (MBC). Nx-IMBC provides higher voltage
conversion ratio compared to recently addressed converters
with reduced input ripples. Themain advantages of Nx IMBC
are that in case if one phase of the converter is failing, then
also Nx-IMBC provides the same voltage conversion ratio.
Additionally, it is also possible to feed Nx-IMBC with two
different sources.

Additional merits of the novel converter include:
1. The non-inverting output voltage, and performed as sim-

ilar as a recently proposed multilevel boost converter.
2. Non-isolated configuration, and avoided bulky

transformers.
3. Low input/output current and output voltage ripple.
4. Voltage stress across the switch is low.
5. The number of output side levels raised by adding a

diode-capacitor circuit, thereby the voltage conversion
ratio increased.

Moreover, the Nx-IMBC converter compared with a new
non-isolated DC-DC converter and multilevel converters
in terms of switch voltages and number of components.
Based on the experimental and simulation result, it is pos-
sible to conclude that Nx-IMBC is a promising topol-
ogy for feeding MLI, photovoltaic applications, automotive
appliances, PV drives, and electric vehicles. The experi-
mental shows a good match with simulation results and

verifies the validity of the design, feasibility, working of the
converter.
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