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Abstract: Wildlife species’ habitats throughout North America are subject to direct and indirect
consequences of climate change. Vulnerability assessments for the Intermountain West regard wildlife
and vegetation and their disturbance as two key resource areas in terms of ecosystems when considering
climate change issues. Despite the adaptability potential of certain wildlife, increased temperature
estimates of 1.67–2 ◦C by 2050 increase the likelihood and severity of droughts, floods, heatwaves
and wildfires in Utah. As a consequence, resilient flora and fauna could be displaced. The aim of
this study was to locate areas of habitat for an exemplary species, i.e., sage-grouse, based on current
climate conditions and pinpoint areas of future habitat based on climate projections. The locations of
wildlife were collected from Volunteered Geographic Information (VGI) observations in addition to
normal temperature and precipitation, vegetation cover and other ecosystem-related data. Four machine
learning algorithms were then used to locate the current sites of wildlife habitats and predict suitable
future sites where wildlife would likely relocate to, dependent on the effects of climate change and
based on a timeframe of scientifically backed temperature-increase estimates. Our findings show that
Random Forest outperforms other competing models, with an accuracy of 0.897, and a sensitivity and
specificity of 0.917 and 0.885, respectively, and has great potential in Species Distribution Modeling
(SDM), which can provide useful insights into habitat predictions. Based on this model, our predictions
show that sage-grouse habitats in Utah will continue to decrease over the coming years due to climate
change, producing a highly fragmented habitat and causing a loss of close to 70% of their current habitat.
Priority Areas of Conservation (PACs) and protected areas might be deemed insufficient to halt this
habitat loss, and more effort should be put into maintaining connectivity between patches to ensure
the movement and genetic diversity within the sage-grouse population. The underlying data-driven
methodical approach of this study could be useful for environmentalists, researchers, decision-makers,
and policymakers, among others.

Keywords: sage-grouse; climate change; machine learning; species distribution modeling

1. Introduction

Wildlife conservation brings balance and value to ecological systems, supported by the
environmental ethics of biocentrism. As a practice, conservation is of growing importance due
to the role that nature plays in mitigating the negative impacts of global warming through its ability to
regulate climate change [1]. According to the Convention on Biological Diversity (CBD), it is of the
uttermost importance to ensure: (a) the conservation of biological diversity, (b) the sustainable use of
the components of biological diversity and (c) the fair and equitable sharing of the benefits arising
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from the utilization of genetic resources [2]. Due to human activities in general, many ecosystems are
being destroyed or damaged, and we are facing a massive extinction of most kinds of species.

This loss of ecosystems will seriously aggravate the climate situation, which will, in turn, negatively
impact the remaining ecosystems and wildlife. Through this feedback, environmental changes will
happen faster the worse the situation gets, accelerating the effects of climate change and ecosystem
degradation. To stop this feedback and decelerate or even stop ecosystem degradation and biodiversity
loss, the United Nations (UN) has set some Sustainable Development Goals (SDGs) that are to be met
in order to avoid reaching any tipping points [3]. The urgency associated with mitigating the harmful
consequences in connection to climate change incites the use of innovative techniques and tools.
Species Distribution Models (SDMs) are one such tool that use observation data in conjunction with
environmental variables to project the presence or absence of a species both spatially and temporally [4],
ultimately assisting in conservation efforts.

Machine learning (ML) is also playing a crucial role in bridging a gap between computer science
and biology in demonstrating its utility as an advantageous component of species distribution
modeling. By automating time-consuming processes, ML overcomes the challenges presented to us
from non-linear, high-dimensional data and continues to grow in popularity. This is also, in part, due
to its ability to cope with the scarcity of absence data and making use of the abundance of presence
data that are available for countless wildlife species [5].

The region of Utah is particularly vulnerable to the effects of climate change, mainly due to the
semi-arid nature of the region [6]. Its wildlife is equally sensitive to climate change effects, including
42 endangered species and 166 sensitive species of both flora and fauna [7]. The impacts of climate
change on the environment have both direct and indirect consequences on wildlife habitats and food
sources, leading to the wildlife’s inevitable relocation or potential extinction. Terrestrial ecosystems
composed of wetlands, forests, alpine areas and deserts play a vital role in absorbing, storing and
managing carbon and water, and therefore, their conservation and restoration are both critical and
cost-effective in terms of climate change mitigation and wildlife conservation. Should these areas not
be preserved, and feedback loops occur, lands will convert from carbon sinks to carbon sources [1].
In the western states, where the study area for this study is located, this will translate to a decrease
in ecosystem resilience, a diminished water supply, an increase in vulnerability to drought and a
susceptibility to damage caused by wildfires [8]. As a result, wildlife habitat fragmentation and loss
could occur, which are directly linked to biodiversity loss [9] and could ultimately be the cause of the
decline and extinction of many wildlife species [10].

This study seeks to address such wildlife habitat concerns by combining the use of SDMs with
ML algorithms to provide supplementary information for strategic conservation planning, which,
to date, has been a primarily standalone approach [11]. Traditional methods are still common practice
in strategic conservation planning, despite the emergence of ML applications in this area, which make
use of the most recent scientific and technological resources. SDMs enable the use of Volunteered
Geographic Information (VGI) and open source tools. The context of VGI data lies within citizen science,
with it being a form of user-generated content made possible by technological advances. Both VGI
and open source tools allow for the incorporation of many ML algorithms for easy comparison and
allow for the assessment of their collective use in terms of reliability, efficiency, accuracy, flexibility and
potential as a tool for future habitat modeling. There are a considerable number of studies that focus
on these issues, of which some are selected for a comparative summary in Table 1.
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Table 1. Comparative summary of previous research on Machine Learning (ML) in Species Distribution
Models (SDMs).

Methodology Use Strengths Weaknesses Source

Use of Remote Sensing
imagery to calculate
vegetation extent, several
environmental layers as
background data and
museum observations for
species data. The MARXAN
software was used for all
planning strategies and run
multiple times with target
set data

Conservation strategy,
implementation and
assessment in response to
biodiversity loss in Papua
New Guinea

Addresses the static,
unproductive approach to
current conservation assessment
efforts in this location, addresses
impact of climate change on
species relocation. Discovery
that geophysical data should be
used in conjunction with
environmental layers for
reliability of results

Theoretically based
research, more
concentrated on current
conservation assessment
procedures and limited in
terms of tools used

[12]

Machine Learning algorithm
Decision Trees is used to
determine current and
future species distribution

Creation of a decision
framework enabling the
identification and
prioritization of current
conservation-related
action

Enables an adaptive strategy
plan, inclusive of science, policy
and practice. Can be used for
local management for species at
risk on a universal level.
Combines both theoretical and
practical knowledge of
conservation, where restricted
information can inhibit
rational planning

Requires expert insight
when determining
answers for each of the
three potential Decision
Tree algorithm outputs
regarding species
adaptability; Adversely
Sensitive, Climate Overlap,
and New Climate Space

[13]

Use of both archived and
openly accessible records for
presence data of species,
confirmed by ground
truthing methods. Random
Forest Machine Learning
algorithm, in addition to
TreeNet, Mars, CART and
MaxEnt, in combination
with top-performing
predictor variables, assessed
future conservation areas for
investigated species

Establish present
distribution and territory
of small mammals at
northern latitudes whilst
considering forced
relocation as a
consequence of habitat
alteration due to
climate change

Concludes points for successful
methodology and provides an
initial framework for species
mapping and monitoring that
can be implemented on a
broader spatial–temporal scale.
Provides advanced material for
Machine Learning algorithms
used in species distribution
modeling. Offers insight into
understanding predictor
variables and resolutions

[14]

Machine Learning algorithm
MaxEnt is used alongside
Very High Frequency
telemetry technology and
predictor variables in
locating undiscovered
seasonal distributions of
sage-grouse

Determine and model
habitat preferences of
periphery populations of
sage-grouse

Considers both environmental
and anthropogenic variables.
All four final models produced
demonstrated excellent
predictability upon visual
inspection. Contributes to the
further understanding of
Machine Learning algorithms,
Species Distribution Models and
individual characteristics of
sage-grouse species

Certain areas highlighted
by results indicated
necessary further
investigation in order to
determine species
distribution

[5]

1.1. Species Distribution Modeling

Through the combined use of wildlife occurrence data and environmental data, threats that pose a
risk to certain species, such as climate change, can be evaluated and appropriate mitigation measures to
be taken advocated for. SDMs can not only predict the current location of wildlife presence but are also
used for future habitat suitability mapping. This is dependent on projected environmental scenarios
using relevant variables [4,15]. SDMs and their value in conservation decision-making and management
are subject to certain criticisms and discussion points. To address these and maximize species distribution
modeling potential, attention should be paid to the reliability and comprehensiveness of input data,
the model should be assessed appropriately, and iterations should be performed for the process until a
defensible and reproducible model can be established [11,16].

