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Abstract: Enhancing environmental sustainability in maritime shipping has emerged as an important
topic for both firms in shipping-related industries and policy makers. Speed optimization has been
proven to be one of the most effective operational measures to achieve this goal, as fuel consumption
and greenhouse gas (GHG) emissions of a ship are very sensitive to its sailing speed. Existing research
on ship speed optimization does not differentiate speed through water (STW) from speed over ground
(SOG) when formulating the fuel consumption function and the sailing time function. Aiming to
fill this research gap, we propose a speed optimization model for a fixed ship route to minimize the
total fuel consumption over the whole voyage, in which the influence of ocean currents is taken into
account. As the difference between STW and SOG is mainly due to ocean currents, the proposed
model is capable of distinguishing STW from SOG. Thus, in the proposed model, the ship’s fuel
consumption and sailing time can be determined with the correct speed. A case study on a real
voyage for an oil products tanker shows that: (a) the average relative error between the estimated
SOG and the measured SOG can be reduced from 4.75% to 1.36% across sailing segments, if the
influence of ocean currents is taken into account, and (b) the proposed model can enable the selected
oil products tanker to save 2.20% of bunker fuel and reduce 26.12 MT of CO2 emissions for a 280-h
voyage. The proposed model can be used as a practical and robust decision support tool for voyage
planners/managers to reduce the fuel consumption and GHG emissions of a ship.

Keywords: ship speed optimization; ocean currents; GHG emissions; maritime shipping;
environmental sustainability

1. Introduction

Maritime transport is essential to the world’s economy, as over 90% of the world’s trade is carried
by sea [1]. In the past few years, enhancing environmental sustainability in maritime shipping has
emerged as an important topic not only for firms in shipping-related industries, but also for policy
makers [2,3]. This is mainly related to the greenhouse gas (GHG) emissions from maritime transport.
Although shipping is considered an environment-friendly mode of transport, there are still considerable
GHG emissions associated with shipping operations [4]. These emissions represent a significant part
of the total global GHG emissions and become a non-negligible contributor to global warming [5].
According to the International Maritime Organization (IMO), in the period of 2007–2012, international
shipping emitted 1016 million tonnes of CO2 per year on average, accounting for about 3.1% of global
emissions; and this share could grow by 50–250% by 2050 depending on the international trade growth
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and energy developments [6]. Therefore, the carbon footprint of maritime transport must be reduced
from the perspective of the sustainable development of the environment.

GHG emissions from ships are directly proportional to fuel burned. Thus, improving ship energy
efficiency is one of the possible solutions to reduce emissions from ships without influencing the
outputs [7]. Measures for improving ship energy efficiency are divided into two categories, namely
design measures and operational measures. The former include hull form optimization, propeller
configuration, utilization of lightweight materials, etc., which apply only to new building vessels
and require large investment [8]. Shipping companies tend to take operational measures on existing
ships that can provide significant saving potentials with relatively low investment compared to the
design measures [9]. Among the operational measures recommended by the Ship Energy Efficiency
Management Plan (SEEMP), such as speed optimization, weather routing, hull maintenance and trim
optimization, speed optimization has been proven to be the most effective one [10,11]. A main reason
is that the fuel consumption of a ship is very sensitive to its sailing speed: fuel consumption per time
unit, also known as fuel consumption rate (FCR), is a non-linear (at least cubic) function of sailing
speed [12,13]. In addition to having significant fuel savings, speed optimization is easy to implement
and costs almost nothing. These advantages of speed optimization make it a preferred measure for
shipping companies to reduce fuel consumption and GHG emissions.

Speed optimization exists at different stages of ship voyage management, including pre-fixture,
fixture, at departure and post-voyage evaluation. Existing Operations Research/Management Science
(OR/MS) studies address ship speed optimization mainly at the strategic or tactical level (i.e., the average
speed over a service or leg) with simple forms of fuel consumption function (e.g., cubic functions or
variants of the Admiralty coefficient) [14]. These OR/MS studies mainly serve the stages of pre-fixture
and fixture. Unlike existing OR/MS studies, the concern of this paper is the at departure stage, in which
the weather forecast for the upcoming voyage is available, and thus ship fuel consumption can be
predicted with a more realistic model. On this basis, ship speed can be optimized at a finer level (e.g.,
per day). Usually, at the departure stage, the route over the target voyage has already been determined
at a higher level (e.g., ship routing). Here, a voyage represents the journey from the departure from one
port to the arrival at the next port [14]. For the voyage under consideration, there is an estimated time
of arrival (ETA) at the voyage’s destination port, which is determined according to the cargo handling
plan; and the sailing route over the voyage is usually divided into several segments based on certain
criteria (e.g., distance, maritime regulations and sea conditions). Therefore, the speed optimization
problem for a fixed ship route can be described as follows: determining the speed for each segment in
the route so that the fuel consumption of the ship over the whole voyage is minimized while the ETA
is guaranteed. In this problem, the ship can be considered as either a tramp ship or a liner ship [15].

To solve the above-mentioned speed optimization problem, two functions need to be determined:
(a) the relationship between FCR and sailing speed (i.e., the fuel consumption function); and (b) the
relationship between sailing time and sailing speed (i.e., the sailing time function). Once these two
functions are determined and the sailing speed for each segment is allocated, the fuel consumption
and sailing time over the whole voyage can be readily obtained. In the literature, the fuel consumption
function is usually formulated in three different forms. Organized in ascending order of complexity,
they are: (a) a non-linear function of sailing speed; (b) a non-linear function of both sailing speed and
ship payload; and (c) a complex function of sailing speed, ship payload and other factors that may
impact FCR, such as the prevailing weather conditions [16]. The sailing time function is uniformly
presented in the literature as the sailing distance divided by the sailing speed. However, to the best of
our knowledge, the existing research on ship speed optimization does not differentiate speed through
water (STW) from speed over ground (SOG) when formulating the above two functions. It is known
from basic principles of ship propulsion that STW should be used when estimating a ship’s FCR, while
according to nautical knowledge, SOG should be employed when calculating a ship’s sailing time.
Therefore, STW should not be confused with SOG in speed optimization models. Otherwise, incorrect
calculations of fuel consumption and/or sailing time will be obtained.
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The difference between STW and SOG is mainly due to ocean currents. Generally, favorable ocean
currents can accelerate the ship, while opposed currents can retard the ship [17]. Therefore, if a ship
encounters favorable currents, its SOG will be greater than its STW, while in the opposite case the ship’s
SOG will be less than its STW. This implies that ocean currents have a significant influence on the actual
sailing speed (i.e., the SOG) of a ship and thus cannot be neglected in speed optimization models.