Observation data are often critiqued for their lack of absence points [13]; the presence points of a
species in a study area are confirmed, but no further information regarding the presence or absence of
that species is provided for the remainder of the area where no data are available. Therefore, observation
data provide insight only into where confirmed sightings of a species occur and, additionally, where we
must decide whether bias or other issues may also exist. For example, sightings that are recorded in
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someone’s garden in an urban area miles from a lek may be considered inaccurate. This criticism for
observation-only data can be addressed in one of two following ways: firstly, by using a presence-only
model, or secondly, through the creation of pseudo-absences. However, some argue that absence points
only confuse the model due to the assumption that all records represent non-habitats when, in fact,
they could signify suitable-yet-inaccessible habitats [16]. Furthermore, the overall evaluation of the
model’s credibility should be derived from performance-based statistics; studies show that kappa,
Area Under the Curve and Receiver Operating Characteristic (AUC-ROC), and correlation coefficients
provide relevant and useful information in model analysis.

According to recent research, the ML algorithms most associated with species distribution
modelling are Maximum Entropy (MaxEnt), Random Forest (RF), Support Vector Machine (SVM)
and Artificial Neural Network (ANN) [4,17]. Each of these algorithms serves to meet the challenge of
characterizing the spaces delineating species habitats and categorize the remaining areas depending
on whether they meet the same criteria. Each algorithm performs differently when predicting the
current and future habitats of sage-grouse, and their results differ in terms of reliability and accuracy,
as explained further in Section 4.1. By following a protocol, the combined use of species distribution
modelling and ML algorithms can provide predictive results that surpass traditional standalone
conservation assessment practices. Through the incorporation of theory, expert opinion and current
practice, SDMs could reduce current conservation management real and time-related costs and help to
minimize planning errors by providing insight into where future efforts should be focused [18].

1.2. Study Objectives

The purpose of this study is to determine the presence of sage-grouse habitats in the state of Utah
based on various ML algorithms, using relevant environmental factors to determine areas of habitat;
analyze which algorithms perform best for this task; and, finally, investigate the extent to which these
areas will change due to climate change. These locations could then be considered as possible areas
of easement for wildlife conservation purposes. Additionally, we seek to investigate the impacts of
climate change statewide, predict changes in sage-grouse habitats and infer from the results which
areas should be considered for future conservation with respect to wildlife response.

Problem Statement

The state of Utah is making great efforts in wildlife conservation, especially to protect the sage-grouse.
However, little is known about the future of this species due to the occurrence of climate change and its
impact in this state. Sage-grouse are especially sensitive to these changes due to the fragmented state of
their habitats and the already-vulnerable ecosystems that dominate in Utah. With the wide variety of ML
algorithms currently in use, it is unknown which of them, whether individually or ensembled with others,
performs best in predicting distributions for species restricted in their movements due to fragmented
habitats. Hence, this study aims to answer the following research questions:

1. How accurately can sage-grouse habitats be classified using each of the selected ML algorithms
based on both continuous and categorical variables?

2. How will sage-grouse habitats in Utah be impacted by the varying future emission scenarios that
represent the state’s temperature-change trajectory most closely?

3. Based on the prediction maps for future scenarios obtained from the models, how will the change
in sage-grouse habitats affect current conservation areas?

2. Data and Materials

2.1. Study Area

Utah, located in the western United States, is characterized by three major land areas: the Rocky
Mountains, the Basin and Ridge region and the Colorado Plateau [19]. Due to the geographical
diversity across the state, regions of varying climate persist; however, all are subject to the impacts
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of climate change [6]. It has been estimated that within the next 30 years, air temperatures will rise
by 1.67–2 ◦C in the summer months. This will result in a higher number of extreme weather events;
for instance, a 1.67 ◦C rise in the average temperature will increase the frequency of droughts in Utah
by 2500% [20]. These looming issues have resulted in the State’s necessity for, and implementation of,
wildlife conservation efforts. The average yearly investment in state conservation between 1998 and
2005 was USD 13,086,461, and it is evident from its ranking of fifth in the United States for the number
of species found in Utah and nowhere else worldwide that safeguarding wildlife habitats will continue
to rally support [21].

Other local initiatives to prevent the negative effects of climate change are also underway in
certain areas of Utah; for example, carbon sequestration has become a local government talking
point in Park City, and strong emphasis has been placed on tracking community progress towards
carbon neutrality [22]. Utah’s educational institutions, global-scale businesses, non-profits and political
activists are also raising dollars and voices to support such initiatives and protect the nature that
contributes to its ecological significance.

The selection and size of the study area are also appropriate due to statewide-conserved lands
for which other organizations’ modeling of sage-grouse habitats and Priority Areas of Conservation
(PACs) have been established, acting as a comparison for our results. Approximately three quarters of
the land in Utah is owned by government entities such as the Bureau of Land Management (BLM),
State of Utah Department of Natural Resources (DNR), US National Park Service (NPS), US Forest
Service (USFS) and US Fish and Wildlife Service (USFWS/FWS). This does not, however, imply that all
such land is protected. Land that is publicly accessible for recreational purposes can also pose its own
threats to wildlife habitats, especially when unmanaged.

2.2. Species of Interest: Greater Sage-Grouse (Centrocercus urophasianus)

Despite approximately 75% of Utah’s land being state owned, 34% (3.6 million acres) of the state’s
sage-grouse population currently occupies habitats found on private property [23] and collectively
inhabits only 56% of its historical range (Figure 1)—a drop from 297 million to 165 million acres in the
area occupied [24]. This indicates the importance of continued conservation efforts to preserve and
protect sage-grouse habitats by way of easements.

Utah’s sightings of sage-grouse provide the southernmost observations of the species and,
according to the US Fish and Wildlife Services, “ . . . evidence of historic linkages to the south” [23]
(Figure 1). This indicates the likelihood of prior displacement from the south to more northern areas,
a deduced observation supported by evidence of the species’ range of seasonal mobility of up to
50 km [25]. The remote nature of certain sage-grouse populations leads to the false assumption of this
species’ resilience and adaptability. Despite that, a coalition of federal state and private partners worked
together to implement the initial sage-grouse conservation plan in 2013. This plan was reviewed and
updated over the course of 2017 to 2019, after the species was found to be “Not Warranted” under the
2015 Endangered Species Act. However, new concerns arose during this period after a new, political
threat to the Sage-grouse emerged from easing of restrictions on oil and natural gas drilling [26].
According to the USFWS, the species remains a potential candidate for their list of threatened or
endangered species.

Sage-grouse are currently managed by the Utah Division of Wildlife Resources (DWR), who reported
a 40% population increase between 2013 and 2014 [27] following a significant, century-long population
decline. However, Utah’s Sage-grouse habitats are still highly fragmented in comparison to those
in the other ten states that accommodate the species [27]. This is caused by the loss of sagebrush
(Artemisia tridentata) to wildfires, the encroachment of invasive species and livestock grazing, as well as
the shrub’s inability to regenerate quickly [28]. The increasing numbers of wildfires over the previous two
decades have resulted in more cleared acreage for non-native species, such as cheatgrass, conifer, juniper
and pinyon. These forcibly take over and prompt heightened disruption of the shrub that sage-grouse
are dependent on for both annual food supply and coverage [25]. Urbanization and unsustainable
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agricultural practices have also contributed to the fragmentation of the sage-grouse populations in Utah
in addition to the variation in soil, topography and temperature.