The purpose of this paper is to propose a ship speed optimization model considering the influence
of ocean currents. In contrast to existing ship speed optimization models, the proposed model is
capable of distinguishing STW from SOG. On this basis, the ship’s fuel consumption and sailing time
can be determined using the correct speed. In other words, calculations of fuel consumption and sailing
time can be more accurate. This will effectively improve the reliability of the ship speed optimization
model, as fuel consumption and sailing time are main components of the model. At the departure
stage of a ship voyage management, the proposed model can be used as a practical and robust tool
by decision makers (e.g., the ship owner or the charterer) to reduce the fuel consumption and GHG
emissions of a ship.

The remainder of this paper is organized as follows. Section 2 reviews existing scientific studies on
ship speed optimization. Section 3 gives a thorough description of the problem considered, including
a mathematical formulation of the problem. Section 4 describes the solution method for solving the
proposed model. Section 5 conducts a case study over a voyage of an oil products tanker. Discussions
on the application of the proposed speed optimization model are presented in Section 6. Finally, some
conclusions are drawn in Section 7.

2. Literature Review

In the past decade, a growing number of studies on ship speed optimization have been conducted
to address the environmental impacts of cargo shipping. One of the early studies, Fagerholt et al. [18],
proposes a speed optimization problem for a fixed ship route with the assumption that fuel consumption
per time unit is a cubic function of the sailing speed within certain speed limits. The objective of
this problem is to determine the speed for each leg in the route so that the total fuel consumption is
minimized while the port time windows are satisfied. The authors discretize the arrival times and
solve the problem by using the shortest path algorithm. Subsequently, the same problem is solved by
Hvattum et al. [19] and Kim et al. [15] with exact solution algorithms. Zhang et al. [20] extend the work
of Fagerholt et al. [18] and study the optimality properties. All these studies focus on the technical
side of speed optimization based on the simplified assumption that the rate of fuel consumption is the
same across all legs on the route. Later, He et al. [21] relax this assumption and suggest a consumption
function model which is a general continuously differentiable and strictly convex function, but without
a concrete form of variable impacts, causing varying costs per unit of distance traveled by the ship.

Table 1. Speed optimization in tactical and strategic ship operations.

Literature Sector Study Problem Variables Other Features

Norstad et al. [22] Tramp Routing & scheduling Speed
Fan et al. [23] Tramp Routing & scheduling Speed, payload Extension of [22], carbon emission
Qi and Song [24] Liner Scheduling Speed Uncertain port times
De et al. [25] Liner Routing & bunkering Speed Port time windows, emission
Reinhardt et al. [26] Liner Scheduling Speed Schedule robustness
Andersson et al. [27] RoRo Fleet deployment Speed
Xia et al. [28] Liner Fleet deployment Speed, payload
Du et al. [29] Liner Berth allocation Speed Departure delay
Venturini et al. [30] Liner Berth allocation Speed Carbon emission
Yao et al. [31] Liner Bunkering Speed Empirical consumption function
Kim et al. [32] Liner Bunkering Speed Carbon emission
Aydin et al. [33] Liner Bunkering Speed Extension of [31], port time windows
De et al. [34] Liner Bunkering Speed Disruption recovery
Zhao and Yang [35] Liner Maintenance Speed Dockyard choice
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With its basic function forms, ship speed optimization is incorporated into other ship operation
problems at tactical and strategic levels, in order to reveal the direct impact of speed on the transit
time and service quality of shipping [21,36]. Typical problems addressed are ship routing and
scheduling [22–26], fleet deployment [27,28], berth allocation [29,30], bunker fuel management [31–34]
and maintenance scheduling [35]. Relevant studies are listed in Table 1. In general, this set of OR/MS
studies considers market-related variables (e.g., fuel price, market spot rate, charter party contracts),
but does not take the effect of weather and sea conditions on ship speed into account, because at
the tactical level (deployment stage in liner shipping or the pre-fixture and fixture stages in tramp
shipping), the weather forecast for the target voyage is not available.

In recent years, researchers in the field of OR/MS have begun to address ship speed optimization
at the operational level, in order to capture the real-world scenarios more precisely. Apart from sailing
speed and ship payload, weather and sea conditions, engine efficiency and other factors could also
influence the ship’s fuel consumption rate. Hence, only by considering such factors can we provide
operational-level decisions on ship speeds. Several of the recent studies treat the fuel consumption rate
as a stochastic variable and employ a stochastic term to represent the influence of factors other than
ship speed (or ship speed and ship payload). Sheng et al. [37] propose a multistage dynamic model
that addresses speed determination and refueling decisions simultaneously, in which the stochastic
nature of the fuel prices and the fuel consumption rate are taken into account. The stochastic term of
the fuel consumption rate is assumed to follow a normal distribution, with a zero mean and a constant
coefficient of variation under different ship speeds. Similarly, Zhen et al. [38] present a threshold-based
policy for optimal ship refueling decisions, and the mean fuel consumption rate is assumed to follow
the Truncated Normal Distribution. Their model can potentially be extended to evaluate several fuel
bunkering policies. Considering this point, De et al. [39] develop a model that addresses a joint problem
of speed optimization and bunker fuel management by considering slow steaming and taking into
account different fuel bunkering policies, stochastic fuel consumption on each leg of the voyage and a
stochastic fuel price at each port. However, operational-level studies modeling the fuel consumption
rate as a stochastic factor are still too simple, for the fuel consumption rate is influenced by many
factors (speed, draft, trim, weather and sea conditions, etc.) and it is nearly impossible to accurately
describe the influence of those factors by using a probability distribution function.

To accurately estimate the fuel consumption for each leg at the operational level, a more
interdisciplinary approach can be to use a deterministic fuel consumption model based on physical
principles of ship propulsion or a machine-learning model involving most of the determinants of the
fuel consumption rate. For example, Li et al. [40] work on a speed optimization problem for a given
route between two ports, in which the influence of wind and irregular waves on ship sailing is taken
into account. They develop a bi-objective optimization model to minimize fuel consumption and
maximize operating cost reduction simultaneously. Li et al. [41] extend the work of Li et al. [40] by
considering voluntary speed loss and GHG emissions. In order to address a ship sailing speed and
trim optimization problem over a voyage, Du et al. [14] propose three viable countermeasures within
an effective two-phase optimal solution framework. The optimization is based on two artificial neural
network models that can quantify the synergetic influence of the sailing speed, displacement, trim,
and weather and sea conditions on ship fuel consumption.

Based on the above literature review, we thus identified a research gap regarding speed
optimization. Although several studies have addressed ship speed optimization at the operational
level by using sophisticated fuel consumption functions to consider as many factors as possible,
the influence of ocean currents on ship sailing has not had sufficient attention. Neglecting the influence
of ocean currents on ship sailing will lead to the confusion of STW with SOG and result in incorrect
calculations of fuel consumption and/or sailing time. This will eventually affect the accuracy of speed
optimization models. The contribution of this paper is to address this gap by proposing a ship speed
optimization model in which the comprehensive influence of still water resistance, wind, irregular



Sustainability 2020, 12, 3649 5 of 24

waves and ocean currents on ship sailing is considered. In particular, this paper provides a method to
involve the influence of ocean currents on ship sailing in speed optimization.

3. Problem Description and Mathematical Formulation

3.1. Problem Description

As mentioned in Section 1, this paper focuses on a speed optimization problem for a fixed
ship route between two ports. This problem usually exists at the departure stage of ship voyage
management. The research object of this problem is a single ship (either a tramp ship or a liner ship)
whose main dimensions are known. The ship is loaded with a certain amount of cargo and will sail
from the departure port A to the destination port B to perform a transportation mission. The ship
payload is fixed during the voyage. Compared with the ship’s displacement, the amount of fuel
consumed during the voyage is very small. Therefore, the ship’s displacement is assumed to be
constant during the voyage. The ship departure time from port A is 0, and the ship arrival time at port
B should not be later than the ETA at port B. The sailing route between port A and port B has already
been determined at a higher level (e.g., ship routing). Weather and sea conditions (e.g., wind, waves
and ocean currents) on this route have a significant influence on ship sailing. These meteorological data
can be obtained via a real-time weather forecast. Based on them, we can group similar sea areas into
the same sailing leg and divide the whole route into several segments. In each segment, we assume
that: (a) the ship sails in a fixed heading; (b) weather and sea conditions can be viewed as identical;
and (c) the ship travels using a constant brake power. These segments are connected by consecutive
waypoints (incl. port A and port B) whose geographical coordinates (latitude and longitude) are
known, and it can be known from assumption (a) that in each segment the ship will sail along the
rhumb line. Based on this information, the distance (i.e., the rhumb line length) and course angle of
each segment between two adjacent waypoints along the sailing route can be readily obtained (Ship
course should be distinguished from ship heading. In navigation, the course of a ship is the cardinal
direction in which the ship is to be steered, while the heading of a ship is the compass direction in
which the ship’s bow is pointed [42]. The ship’s heading angle is the angle over water, while the ship’s
course angle is the over-ground angle [43]).

During the voyage, the crew can set a speed for the ship by operating the main engine control
system. This speed is the expected speed that the ship can reach under ideal weather and sea conditions
(no wind, no waves, no ocean currents, etc.) and is usually referred to as the still water speed
(SWS). In this paper, we take the SWS in each segment as the decision variable. As the ship’s main
dimensions and payload are known, the brake power and FCR of the ship can be obtained from the
fuel consumption function once the ship’s SWS is determined (please refer to Section 3.2.1). In practical
scenarios, when the ship is sailing at this brake power, its STW is usually less than the set SWS due
to the existence of wind and waves. The difference between the two is the involuntary speed loss.
Additionally, due to the existence of ocean currents, the above STW is not equal to the ship’s SOG,
which should be used to calculate the sailing time. Therefore, we should further consider the influence
of ocean currents to determine the SOG (please refer to Section 3.2.2). For a specific segment, once the
SOG is determined, the ship’s sailing time in this segment can be readily obtained.

Based on the obtained FCR and sailing time in each segment, main elements of the speed
optimization model can be obtained, incl. the fuel consumption in each segment, the total fuel
consumption over the whole voyage and the total sailing time over the whole voyage. The purpose
of the speed optimization model is to determine the SWS for each segment with the objective of
minimizing the total fuel consumption over the whole voyage. In addition to the ETA constraint,
there are two further constraints that need to be satisfied. First, the SWS is constrained to change
from its minimum to maximum values. Second, for the purpose of safety, the ship has a critical STW
(maximum allowed STW) when sailing in wind and waves. Details of the speed optimization model
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can be seen in Section 3.2.3. The modeling steps of the speed optimization problem are illustrated in
Figure 1.Sustainability 2020, 12, x FOR PEER REVIEW 6 of 24 
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3.2. Mathematical Formulation

3.2.1. The Fuel Consumption Function

The DTU-SDU method is used to estimate the brake power and FCR of the ship. This method
is developed by Kristensen and Lützen, and is applicable to three major ship types: container ships,
bulk carriers and tankers [44]. According to the method, when a ship is sailing in still water, its total
resistance RT can be determined by the following equation:

RT =
1
2
·ρ·S·(Vsw)

2
·CT (1)

where ρ is the mass density of seawater in metric tons per m3 (MT/m3), S is the wetted surface of the
hull in m2, Vsw is the ship’s SWS in m/s and CT is the total resistance coefficient.
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The total resistance coefficient CT consists of four components:

CT = CF + CA + CAA + CR (2)

where CF is the frictional resistance coefficient, CA is the incremental resistance coefficient, CAA is the
air resistance coefficient and CR is the residual resistance coefficient.

Once the ship’s total resistance RT is determined, the effective power of the ship, PE, can be
obtained according to the following equation:

PE = RT·Vsw (3)

Then, the required brake power of the ship, PB, can be determined from PE according to the
following equations:

PB =
PE

ηT
(4)

ηT = ηH·ηO·ηR·ηS (5)

where ηT is the total efficiency from PB to PE, ηH is the hull efficiency, ηO is the propeller open water
efficiency, ηR is the relative rotative efficiency and ηS is the shaft efficiency.

Finally, the ship’s FCR, r (MT/h), can be determined as follows:

r = PB·SFOC·10−6 (6)

where SFOC is the Specific Fuel Oil Consumption (SFOC) of the ship’s main engine in g/kWh, which
varies with the main engine load and can be obtained from the main engine performance documents.

Once the ship’s main dimensions, payload L and SWS Vsw are known, the values of S, CF, CA,
CAA, CR, ηH, ηO, ηR and ηS can be calculated based on empirical formulae developed by Kristensen
and Lützen [44]. Therefore, for a given ship carrying a certain amount of cargo, we can estimate the
FCR of the ship at various SWSs according to Equations (1)–(6).