In 2002, the initial Strategic Management Plan for sage-grouse was implemented [29]. This is
important to consider for all the species distribution modeling methods performed, as it is indicative of
the importance of historical observation sites for sage-grouse as potential future habitats. Furthermore,
attention should be paid to the documented elevation range of 4000–9000 feet for currently established
sage-grouse habitats.
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In nature, sage-grouse survival is attributed to low productivity rates and successful reproduction
upheld by sagebrush-steppe ecosystem cover that extends 17% of Utah state’s area. A diet consisting
of such encourages generative success and plays a critical role in the endurance and growth of
sage-grouse young. The consumption of sagebrush increases over the course of spring and through
summer; the importance of forbs and insects when feeding in the former season is also of utmost
importance when considering nutritional content. The lack of these additional food sources can lead to
both decreased growth and an increased mortality rate among chicks within as short a time span as
ten days [25]. In winter, the sage-grouse diet consists almost solely of sagebrush, and in contrast to
other birds, the species cannot obtain additional nutrients from seeds or nuts due to an inability to
digest them [30]. Unsurprisingly, it is not uncommon for individual sage-grouse weights to fluctuate
considerably between seasons.

3. Data

3.1. Wildlife Data

Due to the obvious constraints of time and geography, obtaining in situ data was not feasible.
Instead, we referred to the Global Biodiversity Information Facility (GBIF), a cooperatively managed,
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standardized and open-source database of biodiversity data [31]. GBIF data are frequently used as
a resource for SDMs, and after weighing the benefits and costs of using VGI and citizen science,
they were deemed both appropriate and necessary for this study. Therefore, the GBIF was used to
obtain observation data on sage-grouse by searching by the scientific the name of the species and the
country of occurrence, and then, they were downloaded as a tab delimited CSV file. The file contained,
among other information, the coordinates and the date and number of individuals per observation,
and could be read as a point object in the R and GIS software.

3.1.1. Data Processing

RStudio was used to pre-process and clean the data, in order to tackle some of the dataset
constraints. We removed occurrences where the coordinates and the date of occurrence were invalid or
non-existent, or where there were missing fields. The data were also filtered to only include species’
actual observations. To reduce the effect of the bias in the sampling effort, we also eliminated duplicated
observations, to ensure only one observation was recorded per location and limit overrepresentation of
the species in some of the locations. To further reduce this bias, we also filtered the data, assuming that
each observation corresponded to the presence of an element of the species instead of n number of
individuals, and compared the dataset with an official map of sage-grouse distribution made by the
USFWS to ensure that the data represented the presence areas of the species. Finally, we deleted the
points that fell on urban areas and lakes, where the accuracy of the location was therefore uncertain.
For the final dataset, we only included the observations with occurrence after the year 2000.

The point dataset includes observations across different seasons of the year, with different density
in space and time (over the different years). The final observations dataset, after preprocessing and
before merging with the environmental variables for our models, included a total of 239 occurrences of
sage-grouse present in our study area (Figure 2). Since the use of spatial points for the representation
of the observation data is widely used in ecological models across the literature, we adopted the same
approach in this study [32].
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3.1.2. Creating Background/Pseudo-Absence Data

Background data can be chosen purely at random over the entire study area or with geographical
restrictions based on the presence data [33]. When using the latter, the generation of the background data
can be performed by selecting pseudo-absence points within (or outside) a certain geographic distance
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from the presence points, thereby limiting their extent [34]. This can be done based on knowledge of
the species. In this study, we know that the sage-grouse does not move great distances, varying from
2 to 14 km [35]. Hence, we used this knowledge to create a 10 km buffer around the presence points,
generating a “presence area” and using the rest of the region to randomly create pseudo-absence points.

Therefore, we generated random background points outside the buffer area around the presence
points to use in the different models. It is suggested in the literature that it is important to use
an amount good enough to be representative of the area. However, most ML algorithms perform
best when selecting a number of background points similar to that of the presence data [34,36].
With this in mind, we generated 300 absence background points, obtaining a similar number of
presence-background points.

3.2. Environmental Data

The environmental dataset was composed of 27 raster files of different environmental variables
from different sources (Table 2).

Table 2. Data variables and sources for current data. (* The data shaded in gray were not included in
the final dataset.).

Name Sub-Category Type Resolution Year Source

Bioclimatic
Variables

BIO1 Annual Mean Temperature

Continuous 1 km 1970–2000 worldclim.org

* BIO2 Mean Diurnal Range (Mean of
monthly (max temp-min temp))

BIO3 Isothermality (BIO2/BIO7) (x100)
* BIO4 Temperature Seasonality (standard

deviation x100)
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month *

BIO7 Temperature Annual Range
(BIO5–BIO6)

BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter

* BIO10 Mean Temperature of
Warmest Quarter

* BIO11 Meant Temperature of
Coldest Quarter

BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month

BIO15 Precipitation Seasonality
(Coefficient of Variation)

* BIO16 Precipitation of Wettest Quarter
* BIO17 Precipitation of Driest Quarter

* BIO18 Precipitation of Warmest Quarter
* BIO19 Precipitation of Coldest Quarter

* Ecoregions Level IV Categorical N/A (.shp) 2012

United States
Environmental

Protection
Agency

Elevation Auto-correlated DEM Continuous 2 m 2018 Utah AGRC
Global Human
Modification

(gHM)
Continuous 1 km 2016

Conservation
Science

Partners, GEE
Multi-Resolution

Land
Characteristics

CONUS Urban Imperviousness Continuous 30 m 2016 MRLC
Consortium

CONUS Land Cover Categorical 2016
CONUS Sagebrush Shrubland Fractional

Component Continuous 2016

Existing
Vegetation

(EVT)
Categorical 30 m 2014 LANDFIRE

Normalized
Difference
Vegetation

Index (NDVI)

Time integrated Contiguous 1 km 2013 USGS Earth
Explorer
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Data Processing

All the raster files gathered were pre-processed in ArcMap. They were all clipped to Utah’s boundary
extent and projected to the same coordinate system (GCS_WGS_1984 or EPSG 4326). The shapefiles
acquired for the environmental data were also transformed to raster layers and clipped to the study area
extent. Since the raster layers from WorldClim had the lowest resolution (1 km) and were larger in number,
they served as the base for resampling the different layers with finer resolution, in order to maintain the
overall accuracy. The data used from WorldClim were also used to process all the raster layers to the
same extent as well as resample the cell sizes to 0.00833 by 0.00833 degrees and resolutions to 1 km so that
it would be possible to stack the layers together in RStudio to fit the models.

The Elevation data were acquired as tiles of the Auto-Correlated Digital Elevation Model for
Utah from the Utah Automated Geographic Reference Center (AGRC), mosaicked together in order to
obtain a single output raster, and projected and resampled to the same geographic coordinate system
and cell size.

3.3. Future Estimated Data

The future environmental dataset was composed of three raster files of different environmental
variables from different sources (Table 3). The elevation raster layer was the same one used for the
current data variables. The remaining raster corresponded to both future bioclimatic and land cover
variables. The future bioclimatic variables were represented as bands in a single raster layer. Therefore,
we downloaded one Global Climate Model projection raster per Shared Socioeconomic Pathway (SSP)
emission scenario used, whose bands were then segregated in R, and recompiled into a new stack
using only the relevant bioclimatic variables (the same as those determined for the current models).

Table 3. Data variables and sources for future data.

Name Sub-Category Type Resolution Year Source

Bioclimatic Variables

BIO1 Annual Mean Temperature

Continuous 4.5 km 2041–2060 worldclim.org

BIO3 Isothermality (BIO2/BIO7) (x100)
BIO7 Temperature Annual Range (BIO5–BIO6)

BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter

BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month

BIO15 Precipitation Seasonality (Coefficient of Variation)
Elevation Auto-correlated DEM Continuous 2 m 2018 Utah AGRC

Multi-Resolution Land
Characteristics CONUS Land Cover Categorical 250 m 2100 MRLC Consortium

3.3.1. Climate Data Future Scenarios

Future climate data are generated with Global Climate Models (GCMs), also referred to as General
Circulation Models. Approximately 100 models are used by the Intergovernmental Panel on Climate
Change (IPCC) in the generation of cyclical assessment reports on climate change, nine of which are
accessible from WorldClim.

The latest future climate projections from the 2021 IPCC sixth assessment report, Coupled Model
Intercomparison Project Phase 6 (CMIP6), set new drivers for climate models called Shared Socioeconomic
Pathways (SSPs). As per the information presented in 2.1 Study Area, current research estimates a
rise in Utah’s temperature of up to 2 ◦C within the next 30 years—a trajectory that will be arrived at
by 2050. The temporal resolution 2041–2060 was therefore selected along with SSPs that would likely
reach the projected temperature within the boundaries of this time period. Thus, the selected SPPs
were SSP2-4.5 (limit warming to 3 ◦C by 2100 with a slow decline in CO2 emissions) and SSP3-7.0
(newly added CMIP6 “middle of the road” scenario showing 4.5 ◦C of warming).

In addition to SSPs, the resolution of available data was also considered. Generally, GCMs’ output
is coarse due to the computational intensity required for them to run. The highest resolution available
for CMIP models is generally 1 km (30 s), uniform with the bioclimatic variables used for current
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prediction algorithms. However, due to ongoing testing of CMIP6, the release date for varying spatial
resolutions has been staggered, with the highest one accessible at present measuring approximately
4.5 km (2.5 min). WorldClim accomplishes this resolution through their processes of “downscaling”
and “calibration”, explained on the future data download page [37].

The future emission scenarios were each downloaded as single raster layers, where 19 individual
bands each represented a corresponding bioclimate variable. The raster bands were read into R as
separate layers, renamed, resampled to match the resolution of the original layers, clipped to Utah’s
extent, and stacked.

3.3.2. Land Cover Future Scenarios

An estimate of future land cover in the region of Utah was added to the models along with the
future climate scenarios. These land cover data [38] are a Conterminous United States Land Cover
Projection that extends to the year 2100. The source of these data is the same as the one utilized for the
models with present data, and they follow the same categorization.

Based on the IPCC Special Report on Emission Scenarios, four scenarios for land cover change are
available for download, each one representing different lines of human development and sustainability
measures approached [38].

We selected B2, a scenario that describes a world in which the emphasis is on local solutions for
economic, social and environmental sustainability. It is a world with intermediate levels of economic
development and a continuously increasing global population at a rate lower than that in scenarios
where no measures are taken, as well as less rapid and more diverse technological change than that in
those scenarios [38]. It is an “in between” climate change scenario, and it was selected because it seems
more in line with the current measures and conservation efforts being taken as well, as they are more
locally focused rather than global, as seen in the description of our study area (2.1). The pre-processing
of these layers was the same as that performed with the current land cover variable.

4. Methods

4.1. Machine Learning Algorithms

For our study, we used RStudio for most of the data processing, as well as for model building
and evaluation. For this, we used different imported packages, which are add-ons that extend the
capabilities of what it is possible to do in R. The main packages used were raster, caret and dismo.
The other packages used are used as side packages that are necessary for small tasks. This can also
be implemented using Python, with packages such as scikit-learn [39] for implementing the machine
learning algorithms contained in the caret package, and rpy2 [40] to allow the usage of the dismo
package in Python. During the implementation of the study, we used different methods for processing
the data, centered predominantly on feature selection. However, we also applied data transformation
and feature extraction, mainly to understand and visualize our data structure. The full code can be
accessed in the supplementary materials.

In this section, we describe the ML algorithms selected for this project. The chosen algorithms
were RF, SVM, ANN and MaxEnt, as these four are among the most popular models in ecological
applications and SDM [4].

4.1.1. Random Forest

Decision Tree (DT) algorithms provide a basis for RF where predictor variable data are repeatedly
split depending on whether they meet a certain requirement [41]. Rules are inferred from the training
data, which are derived from the division of validation data into two groups: training and testing.
Despite the efficiency of the data partitioning that follows and its speed of executing computationally
intensive datasets, any changes made to these training data can cause substantial alteration to the DT
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structure. The DT can apply different rules at decision nodes and still result in various leaves that fall
within the same category.

4.1.2. Support Vector Machine

SVM is an often-used ML algorithm when incorporating data derived from Remote Sensing (RS)
imagery. This binary or multi-class approach to data segregation works based on boundary conditions
dictated by distance from support vectors. When faced with a non-linear boundary, “kernel trick” can
be applied along with the transformation of dimensionality. This ability to deal with non-linearity
data complexity is one of SVM’s strengths, coupled with the elimination of local minima through
quadratic programming.

4.1.3. Artificial Neural Network

ANNs classify information in a way that mimics biological nervous systems. Variables are inputs to
the algorithm, where they are connected to the basic units called “neurons” via synapses. Additionally
referred to as nodes, these connections can be weighted to communicate each one’s strength and
ultimately affect the final model outputs. The weights of these nodes are combined before being
passed through a function [42] that ultimately translates input into output with a value range of 0–1.
This process is known as “feedforward”.

4.1.4. MaxEnt

MaxEnt is a general-purpose method for making predictions from incomplete information, such as
Presence Only (PO) data. MaxEnt takes a list of species presence locations as the input and a set of
environmental predictors across a user-defined landscape that is divided into grid cells. From this
landscape, MaxEnt extracts a sample of background locations, where presence is unknown, that it later
uses to contrast against the presence locations [43]. Ultimately, it is a presence-background method that
only provides estimates of relative suitability regardless of how the background sample is specified [44].

4.1.5. Model Tuning

The different model algorithm hyperparameters needed to be set with a fixed value. There are
different methods for determining the optimal setting of hyperparameters to use for the specific model.
A general approach that can be applied to almost any model is to define a set of candidate values,
test them and evaluate their performance with the model, and then apply the optimal results for
the model.

For the models used in this study, a brief description of the specific hyperparameters for each of
them can be seen in Table 4.

Table 4. Summary of hyperparameters for each model algorithm.

Model Hyperparameters

Support Vector Machines (RBF) Sigma: determines the reach of a single training instance
Random forests C (cost): controls training errors and margins

Artificial Neural Networks Mtry: number of variables randomly sampled as candidates at each split

We implemented the random search through the caret package, in order to discover the optimal
values for each individual hyperparameter of our models whilst considering the high dimensionality
of our dataset. We did this such that it was made possible to run all the models in the same way and
compare them afterwards. This method does not include MaxEnt, which has its own model settings.
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4.1.6. Implementation

We extracted the predictors’ values where the wildlife data points were located and merged this
list with the wildlife data frame, resulting in a final dataset, where we had values for each predictor for
each observation and absence point (an example of a predictor can be seen in Figure 3).

In order to understand the importance of the different variables for the dataset, we performed a
Principal Component Analysis (PCA), focused on gaining a better understanding of the structure of
our data. We transformed the skewed predictors, and scaled and centered the data beforehand. We also
needed to apply the one-hot encoding method, to create dummy variables for the categorical variables
(land cover, ecoregions and Existing Vegetation (EVT)), followed by a preprocessing method in order
to avoid a zero or near-zero value, which reduced the dataset to 34 variables.
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Figure 3. Example of a predictor plot (Bio1—Mean Temperature).

In Figure 4, we can inspect the observations and pseudo-absences across the environmental space
that PCA produces. To interpret the biplot, the rules are:

(1). The X-axis represents PC1, the first component of the PCA, and the Y-axis represents the second
component, PC2;

(2). The points in blue are presence points, and those in black, absence points;
(3). The ellipses represent the average distributions of the presence and absence points;
(4). The arrows represent variables, and when two variables are pointing in the same direction

or opposite directions, they are highly dependent (thus, independent when pointing in
orthogonal directions);

(5). The longer the arrow, the higher the importance of the variable for the overall environmental variation.