3.2.2. The Speed Correction Model

To define the sailing time function, we need first to estimate the involuntary speed loss due to
added resistance in wind and waves under the assumption that the ship’s brake power remains constant.
An approximate method developed by Kwon [45] can be used to achieve this goal. Kwon’s method is
easy and practical to use, as it depends on only a few parameters. Meanwhile, this method shows
good accuracy in comparison to more extensive calculation methods [45]. According to Kwon [45],
the percentage of speed loss can be expressed as:

∆V
Vsw

100% = CβCUCForm (7)

from which, by using the relationship ∆V = Vsw −Vw, it follows that the ship speed in the selected
weather (wind and irregular waves) conditions may be expressed as:

Vw = Vsw − (
∆V
Vsw

100%)
1

100%
Vsw = Vsw −

(
CβCUCForm

) 1
100%

Vsw (8)

where:

Vw: The ship’s STW in the selected weather (wind and irregular waves) conditions, given in m/s;
∆V = Vsw −Vw: Absolute speed loss, given in m/s;
Cβ: Direction reduction coefficient, which is a non-dimensional number, dependent on the weather
direction angle (with respect to the ship’s bow) θ and the Beaufort number BN, as shown in Figure 2
and Table 2;
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CU: Speed reduction coefficient, which is a non-dimensional number, dependent on the ship’s block
coefficient, CB, the loading conditions and the Froude number, Fn, as shown in Table 3;
CForm: Ship form coefficient, which is a non-dimensional number, dependent on the ship type,
the Beaufort number, BN, and the ship displacement, ∇, in m3, as shown in Table 4.Sustainability 2020, 12, x FOR PEER REVIEW 8 of 24 
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Table 2. Direction reduction coefficient Cβ.

Weather Direction Weather Direction Angle (with
Respect to the Ship’s Bow) θ

Direction Reduction
Coefficient Cβ

Head sea (irregular waves) and wind 0◦–30◦ 2Cβ = 2
Bow sea (irregular waves) and wind 30◦–60◦ 2Cβ = 1.7− 0.03(BN − 4)2

Beam sea (irregular waves) and wind 60◦–150◦ 2Cβ = 0.9− 0.06(BN − 6)2

Following sea (irregular waves) and wind 150◦–180◦ 2Cβ = 0.4− 0.03(BN − 8)2

Table 3. Speed reduction coefficient CU.

Block Coefficient CB Ship Loading Conditions Speed Reduction Coefficient CU

0.55 Normal 1.7− 1.4Fn− 7.4(Fn)2

0.60 Normal 2.2− 2.5Fn− 9.7(Fn)2

0.65 Normal 2.6− 3.7Fn− 11.6(Fn)2

0.70 Normal 3.1− 5.3Fn− 12.4(Fn)2

0.75 Loaded or normal 2.4− 10.6Fn− 9.5(Fn)2

0.80 Loaded or normal 2.6− 13.1Fn− 15.1(Fn)2

0.85 Loaded or normal 3.1− 18.7Fn + 28.0(Fn)2

0.75 Ballast 2.6− 12.5Fn− 13.5(Fn)2

0.80 Ballast 3.0− 16.3Fn− 21.6(Fn)2

0.85 Ballast 3.4− 20.9Fn + 31.8(Fn)2

Table 4. Ship form coefficient CForm.

Type of (Displacement) Ship Ship form Coefficient CForm

All ships (except container ships) in loaded loading conditions 0.5BN + BN6.5/(2.7∇2/3)
All ships (except container ships) in ballast loading conditions 0.7BN + BN6.5/(2.7∇2/3)
Container ships in normal loading conditions 0.7BN + BN6.5/(22.0∇2/3)

The weather direction angle (with respect to the ship’s bow) θ can be calculated according to the
following logical statement [46]:

θ =


∣∣∣ϕ− α− 360◦

∣∣∣, IF ϕ− α > 180◦∣∣∣ϕ− α+ 360◦
∣∣∣, IF ϕ− α < −180◦∣∣∣ϕ− α∣∣∣, Otherwise

(9)

where ϕ is the wind direction angle (with respect to the True North) and α is the ship heading angle
(with respect to the True North). Here, the wave direction angle is assumed to be the same as the wind
direction angle, which is true in most instances of surface waves [47].
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The Beaufort number, BN, is an empirical measure that relates wind speed to observed conditions
at sea or on land. It is defined by a range of wind speeds at the standard height. Please refer to
Townsin et al. [48] and Yang et al. [9] for more details.

The Froude number, Fn, can be determined by the following equation:

Fn = Vsw/
√

Lppg (10)

where Lpp is the ship length between perpendiculars in m and g is the acceleration of gravity in m/s2.
The ship’s block coefficient, CB, and displacement, ∇, are associated with the ship’s main

dimensions and payload, L. Detailed formulae for calculating CB and ∇ can be seen in MAN Diesel &
Turbo [49].

As can be seen from the above formulae and tables, for a given ship with a SWS Vsw,
its corresponding STW Vw in selected weather (wind and irregular waves) conditions can be readily
estimated once the following parameters are available: ship type; ship’s main dimensions; ship’s
loading conditions; ship payload, L; ship heading angle, α; wind direction angle, ϕ; and Beaufort
number, BN.

For the purpose of safety, the ship has a critical STW (maximum allowed STW) when sailing in
wind and waves. When Vw is greater than the critical STW, the ship must be slowed down, which is
known as the voluntary speed reduction. In this paper, the following equations are used to calculate
the critical STW [50,51]:

Vc = exp {0.13·[ f (θ) − h]1.6
}+ g(θ) (11)

f (θ) = 12.0 + 1.4× 10−4
× (

π·θ
180

)
2.3

(12)

g(θ) = 7.0 + 4.0× 10−4
× (

π·θ
180

)
2.3

(13)

where Vc is the critical STW in knots, h is the significant wave height in m and π·θ/180 is the weather
direction angle (with respect to the ship’s bow) in radian.

To define the sailing time function more accurately, we need to correct the STW to the SOG by
considering the influence of ocean currents. Actually, ocean currents can affect both the SOG and the
ship course. Let β denote the expected ship course angle (with respect to the True North), which can be
obtained based on the geographical coordinates of two adjacent waypoints along the sailing route,
as explained in Section 3.1. During the voyage, the ship heading angle, α, is a manipulated parameter.
If α is set equal to β, the ship will sail in an actual course of β′ with an actual speed of Vg due to the
existence of ocean currents, as shown in Figure 3a. Therefore, in practice, the crew needs to choose a
ship heading angle which is different from the expected ship course angle to correct the yaw caused
by ocean currents and guarantee that the ship can sail in the expected course, as shown in Figure 3b.
In Figure 3, Vc is the current speed, given in m/s; γ is the current direction angle (with respect to the
True North); and Vg is the actual sailing speed, namely the SOG, given in m/s.
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Figure 3. Variations in speed and course due to ocean currents: (a) α is set equal to β and (b) α is set
different from β to guarantee that the ship can sail in the expected course.