We can see that most of the presence points (in blue) occupy a specific space, defined by PC1 and
PC2, where the variation is largely explained by PC2. It is also possible to identify some variables that
are correlated with each other (collinearity). We can see that all the remaining ecoregion categories
were positively correlated with most of the EVT categories, explaining the same variations. The same
observation can be drawn for some of the temperature and precipitation layers, where some of the
latter are negatively correlated with some of the former. The importance of the temperature variables is
also visible, by the fact that some of the arrows representing these (such as Bio2_Mean_Diurnal_Range)
follow the longest axes of the species’ ellipses (sage-grouse distribution).
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At the same time, we also computed a correlation matrix, with all our environmental variables,
so we could understand and detect collinearity between the variables. We used the corrplot function of
the corrplot package [45], a package dedicated to the visualization of correlation matrices. The correlation
matrix (Figure 5) shows the pairwise correlation between two variables, where the areas of the squares
show the absolute value-corresponding correlation coefficients.

At first glance, it is easy to detect a strong correlation between the climatic variables, especially among
the precipitation and temperature variables. It is also possible to detect some correlation of these climatic
variables with elevation. The other variables have very little- or less-relevant values.

We calculated the Pearson correlation coefficients between all the 27 environmental variables and
then proceeded to check both correlation and importance with a pairs plot function. We applied a
threshold of 0.85 for the correlation coefficient, selecting those variables that had a higher correlation
and excluding the ones that were of least importance for explaining the variation of our data. The layers
that were finally excluded are the following: Bio2, Bio4, Bio5, Bio6, Bio10, Bio11, Bio15, Bio16, Bio17,
Bio18, Bio19 and the ecoregions, with a remaining final total of 15 predictors.

We extracted the environmental data for each of the points in the dataset, obtaining a data frame
with both the presence and background sage-grouse points, and we then split the data into training
(70%) and testing (30%) data [46]. The split was made with a function that creates stratified random
splits within each class, so that the distribution under each class is preserved as much as possible
(function createDataPartition from caret package) [47]. To guarantee reproducibility, we set a seed
number prior to the partition.

For RF, SVM and ANN model training, the caret package was utilized, while for MaxEnt, we used
the dismo package. For all the models, we used the same partitioned data.
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Setting up for RF, SVM and ANN Models

For this paper, supervised classification was used as the approach for ML algorithms, which can
be automated for larger areas, a benefit when studying the statewide area of Utah, which covers
219,887 km2. Using ML algorithms, present sage-grouse sites were mapped, and thereafter, the probabilistic
modeling of future sites could be predicted. The visualization of the maps resulting from the outputs can
be accessed in the supplementary materials.

The classification algorithms used were deemed suitable for our study due to the absence of
any assumption of normal distribution; their abilities to deal with the complexities of feature space,
patterns and relationships; and the robustness of each model. Moreover, the choice of both categorical
and continuous input allowed for flexibility in the predictor variables used.

To perform the training model, some parameters had to be included:

• trainControl: defines the type and number of resampling, as well as the search method. We used
cross-validation with 10 folds, and with random search.

• metric: determines how the final model is defined, by selecting the tuning parameters with the
highest value of the objective function. Amongst the functions available, we set it to “Accuracy”.

• tuneLength: sets the size of the default grid of the tuning parameters; set to 15 for all our models.
• preProcess: we selected to center and scale before resampling.

The parameters were selected according to the literature, as well as by exploring different possible
combinations, and their effects on the performance of the model. For the RF model, it was necessary to
define the number of trees, which was set to 1000. For reproducibility, we set a seed number before each
model. After completing our training set up, we ran each model and studied their outputs. After their
final tuning, we ran the predictions for each model based on the trained model and on the layer
of stacked predictors. This produced a plotted output of a suitability map that presented the areas
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predicted as habitats and non-habitats in the study area. The process of setting up MaxEnt was slightly
different: MaxEnt is included in the dismo package, and the presence/background vectors could not be
used in the form of a factor, unlike for the other models, but categorical data had to be transformed
into a factor.

Once the model was created, we generated a first prediction map, which gave a map with the
probabilities of each pixel in the area being suitable/unsuitable, ranging from 0 to 1. This was performed
with the raw output of the model and differed from the other algorithms in that the default output was
not a binomial suitability map. To create the binomial map, it is necessary to apply a threshold to the
prediction map. Then, we proceeded to evaluate the MaxEnt model with the test data by using the
evaluate function from dismo. The evaluation required the test data (with the environmental data)
to be separated into presence and absence. Therefore, the test data were split according to these two
categories. Then, the evaluation was performed with the test data, and the MaxEnt model was created.

The output is an evaluation model file that includes all the parameters necessary to evaluate the
model. Since the other algorithms’ prediction maps are binomial ones showing suitable/unsuitable
habitats, it was necessary to apply the True Skill Statistic (TSS) threshold to the predicted probability
map from MaxEnt to transform it into a binomial map that we could compare with the outputs from
the other models. We based the evaluation of each model’s credibility on performance-based statistics:
Cohen’s kappa, Omission and Commission errors, Accuracy, and the confusion matrices; all provide
relevant and useful information in model analysis.

The Omission and Commission Error can be used to analyze the accuracy of the models when
classifying the input points. The Omission Error refers to reference points that were left out (or omitted)
from the correct class in the classified map, while the Commission Error refers to sites that are classified
as reference points that were left out (or omitted) from the correct class in the classified map.

From these errors, it is also possible to calculate the User’s and Producer’s Accuracy. The Producer’s
Accuracy is calculated as 1−Omission Error, and it translates into the percentage of reference points
that were not omitted, whilst the User’s Accuracy is calculated as 1−Commission Error for each of the
classes and accounts for the percentage of correctly classified sites or pixels. For further assessment
of the models, an external evaluation was performed for the state of Idaho, addressed later on in
the paper.

Future Predictions for Each Scenario

For the future predictions, we used only the environmental data that were available with future
scenarios, namely, the climatic variables from WorldClim, Land Cover and Elevation. Other environmental
layers used previously were not included, since the same variables were needed for current and
future scenarios.

Once all the data were collected and preprocessed, we followed the same steps in building the
models as we did before for the present data, following the same code. Once the models were created
again, we loaded the future layers into R to prepare for the predictions. The future raster layers were
read into R and stacked accordingly. We performed two predictions with each algorithm, one for
each of the climate change scenarios selected (SSP2-4.5 and SSP3-7.0). Once run through future habitat
prediction models for each of the algorithms, the outputs were saved in .tif and .grd formats, which
could then be read into a GIS software for further visualization and post-processing. All the outputs
can be visualized in the supplementary materials.

5. Results

5.1. Present

In all the models, we can see that the pseudo-absence class is the one with the most uncertainty,
having a higher Omission Error and lower Producer’s Accuracy, and hence was not being classified as
unsuitable habitats but mistakenly included into the suitable class (Table 5). On the other hand, all the
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models work better when classifying the presence class, omitting between 8 and 12% of the total of the
actual presences, which are then included in the unsuitable habitat class.

Table 5. Result table of the Confusion Matrix, Omission and Commission Errors, and Producer and
User Accuracies for all the models.

0 1 Omission Error Commission Error Producer Accuracy User Accuracy

0 79 7 86 0.177 0.0814 0.823 0.919
SVM1 17 53 70 0.117 0.243 0.883 0.757

96 60 156

0 82 8 90 0.146 0.089 0.854 0.911
ANN1 14 52 66 0.133 0.212 0.867 0.788

96 60 156

0 85 5 90 0.115 0.056 0.885 0.944
RF1 11 55 66 0.083 0.167 0.917 0.833

96 60 156

0 86 6 92 0.104 0.065 0.896 0.935
MaxEnt1 10 54 64 0.1 0.156 0.9 0.844

96 60 156

Overall, looking at the Producer’s Accuracy, all the models seem to perform better when classifying
the presences, which translates into fewer errors when predicting unsuitable habitats. The misclassified
sage-grouse in unsuitable habitats range from 6 to 8%, the User’s Accuracy for the unsuitable habitat
class being the highest for all the models. On the other hand, the lowest accuracy for all the models is
exhibited by the User’s Accuracy for the suitable class, which means that the models do not perform
as well when classifying the absences and thus wrongly include them into the suitable habitat class
15 to 24% of the time. The model with the lowest performance for this is SVM. This means that, when we
look at the predictions made by these models, we can trust the unsuitable habitat prediction more
because, although the models classify the presence points really well, they are less able to distinguish
absence points and often misclassify them into suitable habitats. However, the User’s Accuracy for all
the models is high, correctly predicting 75–84% of suitable habitats, meaning that they still perform
well regardless of the errors.

After examining the models’ Confusion Matrices (CMs) and accuracies, it is possible to see that
some models perform better than others. Based on the User’s and Producer’s Accuracy, the best
performing model is the RF, closely followed by MaxEnt. These are also the best-performing models
when looking at the overall accuracy of the models (Table 6).

Based on the kappa value interpretation by Landis and Koch [48], a kappa value between
0.61 and 0.80 indicates that there is substantial agreement, while 0.81–1.0 indicates perfect agreement.
In our case, all the kappa values can then be considered good. In this case, the best classifier would
be MaxEnt, being approximately 80% better than a random classification, being nearly in perfect
agreement. The worst kappa value is the one obtained with the SVM model, although it still falls in the
range where there is substantial agreement. However, this low kappa along with the lower accuracies
indicates that this model did not perform as well with the current data and the tuning used for the
models, thus providing the least accurate outcomes.

Table 6. Model accuracy and performance comparison.

Accuracy Kappa Sensitivity Specificity

SVM 0.846 0.685 0.883 0.823
RF 0.897 0.787 0.917 0.885

ANN 0.859 0.708 0.867 0.854
MaxEnt 0.897 0.803 0.900 0.896
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Overall, it seems that the RF and MaxEnt models are the most robust of them all under these
circumstances (tuning and data), obtaining very high parameters, which implies that they are both
accurate in the classification of these data.

External Validation

As a final test of the suitability of our model, it underwent an external validation to ascertain
whether the model was making good predictions or was simply overfitted to the training data. In our
case, the state of Idaho was selected because it also has a significant area of sage-grouse habitats and is
adjacent to Utah, running north of the state’s border.

For our external validation, we used the same input variables as those used to create the model,
clipped to the state of Idaho. We used the VGI sage-grouse observations for Idaho, also taken from the
GBIF database. The idea of this external validation was that, if a habitat prediction for Idaho was made
using the same input variables using the RF model, then, ideally, all or most of the VGI observations
would be in areas our prediction designated as ”habitat”.

The classification rate indicates only a 65% success rate in confirming areas as habitats or
non-habitats based on the VGI points (Table 7). Although these results are reasonable, they certainly
leave room for improvement. Figure 1 shows both the current and historical ranges of the sage-grouse,
and it is evident that there is agreement between our model’s results and the official distribution map.

Interestingly, there is a region in the south-west of Idaho (Figure 6) where a population of
sage-grouse is observed in an area that our model designates as a non-habitat. This suggests
shortcomings in our model, most likely due to inadequate tuning or a sub-optimal combination
of input variables.

Table 7. Classification result table for external validation.

Incorrectly Classified Correctly Classified Correct Classification Rate (%)

RF 154 292 65
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5.2. Future

From the predictions made with future environmental data, we obtained several maps representing
the results from the different models and different climate change scenarios (Figure 7). The predictors
chosen were those that had the highest variable importance as seen in Figure 8.
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We can see that the sage-grouse habitat is reduced in all the future emission scenario models.
Most of the habitat loss seems to occur in the center of the study area, leaving two relatively large
disconnected areas of habitat in the north and south of the state, which are also patchier than in the
current situation. Thus, all the models show that the habitats for sage-grouse will be greatly reduced
in future scenarios, but also that landscape connectivity will be highly affected.
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6. Discussion

6.1. Current Situation and Overall Performance of the Models

6.1.1. How Accurately Can Sage-Grouse’s Habitats Be Classified Using Each of the Selected Machine
Learning Algorithms Based on Both Continuous and Categorical Variables?

Based on the results obtained from all the models, we can see that MaxEnt and RF seem to greatly
outperform the other two models in terms of accuracy, which is further consolidated by the kappa.
Within this section, however, we decided to focus on the results of the RF model. MaxEnt is a very
robust model and one that is especially made for PO data. However, RF is equally robust and has more
room for improvement in terms of model tuning and data. When, in the future, true absence data might
be available, RF could be recommended over MaxEnt, as MaxEnt is not a presence–absence model [44].
Thus, we decided on RF, not only thinking about the current study but also potential improvements.

As seen in the results, the RF model performed best when classifying the presence points, showing
a higher sensitivity. This, however, translates into a higher Omission Error for the absence points,
which results in a more inaccurate prediction of the suitable class, as more absence points are misclassified
into this class. This might be related to the creation of the pseudo-absences. We decided to create
random pseudo-absences outside a presence area, generating a number that was close to the number of
presences, as this was the best method for RF suggested by the literature reviewed. However, the User’s
Accuracy for the suitable habitat was still high, as 83% of the predicted suitable habitat was, in fact,
suitable, while only 17% of the predicted suitable habitat was incorrectly included in this class.

The inclusion of different types of environmental data proved to be beneficial for the overall
prediction of the sage-grouse habitats in Utah. At the initial stage of building our models, a bigger
focus on having different layers of temperature and precipitation led to satisfactory results concerning
the performance of the models. However, it also showed a “thin” understanding of the variations of
the habitat areas across the study area and of the ecological meaning of the variables for sage-grouse.
Gathering a more comprehensive set of environmental data, based on the ecological aspects of the
species whose habitats we are predicting [14,49–51], is best practice considering our modelling objective.

The downside of including environment layers with different levels and dimensions of
measurements is reflected in the difficulty in making sure the data are preprocessed in order to
fit the different models. Data transformation is part of some of the literature’s techniques to deal
with variations in the levels of values in a dataset, so the important and necessary information is
included in the model (also frequently expressed as “garbage in, garbage out”). Using supervised and
unsupervised methods for this goal allowed us to identify the layers with the higher correlation and
thus reduce multicollinearity. With the correlation threshold set to 0.85, we could identify that many of
the temperature and precipitation layers demonstrated high correlation. According to Guisan et al.
(2017) [51], there is no real consensus on an acceptable threshold to use, where much of the literature
chooses to use r = 0.8 or r = 0.7. Therefore, we could reduce our variables into a final group that led to
a compromise between having good model performance and reflecting an approximation of the true
components of the species habitat.

The final dataset of environmental variables can be considered a fair representation of the
characteristics of the habitats where sage-grouse are present. We know that sagebrush is greatly
important and a main element of the sage-grouse diet, and that the weather conditions can affect the
breeding period, besides the overall balance of the habitat. The sage-grouse is also found in areas
with an elevation range of 4000 to 9000 feet (1200 to 2700 m, approximately) and prefers sagebrush
landscapes [52]. Our final predictors provide a strong summary of these characteristics.

The different models were responsive to the input of both categorical and continuous layers in
their prediction, where each model had a different set of important variables for their results. The RF
model had, as the most important variables, the annual temperature, elevation and time-integrated
Normalized Difference Vegetation Index (NDVI) (Figure 9). During the validation stage for the models,
we took out each of these variables and ran the model again. We could see that, except for the elevation
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layer, the models would produce worse results as expected from previously stated species preferences.
However, according to Guisan et al. (2017) [51], elevation can help in explaining variations in other
variables at a finer scale in areas with less or little climate gradient and, in this case, help to narrow
down areas where the main vegetation inherent to the sage-grouse habitat is present (sagebrush).

Besides the components that help to predict the species’ habitats, we can also observe the impact of
variables in order to predict non-habitat areas: where it is less likely to observe sage-grouse. The global
Human Modification (gHM) has a considerable effect on the RF model, showing that the human
modification of the territory can help to identify areas where the sage-grouse is less likely to be present.
This might also add meaning to the fact that the sage-grouse habitat in Utah is characterized as
fragmented, which is one of the reasons that the many stressors that the gHM reflects (such as continued
human development, agricultural land conversion or irrigated pastures) can have an influence on the
non-habitat prediction.