With the assistance of Figure 3b, we can develop formulae for calculating the SOG readily.
According to the method of vector decomposition, the components of Vw in the x direction and the
y direction are Vw sinα and Vw cosα, respectively. Similarly, the components of Vc in the x direction
and the y direction are Vc sinγ and Vc cosγ, respectively. Therefore, the components of Vg in the x
direction and the y direction can be expressed as Equations (14) and (15), respectively:

Vx
g = Vw sinα+ Vc sinγ (14)

Vy
g = Vw cosα+ Vc cosγ (15)

Hence, according to the method of vector synthesis, the SOG Vg can be determined by the
following equation:

Vg =

√(
Vx

g

)2
+

(
Vy

g

)2
(16)

And the relationship among Vx
g, Vy

g and β can be expressed as follows:

β = arctan(
Vx

g

Vy
g
) (17)

As can be seen from Equations (14)–(17), to calculate the SOG Vg, we need first to determine the
STW Vw and the ship heading angle α. As Vw is also dependent on α, determining the value of α
becomes the prerequisite for calculating Vg. To address this problem, we present a heuristic algorithm,
as shown in Section 4.1.

3.2.3. The Speed Optimization Model

In this section, a speed optimization model is developed for a fixed ship route between two ports
to determine the SWS for each segment in the route, so that the fuel consumption of the ship over the
whole voyage is minimized while the ETA is guaranteed. The notations of the speed optimization
model are shown in Table 5.
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Table 5. Notations of the speed optimization model.

Sets and indices

n Total number of sailing segments
i Index of a segment, i ∈ {1, · · · , n}
Parameters

ETA The ETA at the destination port
di Sailing distance in segment i (nmi)

Vmin
sw Minimum allowed value of the SWS (knots)

Vmax
sw Maximum allowed value of the SWS (knots)
Vi

c The critical STW in segment i (knots)
Derived variables

ri The FCR in segment i (MT/h)
Vi

w The STW in segment i (knots)
Vi

g The SOG in segment i (knots)
Decision variable

Vi
sw The SWS in in segment i (knots)

Based on the notations in Table 5, the speed optimization model can be formulated as follows:

min
n∑

i=1

(ri·
di

Vi
g
) (18)

subject to
n∑

i=1

di

Vi
g
≤ ETA (19)

Vmin
sw ≤ Vi

sw ≤ Vmax
sw (20)

Vi
w ≤ Vi

c (21)

The objective function (18) minimizes the ship fuel consumption over the whole voyage. Constraint
(19) ensures that the ship arrival time at the destination port is no later than the ETA. Constraints (20)
ensure that the set SWS in each segment is within the ship’s feasible SWS interval. Constraint (21)
guarantees that the ship’s STW does not exceed the critical STW in wind and waves.

4. Solution Approach

It is challenging to use derivative-based methods to solve the speed optimization model presented
in Section 3.2.3, since there is a very complicated relationship between the decision variable (i.e., Vi

sw)
and each of the derived variables (i.e., ri, Vi

w and Vi
g). Hence, in this paper, a direct search method,

namely a genetic algorithm (GA), is used for optimization. Before describing the GA in Section 4.2,
a heuristic algorithm for determining the ship heading angle is presented in Section 4.1.

4.1. A Heuristic Algorithm for Determining the Ship Heading Angle

In this paper, as explained in Section 3.2.2, determining the ship heading angle, α, is the prerequisite
for ship speed optimization and needs to be addressed first. In order to address this problem, we present
a heuristic algorithm, as shown in Algorithm 1.
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Algorithm 1. A heuristic algorithm for determining the ship heading angle.

Input: Ship type, ship’s main dimensions, ship’s loading conditions, L, Vsw, β, BN, ϕ, Vc and γ.
Output: α and Vw.
Basis: Normally, Vw/Vc > 10. Hence, the difference between α and β will not be too great.
Step 1. Replace α in Equation (9) with β to obtain the relative angle between ϕ and β. This relative angle

is denoted as θ′.
Step 2. Replace θ in Table 2 with θ′ to determine the weather direction. This weather direction is

denoted as WD.
Step 3. Assume that θ also belongs to WD, as the difference between α and β is small.
Step 4. Calculate the value of Vw according to the equations and tables in Section 3.2.2. In this step,

the above WD is used as the weather direction.
Step 5. Once the value of Vw is determined, we can calculate the value of α according to Equations (14),

(15) and (17).
Step 6. Calculate the value of θ based on the obtained α (refer to Equation (9)).
Step 7. Determine the weather direction to which θ belongs. This weather direction is denoted as WD′.
Step 8. If WD equals to WD′, output the obtained Vw in Step 4 and the obtained α in Step 5;

Otherwise, re-execute Step 4 and Step 5 using WD′ and output the obtained Vw and α.

As can be seen from Algorithm 1, the proposed heuristic algorithm can be used to determine
the values of α and Vw simultaneously. Once α and Vw are determined, the SOG Vg can be readily
calculated according to Equations (14)–(16).

4.2. The GA for Speed Optimization

A real-coded GA is employed to solve the speed optimization problem. The procedures of the GA
are descripted as follows:

Step 1: Population initialization. For a sailing route with n segments, the individual is represented as a
vector of length n. The following equation represents the jth individual of the population:

I j = [V1 j
sw, V2 j

sw, . . . , Vi j
sw, . . . , Vnj

sw]
T

(22)

Then, a population of N individuals is represented as a n×N matrix:

Pop =
[
I1, I2, . . . , I j, . . . , IN

]
(23)

Each individual of the population represents a solution to the speed optimization. Vi j
sw is the

Vsw in ith segment of the jth solution. The first step of the GA is to initialize the Pop. To this end,
the genes of each chromosome (individual) are randomly generated within the range of Vmin

sw
and Vmax

sw .
Step 2: Fitness evaluation. Evaluating the fitness value of each individual according to the following

equation:

F
(
I j
)
= −[

n∑
i=1

(ri j·
di

Vi j
g

) + p1
(
I j
)
+ p2

(
I j
)
] (24)

where ri j is the FCR corresponding to Vi j
sw, Vi j

g is the SOG corresponding to Vi j
sw, p1

(
I j
)

is the

penalty function that is related to Constraint (19) and p2
(
I j
)

is the penalty function that is related
to Constraint (21).
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The penalty functions p1
(
I j
)

and p2
(
I j
)

are defined as follows:

p1
(
I j
)
=

 M, If
n∑

i=1

di

Vi j
g
> ETA

0, Otherwise
(25)

p2
(
I j
)
=

 M, ∃ Vi j
w > Vi

c
0, Otherwise

(26)

where M is a large enough number, Vi j
w is the STW corresponding to Vi j

sw and Vi
c is the critical

STW in segment i.
Step 3: Selection. Selecting N parent individuals to build a mating pool. The selection strategy used in

this paper is the roulette wheel.
Step 4: Reproduction. Repeat N/2 times:

(a) Crossover. Picking up two parent individuals randomly from the mating pool and
creating offspring by using a crossover operator. The crossover operator used in this
paper is the BLX-α [52]. The crossover probability is pc.