In this way, it is possible to gain an overview of what type of variables can be important for prediction
models for a species’ habitat suitability. We can firstly say that there is a mechanistic relationship between
the predictors and the observation data of the species’ distribution, where the biological and ecological
processes are the basis of the data used for the models [51]. Secondly, when choosing variables for SDMs,
we also need to consider the scale of our study area, since that will affect the decision of whether we
should include both direct and indirect variables. In our study, the inclusion of different types of variables
is important for predicting the habitats of sage-grouse, although, to exactly understand what drives
the spatial distribution of our species, we would need to narrow down to the more direct variables.
Consequently, we would need to have a longer period of studying the species, and include their seasonal
behavior and breeding conditions, among other ecological processes, to understand which type of data
to add. For a further development of this work, this could involve the addition of more RS imagery.
This would then be useful for studying the species at a larger scale than the state of Utah, where it would
be relevant. In summary, the direct and indirect data we have included in our models are useful for
predicting the distribution of the sage-grouse, at the scale of our study area. Our analysis leads to a
developed understanding of important mechanistic variables and their direct impact on the distribution
of our species (for example, temperature, elevation, NDVI or EVT) but also variables that have an impact
in limiting the distribution (such as the gHM and land cover).
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6.1.2. External Validation—Sage-Grouse Habitats in Idaho

The results here shed light on the feasibility of using ML techniques to make future predictions
in general. While we achieved promising results with some of the models, the question is whether a
model that is trained on present-day geographic data and volunteered sighting observations can be
used with any confidence when considering future species distribution. The strongest indication we
have of the suitability of our model for future use, or for areas other than Utah, are the results of the
present-day species distribution prediction.

The results of the RF algorithm for the test data (Section 5 Results) indicate very good predictive
power for the testing data. However, when conducting an external validation of the model with the
same variables, paired with sage-grouse observations from the same VGI source, we see an immediate
reduction in accuracy. Where the model in Utah achieved a correct classification rate of 89.7%, the same
model used for prediction in Idaho predicted at only 65% accuracy.

There is a reduction in classification power when leaving the study area. The results achieved within
the external validation suggest that there is room for improvement within the model. The immediate
drop in predictive power once leaving the study area suggests that the model is overfitted to the
data. An issue that could explain this is the inherent clustering of the data by species distribution.
When dividing the data between training and testing, in most cases, the test data are taken from a
cluster of either presences or absences. In this way, the algorithm has an easier job of classifying the
testing points; if a testing point is removed from a cluster of “presence” training data, the likelihood
that this point also is a “presence” point is very high. We saw this when experimenting with the number
of pseudo-absence points that were used; when the number of pseudo-absences was increased, we saw
a subsequent noticeable increase in the specificity of the model, as the areas these new points occupied
already had classified areas of “absence”. However, this led to worse results for Sensitivity. This is
to say that the model was very good at classifying absence points as more and more were included;
however, the overall suitability of the model suffered. Future research could look at ways to remove
this clustering problem by investigating alternative sources or formats for observation data.

As a side note, it is also important to remember that we are working with volunteered data
that might contain some biases and inaccuracies, which could also negatively affect the results of the
validation, for instance, unexpected presences outside the suitable habitats.

6.2. Future Predictions: Implications and Limitations

6.2.1. How Will the Sage-Grouse Habitats in Utah Be Impacted by the Varying Future Emission
Scenarios That Represent the State’s Temperature Change Trajectory Most Closely?

As previously described, it has been estimated that air temperatures in Utah will rise by 1.67–2 ◦C
within the next 30 years, with especially high temperatures during the summer [20], disturbing seasonal
patterns, increasing drought and negatively impacting the present vegetation and, subsequently, all the
wildlife in the state (i.e., [6,53]).

These predictions seem to be in line with our results. As seen in the maps obtained from the different
ML algorithms, sage-grouse habitats will be negatively impacted by the changes in environmental
factors caused by the temperature rise.

This loss of habitat is considerable from the present conditions, especially when looking at the
SSP3-7.0 scenario. In this specific case, when comparing the original habitat prediction to the one
obtained with this climate scenario, we see that the reduction in suitable habitat for the sage-grouse
goes up to 69% (Figure 9).

For the SSP2-4.5 scenario, the loss of habitat is approximately 60%, which is still considerable since
it means that, even in a more optimistic scenario, approximately two thirds of the current sage-grouse
habitat will be lost within the next 30–40 years.

Moreover, the prediction maps obtained for both future climate scenarios seem to be in line with
current predictions made specifically for sage-grouse habitats, in which they estimate that the species
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range will decrease by 71% for their breeding range and up to 92% for their winter range by 2080 [54].
Our predictions were made for the time period between 2041 and 2060, but since the temperature rise
is expected to continue up to 2100, we can only expect that this trend will continue, and sage-grouse
habitats will be further reduced.

Additionally, these predictions emphasize not only the loss of habitat but also the increase in
habitat fragmentation, resulting in, as a result, a habitat composed of several small, unconnected
patches. The sage-grouse is a very specialist species, having great difficulties in adapting to habitat
change [55]. Going out of its habitat and through the inhospitable matrix to move from one patch to
another is unlikely, and it would increase its mortality rate [56]. The edge effect, diverse physical and
biotic alterations associated with the boundaries of the habitat fragment [57], will be more acute in these
small patches, which might even be too small for the species to live in. Ultimately, the fragmentation
could cause the isolation of some subpopulations of the species, which would likely become extinct due
to problems such as inbreeding, diseases or bottleneck effects [58]. Since this species has very important
seasonal movements [55], the fragmentation could greatly impact it by impeding its movement from
its wintering areas to the breeding ones.

Of course, it is necessary to point out that, even though layers such as NDVI and sagebrush presence
are important for sage-grouse and thus could have some effect on the predictions, they could not be added
into the future predictions, as no estimates for the coming years were available. However, a land cover
estimate was used (Section 3.3.2 Land Cover Future Scenarios), which shows how all different land uses,
including vegetation and sagebrush, will change over time. Nevertheless, the land cover estimates already
show that most vegetation, including bushy habitats, will decrease, and the effects of climate change will
induce droughts and wildfires, negatively impacting vegetation [6]. This means that the predicted maps
would probably not be too different from how they are now, even if NDVI and sagebrush estimates were
available, as vegetation cover is expected to decrease, and loss of vegetation is ultimately linked to habitat
loss for sage-grouse.

6.2.2. Based on the Prediction Maps for Future Scenarios Obtained from the Models, How Will the
Change in Sage-Grouse Habitats Affect Current Conservation Areas?

Comparing the future prediction model outputs to already existing sage-grouse management
plan maps further stresses the significance of negative impacts on biodiversity. The 2013 USFWS
Greater Sage-grouse Conservation Objectives Final Report [59] established Priority Areas of Conservation
(PACs) for sage-grouse habitats. These were areas defined as long-term key habitats for sage-grouse as
well as areas for the potential restoration and maintenance of sagebrush shrub [59]. Statewide areas
of conservation value were acknowledged as imperative for maintaining and representing resilient
sage-grouse populations by way of lek counts, telemetry, the collection of observation data, nesting area
identification and assessing previously known species distributions. According to the documentation,
the FWS PACs aligned well with BLM’s preliminary priority sage-grouse habitat maps (Figure 10).

Despite being significantly reduced in total area, future models align similarly in the direction and
placement of the USFWS and BLM PAC areas. However, the top performing model, RF, demonstrates
a larger reduction of the conservation area in existing southern and central Utah sage-grouse habitats.
In addition, RF exposes areas that could prove to be of critical importance for the future safeguarding
of this species that have not been considered high value in these organizations’ planning efforts.