(b) Mutation. The above newly generated offspring are reprocessed with a mutation
operator. The mutation operator used in this paper is the uniform random mutation.
The mutation probability is pm.

(c) Adding the children individuals to a new population.

Step 5: Termination. Stopping the GA when it has reached a predefined number of generations G.

5. Case Study

In this section, a voyage of an oil products tanker is selected to perform the case study. The main
dimensions of the selected ship are shown in Table 6, the SFOC curve of the ship’s main engine is
shown in Figure 4, and the voyage plan is shown in Table 7.

Table 6. Main dimensions of the selected ship.

Name Unit Value

Ship type - Oil products tanker
Length overall m 244.6
Length between perpendiculars (Lpp) m 233.0
Beam molded m 42.0
Depth molded m 22.2
Summer deadweight MT 109,672
Summer draft m 15.5
Design speed knots 15.7
Minimum allowed value of the SWS (Vmin

sw ) knots 8.0
Maximum allowed value of the SWS (Vmax

sw ) knots 15.7
Rated power of main engine kW 15,260
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Table 7. Voyage plan.

Departure Port Destination Port Ship Payload L Total Distance ETA
(MT) (nmi) (h)

Port A Port B 87,689 3393.24 280.00

The sailing route between port A and port B is divided into 12 segments according to the weather
and sea conditions on this route. These segments are connected by 13 consecutive waypoints (incl. port
A and port B). The information of these waypoints and segments is presented in Table 8. Parts of these
data are obtained directly from the ship’s noon reports, and others are calculated from the available
data. In Table 8, please note that (a) waypoint 1 represents port A and waypoint 13 represents port B;
and (b) a segment is defined as the route between the current waypoint and the previous waypoint,
e.g., segment 3 is the sailing route from waypoint 3 to waypoint 4.

5.1. Model Verification

The reliability of the speed optimization model depends mainly on two factors: (a) the accuracy
of the fuel consumption function in Section 3.2.1 and (b) the accuracy of the speed correction model in
Section 3.2.2. Therefore, before optimizing the ship’s speed, we validate the above two models based
on the measured data.

5.1.1. Verification of the Fuel Consumption Function

For segment i, the FCR ri can be estimated using the fuel consumption function in Section 3.2.1 and
the value of Vi

sw in Table 8. Then, we can estimate the fuel consumption in segment i by multiplying ri
by the corresponding sailing time in Table 8. For each segment, the measured and the estimated fuel
consumption are compared. Meanwhile, the relative error between them is calculated, as shown in
Table 9. The following two figures can be extracted from Table 9: (a) among the 12 segments of the target
route, the maximum relative error is less than 6.50%; and (b) from an overall perspective, the average
relative error of these 12 segments is 3.75%. These figures indicate that the fuel consumption function
we proposed in Section 3.2.1 has a high accuracy. Intuitive verification results of the fuel consumption
function are shown in Figure 5.
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Table 8. Information of waypoints and segments of the selected route.

Waypoint Latitude Longitude Segment ID i βi di Vi
sw Sailing Time Fuel Consumption ϕi BN hi γi Vi

c
(◦) (◦) (◦) (nmi) (knots) (h) (MT) (◦) (m) (◦) (knots)

1 24.75 52.83 - - - - - - - - - - -
2 26.55 56.45 1 61.25 223.86 12.7 18.70 25.54 139 3 1.0 245 0.30
3 24.08 60.88 2 121.53 282.54 12.6 24.10 31.93 207 3 1.0 248 0.72
4 21.73 65.73 3 117.61 303.18 12.7 23.20 32.33 9 4 1.5 158 0.73
5 17.96 69.19 4 139.03 298.44 12.5 23.90 32.18 201 4 1.5 178 0.21
6 14.18 72.07 5 143.63 280.51 12.3 23.30 31.66 88 5 2.5 135 0.49
7 10.45 75.16 6 140.84 287.34 12.2 24.00 32.60 86 4 1.5 113 0.22
8 7.00 78.46 7 136.42 284.40 12.2 24.50 32.00 353 3 1.0 338 0.54
9 5.64 82.12 8 110.37 233.25 12.2 23.00 30.74 35 5 2.5 290 1.25
10 4.54 87.04 9 102.57 301.80 12.8 24.20 33.72 269 4 1.5 270 0.28
11 5.20 92.27 10 82.83 315.70 12.6 24.00 32.32 174 3 1.0 93 0.72
12 5.64 97.16 11 84.87 293.80 12.7 24.00 34.41 60 1 0.1 185 0.62
13 1.81 100.10 12 142.39 288.42 12.3 23.10 31.57 315 3 1.0 90 0.30
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Table 9. Verification results of the fuel consumption function.

Segment ID i Measured Fuel
Consumption Estimated FCR Estimated Fuel

Consumption Relative Error

(MT) (MT/h) (MT) (%)

1 25.54 1.44 26.93 5.43
2 31.93 1.41 33.98 6.42
3 32.33 1.44 33.41 3.33
4 32.18 1.38 32.98 2.49
5 31.66 1.32 30.76 2.86
6 32.60 1.29 30.96 5.03
7 32.00 1.29 31.61 1.23
8 30.74 1.29 29.67 3.48
9 33.72 1.48 35.82 6.22
10 32.32 1.41 33.84 4.70
11 34.41 1.44 34.56 0.44
12 31.57 1.32 30.49 3.41
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5.1.2. Verification of the Speed Correction Model

For segment i, the measured value of Vi
g can be calculated based on di and the corresponding

sailing time in Table 8. Meanwhile, the estimated value of Vi
g can be obtained based on the value of

Vi
sw in Table 8 and the speed correction model in Section 3.2.2. Here, two estimated values of Vi

g are
obtained. The first one is obtained under the condition that the influence of ocean currents is not
considered, while the second one is calculated under the condition that the influence of ocean currents
is taken into account. In the first case, the estimated value of Vi

g is actually the estimated value of Vi
w.

For each segment, the measured Vi
g and the estimated Vi

g are compared, and the relative error between
them is calculated, as shown in Table 10. From this table, we can see that: (a) when the influence of
ocean currents is not considered, the average relative error of the speed correction model is 4.75%;
and (b) when the influence of ocean currents is taken into account, this value becomes 1.36%. Intuitive
verification results of the speed correction model are shown in Figures 6 and 7. Based on these results,
we can draw the conclusion that the error between the estimated Vi

g and the measured Vi
g can be

effectively reduced if the influence of ocean currents is taken into account.
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Table 10. Verification results of the speed correction model.

Segment ID i Measured Vi
g Estimated Vi

g 1 a Relative Error 1 a Estimated Vi
g 2 b Relative Error 2 b

(knots) (knots) (%) (knots) (%)

1 11.97 12.66 5.74 12.36 3.25
2 11.72 12.56 7.12 12.12 3.38
3 13.07 12.55 3.97 13.10 0.24
4 12.49 12.35 1.11 12.51 0.18
5 12.04 11.35 5.74 11.83 1.74
6 11.97 11.81 1.38 12.00 0.23
7 11.61 12.16 4.73 11.65 0.36
8 10.14 11.72 15.56 10.47 3.24
9 12.47 12.82 2.78 12.54 0.55
10 13.15 12.56 4.53 13.27 0.88
11 12.24 12.63 3.19 12.51 2.19
12 12.49 12.34 1.16 12.52 0.27

a The influence of ocean currents is not considered. b The influence of ocean currents is taken into account.
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5.2. Speed Optimization Results and Analyses

The solution approach in Section 4 is programmed with R programming language. The parameter
settings of the GA are presented in Table 11. We ran the program 10 times. The average running time
of the program was 14.86 s. The results of the 10 runs of the program were consistent, indicating
that the algorithm had a good stability. We randomly selected one of the above 10 running results
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for further analysis. The convergence curve of this run is presented in Figure 8. Based on this figure,
we can draw the conclusion that the designed GA has good convergence and convergence speed on
the target problem.

Table 11. The parameter settings of the genetic algorithm (GA).

Parameter Symbol Value

Population size N 200
Chromosome size n 12
Crossover probability pc 0.8
Mutation probability pm 0.1
Generations G 100
A big enough number M 500

Sustainability 2020, 12, x FOR PEER REVIEW 18 of 24 

 

Based on this figure, we can draw the conclusion that the designed GA has good convergence and 
convergence speed on the target problem. 

Table 11. The parameter settings of the genetic algorithm (GA). 

Parameter Symbol Value 
Population size 𝑁 200 
Chromosome size 𝑛 12 
Crossover probability 𝑝௖ 0.8 
Mutation probability 𝑝௠ 0.1 
Generations 𝐺 100 
A big enough number 𝑀 500 

 

Figure 8. Convergence curve of the GA. 

After optimization, the SWS, SOG, sailing time, FCR and fuel consumption of each segment are 
shown in Table 12. From this table, we can see that: (a) the total sailing time over the whole voyage 
is 280.00 h, which remains unchanged; and (b) the total fuel consumption over the whole voyage is 
372.62 MT, which is 8.38 MT less than the actual value (i.e., 381.00 MT). Considering that there is a 
little deviation between the actual and the estimated fuel consumption, the latter should be chosen 
as the benchmark for comparison. Before optimization, the estimated total fuel consumption over the 
whole voyage is 381.01 MT. Therefore, after optimization, the total fuel consumption over the whole 
voyage is actually reduced by 8.39 MT, accounting for 2.20% of the estimated fuel consumption before 
optimization. We can thus conclude that the proposed speed optimization model can help the 
selected oil products tanker save about 2.20% of bunker fuel to complete a 280-hour voyage. The SWS, 
SOG, sailing time and fuel consumption of each segment before and after optimization are compared 
in Figure 9. 

Table 12. Results of ship speed optimization. 

Segment ID i   SWS i
swV  SOG i

gV  Sailing time FCR ir  Fuel consumption 
 (knots) (knots) (h) (MT/h) (MT) 
1 12.7 12.36 18.10 1.44 26.06 
2 12.2 11.72 24.10 1.29 31.09 
3 12.2 12.59 24.10 1.29 31.09 
4 12.1 12.11 24.60 1.25 30.75 

Figure 8. Convergence curve of the GA.

After optimization, the SWS, SOG, sailing time, FCR and fuel consumption of each segment are
shown in Table 12. From this table, we can see that: (a) the total sailing time over the whole voyage
is 280.00 h, which remains unchanged; and (b) the total fuel consumption over the whole voyage is
372.62 MT, which is 8.38 MT less than the actual value (i.e., 381.00 MT). Considering that there is a
little deviation between the actual and the estimated fuel consumption, the latter should be chosen as
the benchmark for comparison. Before optimization, the estimated total fuel consumption over the
whole voyage is 381.01 MT. Therefore, after optimization, the total fuel consumption over the whole
voyage is actually reduced by 8.39 MT, accounting for 2.20% of the estimated fuel consumption before
optimization. We can thus conclude that the proposed speed optimization model can help the selected
oil products tanker save about 2.20% of bunker fuel to complete a 280-h voyage. The SWS, SOG, sailing
time and fuel consumption of each segment before and after optimization are compared in Figure 9.
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Table 12. Results of ship speed optimization.

Segment ID i SWS Vi
sw SOG Vi

g Sailing Time FCR ri Fuel Consumption
(knots) (knots) (h) (MT/h) (MT)

1 12.7 12.36 18.10 1.44 26.06
2 12.2 11.72 24.10 1.29 31.09
3 12.2 12.59 24.10 1.29 31.09
4 12.1 12.11 24.60 1.25 30.75
5 12.5 12.04 23.30 1.38 32.15
6 12.3 12.10 23.80 1.32 31.42
7 12.4 11.85 24.00 1.35 32.40
8 12.7 10.98 21.20 1.44 30.53
9 12.3 12.05 25.10 1.32 33.13
10 12.0 12.67 24.90 1.21 30.13
11 12.4 12.21 24.10 1.35 32.54
12 12.5 12.72 22.70 1.38 31.33
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5.3. Analysis of GHG Emissions

The impact of the speed optimization model on GHG emissions from ships is also a major concern
of this paper. According to the IMO [6], CO2 is the dominant GHG produced by shipping. Hence,
we mainly emphasize emissions of CO2 in our analysis. As mentioned in Section 1, GHGs emitted by
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ships are directly proportional to the fuel they burn. In that sense, the CO2 emissions from ships can
be estimated as follows:

CO2 emissions (MT) = fuel consumption (MT) × CO2 emission factor (MT/MT of fuel) (27)

The CO2 emission factor is related to the fuel type. The selected oil products tanker mainly
consumes heavy fuel oil (HFO), whose CO2 emission factor is 3.114 MT/MT of fuel, according to
the IMO [6]. For the target voyage, the reduction of CO2 emissions due to speed optimization can
be calculated readily by multiplying the above CO2 emission factor by the fuel saving of 8.39 MT.
Specifically, after optimization, the reduction of CO2 emissions over a 280-h voyage is 26.12 MT.
The amount of CO2 emissions over the target voyage is shown in Figure 10.
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An aspect for further clarification is that many vessels have auxiliary engines for power production
running on various fuels (e.g., diesel). This paper only includes an estimate of main engine and not on
auxiliary engine GHG emissions.