When analyzing the models under future emission scenario SSP2-4.5, a substantial area of the
north-eastern corner can be seen to represent potential future habitats for sage-grouse that, again,
has not been identified by either FWS or BLM as priority land. The variances are unsurprising due to a
statement made in the FWS report indicating that the uncertainty of PACs cannot be reduced when
considering the effects of climate change, as no climatic variables were used in their mapping process.
Additionally, it appears that uncertainties surrounding energy development, sage-grouse population
connectivity, demographic factors and vegetative health-related concerns are all flagged as reasons
that conservation assessments based on these maps must remain flexible.
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The RF future outputs from this study produced one of the more highly fragmented distributions
of future sage-grouse habitats in comparison with the FWS and BLM maps. Some of these smaller,
fractured, future-predicted parcels that were deemed suitable by the algorithm were insufficiently
sized for inclusion after the post-processing of the future model output data. The reason for their
removal, in addition to audience interpretability, was the average sage-grouse nest-to-lek distance.

Ultimately, RF shows that future changes in sage-grouse habitats renders some current PACs
impractical and calls for additional areas to be considered for protection under conservation easement.
Attention should be focused on maintaining connectivity between the habitats as much as possible
between the south and northern habitat patches to avoid isolation between subpopulations of
sage-grouse inhabiting these habitat patches. Although sage-grouse can travel through inhospitable
habitats to get from one patch to another, this still increases their mortality, as previously discussed.
Moreover, failure in maintaining connectivity could result in the complete isolation of some
subpopulations of sage-grouse if their habitat is further reduced and the distances between patches
increase. Maintaining connectivity will allow sage-grouse to easily migrate from small patches that
are at risk of disappearing to bigger habitat patches that could support them, thus reducing the risk
of extinction of the local subpopulations in the area. Additionally, it is important that sage-grouse
can move not only within the state but also to other states to maintain the genetic diversity of the
population, ensuring overall health and fitness [60].

How Do These Suggestions Follow the UN’s SDGs and the CBD Goals?

These suggestions directly incorporate the biosphere facet of the United Nations (UN) Sustainable
Development Goals (SDGs) and could lead to further indirect impacts on both society and the economy
as a result of progress in conservation assessment. Although suggesting deviations from current
conservation framework construction could be met with resistance towards ML technology due to a
lack of time or monetary resources for equipment, learning and implementation, the benefits seem to
far outweigh the costs. Because this study used ML algorithms to measure the effect of climate change
on the distribution of sage-grouse habitats, it conforms to the UN SDG mission slogan “If you can’t
measure it, you can’t manage it.”. These future model outputs offer an opportunity to reassess current
conservation strategies and potentially play other roles in following the UN SDGs [3] by the ways in
which they can be put into practice for other future uses.
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It is under the Goals 13 and 15 that this work directly approaches the UN SDGs. The future impacts
of climate change could result in (and are already resulting in) dire outcomes for the entire biosphere
of the planet, and it is necessary to integrate climate change measures into the responsible authorities’
strategies and planning (Target 13.2). The conservation authorities responsible for the management of
protected areas should be urged to incorporate climate change-related measures not only to mitigate
the fragmentation of sage-grouse habitats but also to prevent the further aggravation of the habitat
deterioration, by taking a stance of identifying and protecting climate refugia, in order to cope with
climate-driven changes [12]. It is an achievable and possible approach, to focus on vulnerability
assessment and management for change (instead of static conditions), to be adopted in the overall
mitigation, adaptation, impact reduction and early-warning for climate change (Target 13.3).

The protection of sage-grouse habitats will also have other positive restoration effects on the land, as
we are dealing with a semi-arid region at risk of increasing land fires, drought and floods. By conserving
and restoring bushy vegetation, the responsible authorities will also combat desertification and halt
land degradation, striving to achieve a land degradation-neutral world (Target 15.3). Of course,
the protection of sage-grouse habitats would also stop the obvious degradation of natural habitat and
halt the loss of biodiversity, preventing the extinction of threatened species (Target 15.5).

Moreover, taking the measures discussed to protect not only sage-grouse habitats per se but also
landscape connectivity to maintain their genetic diversity and overall population fitness will closely
follow the main CBD goals.

With our current results, we can see that the future for sage-grouse and their habitats is uncertain,
with a high risk of them disappearing. Moreover, this will not only mean the extinction of sage-grouse
populations, but many other plant and animal species will also be affected by these changes in the
ecosystem, decreasing the overall biological diversity in the area. Taking measures to protect this
habitat will be key for many species apart from sage-grouse and will help in maintaining the current
biodiversity in Utah, following the goals of the CBD and the UN SDGs.

7. Limitations

An obvious limitation of our model was that the raster climate variables used were assembled
from data collected in 2010, while the VGI sage-grouse data were collected during the time period
of 2000–2020. Ideally, our sage-grouse observations would be taken during the same time period as
that during which our climate variables were produced. With the rapid changes caused by climate
change, we introduce the possibility that sage-grouse habitats have already begun to change and that,
particularly with older observations, sage-grouse have been observed in areas that no longer would be
classified as its habitat. Thus, the results might change slightly when using more recent data, if they
become available.

Moreover, and as discussed in the previous section, not all environmental layers have future
estimations that can be used for future predictions, and they could be a useful addition for predicting
changes in the sage-grouse habitats should they become available.

Additionally, we used volunteered PO data. As explained before, volunteered data can contain
errors and biases. As we lacked the time and resources to obtain a better dataset, we decided to
use them, since they were reliable enough for the purpose of this work. However, a higher-quality,
unbiased, non-clustered dataset could bring improvements to the results obtained from the models,
which could be seen with the drop in predictive accuracy on the external validation in Idaho. Similarly,
the dataset would also improve if the pseudo-absences could be validated to some extent.

8. Conclusions

Ecosystem degradation and biodiversity loss is a reality that is already underway and advancing
at a rapid pace, at risk of further aggravation from climate change. The goals outlined by the United
Nations are set in order to avoid exceeding climate system tipping points, which can be aided by
innovative techniques and tools, such as SDMs. For this study, we intended to analyze this problem
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by building a prediction model with a focus on the sage-grouse as a species, using ML algorithms,
in addition to studying the impacts of climate change on the species’ habitat in Utah.

Using algorithms of different classes (maximum entropy, machine learning, and regression trees),
which are also based on different conceptual approaches and statistical methods, is a useful approach
to capturing the different relationships between the observation data and the predictor variables.
Considering the analysis performed on the different models used, we can conclude that MaxEnt,
with an accuracy of 0.897, is a very solid model, but RF—with an accuracy of 0.897 and a sensitivity
and specificity of 0.917 and 0.885, respectively—seems to perform equally as well and has more room
for improvement.

Although the future predictions of sage-grouse habitats for the state of Utah are limited, due to
the lack of some environmental data, the predictions obtained for the different scenarios of temperature
rise seem to align with current literature, with the loss of up to 70% of sage-grouse habitat. More work
can be performed in this area with different datasets to improve the accuracy of the predictions.

We can also conclude that conservation efforts should be directed to mitigating the fragmentation
of the sage-grouse habitat in Utah. The predictions produced in this study show that future changes
in the species’ territory are not exactly in line with current PACs, calling for additional areas to be
considered for protection under conservation easement. We point out that the emphasis of additional
efforts should be placed on maintaining connectivity between the habitats in certain areas of the state,
in order to avoid isolation between the subpopulations of sage-grouse present in these areas.

All in all, ML can play a crucial role in contributing to the UN SDGs, including the use of Earth
Observation in the environmental dataset. SDMs coupled with ML can provide a better overview of the
distributions of species and their habitats, current and future, and create awareness for conservation
planning and decision-making as well as for demanding accountability.

9. Future Extension

A possible future extension of the paper’s findings includes the implementation of a Spatial
Decision Support System (SDSS), the purpose of which would be to give stakeholders direct access to
SDMs via Web GIS. This would enable the selection of species, variables and study areas for generating
a distribution prediction, present or future. An additional extension would be to incorporate ensemble
modeling. An ensemble model would take several input models—for example, RF, MaxEnt, SVM and
ANN, which were used in this study—and would generate a model that is a combination of these
input models, the rationale being that the result would be more adaptable. Finally, the development of
PCA for prediction could further improve the performance of the algorithms by including the PCs in
the models directly. This would require the further investigation of PCA/Non-Linear PCA techniques
and their combination with prediction models.
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