6. Discussions of Model Application and Study Results

In shipping practice, speed optimization can be performed at different stages of ship voyage
management, including pre-fixture, fixture, at departure and post voyage evaluation. At pre-fixture
and fixture stages, fuel buyers (i.e., the ship owner if the ship is on spot charter, or the charterer if
the ship is on time or bareboat charter) will often set the ship’s speed to optimize market-related
variables and meet obligations of charter party contracts [16]. The so-called market-related variables
mainly refer to fuel prices and market spot rates. As demonstrated by Psaraftis and Kontovas [53],
the non-dimensional ratio of the fuel price divided by the spot rate is a key indicator of the need for
speed optimization. Specifically, a lower ratio (fuel price/spot rate) will lead to recommendation of a
high optimal speed for the ship, assuming that the speed is not fixed by the charter party contract [16].
If an instructed ship speed is part of a charter party contract, the ship owner or the charterer will
attempt to adhere to the set agreement. As the weather forecast for the target voyage is not available at
these two stages, when optimizing speed the ship owner or the charterer can only estimate fuel costs
with a very simple form of fuel consumption function (e.g., a cubic function of ship speed). Most of the
existing ship speed optimization models in OR/MS literature mainly serve these two stages.

Unlike existing ship speed optimization models in OR/MS literature, the proposed model can be
used at departure stage of ship voyage management. At this stage, the ratio of the fuel price divided
by the spot rate is no longer a key determinant of the ship’s speed, as it will be a fixed value. In order
to minimize the total fuel consumption, the ship owner or the charterer usually optimizes the ship’s
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speed at a more granular level (e.g., per day) based on the forecasted weather and sea conditions on
the target route, and also preferably based on ocean currents.

Of course, the proposed speed optimization model is also applicable at the stage of post-voyage
evaluation. The voyage is now accomplished, and the real weather and sea conditions of the sailing
route is known. Based on the real weather and sea conditions, the ship owner or charterer can apply
the proposed model to post-evaluate the voyage plan and explore the possibility of improving it for an
upcoming assignment.

As part of our development of a speed optimization model, we made some assumptions in
Section 3.1. Assumption (b) is that weather and sea conditions can be perceived as identical within a
segment, and assumption (c) is that the ship travels using a constant brake power during each segment.
Implication of this is that the SWS, STW and SOG all are constant during each segment/leg on the
journey. In the case study, the sailing route was divided into 12 segments based on the ship’s noon
reports, which are typically compiled every 24 h at noon resulting in a constant speed across 24 h of
sailing time. This does not match the practical sailing situation, and it may be one of the reasons why
the proposed speed optimization model can only help the selected oil products tanker save 2.20% of
bunker fuel. In practical applications, the proposed model can be refined by using the actual weather
forecast data. Weather forecast data usually have a spatial resolution (a certain degree of arc length) at
either: 0.25◦, 0.5◦, 1.0◦ and 2.0◦. For example, the 0.5◦ resolution represents an arc length of 30 nmi.
Additionally, this data category also has a temporal resolution (the weather forecast update interval) at
3 h or 6 h. It should thus be possible for us to include weather forecast data with a spatial resolution of
0.5◦ and a temporal resolution of 6 h in future studies. Also, it should equivalently be possible for
us to capture a ship’s brake power and other relevant navigational and engine room data every 6 h
rather than every 24 h. By this means, the set speed of the ship can be adjusted every 6 h, and the
actual sailing speed of the ship will change as the weather and sea conditions on the route change.

7. Conclusions

In this paper, we propose a speed optimization model for a fixed ship route to minimize the total
fuel consumption over the whole voyage, in which the influence of ocean currents on ship sailing is
taken into account. In contrast to existing speed optimization models, the proposed model is capable
of distinguishing STW from SOG. On this basis, we can determine the ship’s fuel consumption and
sailing time more accurately, by using the correct speed. This effectively improves the reliability of the
speed optimization model, as fuel consumption and sailing time are main components of the model.

A case study was performed on a real voyage of an oil products tanker. Two important conclusions
can be drawn from the computational results. First, the average relative error between the estimated
SOG and the measured SOG for the 12 sailing segments can be reduced from 4.75% to 1.36% if the
influence of ocean currents is taken into account, indicating that ocean currents have a significant
influence on the actual sailing speed (i.e., the SOG) of a ship and thus cannot be neglected in the speed
optimization models for the departure stage. Second, the proposed speed optimization model can
potentially enable the selected oil products tanker to save app. 2.20% of bunker fuel consumption on a
280-h voyage, which also leads to a visible GHG emissions reduction.

The study’s main academic contribution is that it has investigated the theoretical and practical
implications of including ocean currents into speed optimization models. From an industry practitioners’
perspective, this study provides a ship speed optimization model which potentially can be applied at
departure stage of ship voyages by decision makers (e.g., the ship owner or the charterer) with the aim
of reducing fuel consumption and GHG emissions of a ship. The study thus makes a small effort to
support the maritime industry in meeting the 2030 and 2050 targets set for emissions by IMO.

The proposed speed optimization model has only been applied and tested on data from a single
voyage of an oil products tanker, which obviously limits the robustness and generalizability of the study
findings. We therefore call for further research to test and perhaps adjust the models developed based
on a larger sample of vessels and voyages, perhaps even across different ship segments. An interesting
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direction for future research can potentially be to develop a two-stage speed optimization model by
combining our proposed model with existing speed optimization models in the OR/MS literature.
Specifically, at the first stage, the average speed over the target voyage can be determined based on
market-related variables (e.g., fuel price and market spot rate) and charter party contracts. Then, at the
second stage, the proposed model can be used to provide a solution to the daily speed planning of the
ship based on the average speed obtained at the first stage.
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