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Abstract: Exposure to indoor radon at home and in workplaces constitutes a serious public health
risk and is the second most prevalent cause of lung cancer after tobacco smoking. Indoor radon
concentration is to a large extent controlled by so-called geogenic radon, which is radon generated in
the ground. While indoor radon has been mapped in many parts of Europe, this is not the case for its
geogenic control, which has been surveyed exhaustively in only a few countries or regions. Since
geogenic radon is an important predictor of indoor radon, knowing the local potential of geogenic
radon can assist radon mitigation policy in allocating resources and tuning regulations to focus on
where it needs to be prioritized. The contribution of geogenic to indoor radon can be quantified in
different ways: the geogenic radon potential (GRP) and the geogenic radon hazard index (GRHI).
Both are constructed from geogenic quantities, with their differences tending to be, but not always,
their type of geographical support and optimality as indoor radon predictors. An important feature of
the GRHI is consistency across borders between regions with different data availability and Rn survey
policies, which has so far impeded the creation of a European map of geogenic radon. The GRHI can
be understood as a generalization or extension of the GRP. In this paper, the concepts of GRP and
GRHI are discussed and a review of previous GRHI approaches is presented, including methods of
GRHI estimation and some preliminary results. A methodology to create GRHI maps that cover most
of Europe appears at hand and appropriate; however, further fine tuning and validation remains on
the agenda.

Keywords: geogenic radon hazard index; geogenic radon potential; European map of geogenic radon

1. Introduction

Indoor radon (Rn) is understood as an important health hazard (e.g., [1]). Therefore, it has been
increasingly the subject of regulation aimed to reduce radon exposure. For Europe, the key document
is the EURATOM Basic Safety Standards (BSS; [2]; similar to the IAEA-BSS [3]) and much literature
deals with the many aspects of environmental radon, as well as a number of international research
projects, such as RADPAR [4,5], SMART_RAD_EN [6], Rn in Big Buildings [7], and Life-Respire [8].
Some research was initiated to directly support the development and implementation of regulation,
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while other projects are focused on complementary activities such as to deepen the understanding of
Rn behavior in the environment, to develop tools to quantify Rn, from measurement to displaying its
distribution in the environment, and to assess its radiological significance. Among recent large-scale
projects, the European Atlas of Natural Radiation (EANR; [9,10]) plays a key role, as well as the
EURAMET MetroRADON project [11], which is devoted to improving the quality assurance chain
from Rn measurement to aggregated products such as Rn maps, which serve as decision tools in Rn
policy. Large parts of the work for this paper were carried out in the framework of the latter project.

Indoor radon concentration, which is the target quantity of regulatory concern, is to a high extent
controlled by infiltration of radon generated in the ground, known as so-called geogenic radon. While
mapping of indoor Rn concentration has been under way for years (shown e.g., in the EANR), this task
has turned out more complicated for geogenic radon. So far, no European map of geogenic Rn exists.
Geogenic Rn is usually quantified by the geogenic Rn potential GRP, a local quantity that characterizes
the susceptibility of a location to geogenic radon (e.g., [12–15]).

A further development is the geogenic Rn hazard index GRHI, which we understand as a
generalized complement and extension to the GRP. The GRHI is more flexible and can deal with data
reality which usual GRP definitions cannot handle. Its main application is thought to be large-scale
mapping, i.e., on a European scale, in contrast to small-scale characterization e.g., of building sites or
medium-scale national maps, of which their objective is supporting legislative and administrative
implementation of the tasks posed by the European BSS.

The purpose of this paper is to summarize the current (early 2020) state of conceptualization and
definition of the GRHI. We present a brief review of the most promising techniques and attempts
used to estimate and map the GRHI. Additionally, glimpses of GRHI maps developed using different
techniques are displayed without going into technical detail in this paper.

2. Concepts

2.1. Geogenic and Anthropogenic Factors that Contribute to Indoor Radon

Indoor Rn concentration is controlled by both natural and anthropogenic factors. Natural factors,
defined as geogenic factors, are related to radon generation and transport in the ground (e.g., [16–21]),
whereas anthropogenic factors relate to construction characteristics of a building, including building
materials and usage patterns (e.g., [12,22–24]). Meteorological factors may be considered in relation to
both geogenic and anthropogenic systems, insofar as they can influence Rn transport in the ground,
migration and accumulation of radon in the indoor environment, and construction style and building
occupancy patterns (e.g., [25–29]).

Geogenic factors depend on geology, soil properties, and hydrology. These factors show a
geographical trend and a spatial structure [20]. More generally, when a variable spreads in space and
exhibits a certain spatial structure, it can be defined to be a regionalized variable (ReV) [30]. Geological,
geochemical, and soil properties are subject to geographical trends. From a mathematical point of
view, we can assume that environmental variables, i.e., geological, geochemical, and soil properties,
are regionalized variables with two complementary aspects:

• A structural aspect that reflects the regional characteristic of the phenomenon, i.e., the trend;
• A random aspect that is the partly spatially structured, partly unstructured variability from one

point to another at a local scale around the trend.

The former component reflects variability not captured by the trend and the latter reflects data
uncertainty and variability within distance resolved by the estimation grid. The quantity of regulatory
concern in radiation protection is the long-term mean indoor Rn concentration, which will be denoted
as IRC in this paper. For practical reasons, long-term mean is mostly understood as the one estimated
over the largest natural cycle (excluding possible cycles on a geological time-scale), namely the annual
one (often though, the annual mean is estimated from shorter measurements, e.g., over three months).
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On this temporal scale, meteorological factors become climatic factors, which show geographical trends
and can, therefore, be considered ReVs. Their temporal stationarity is a matter of debate: whether
climatic change will have an impact on IRC is unknown. If this was the case, the IRC would not have a
stable long-term mean value. However, we assume that this effect, if it exists at all, is very small and
negligible for the near future; we are not aware of literature on the topic.

Finally, the spatial statistical properties of anthropogenic factors are essentially unknown, although
their existence can be plausibly assumed. For example, to some degree, climate (variable with geography,
hence regionalized) determines construction of buildings and lifestyle. Also, local geology and landform
can be assumed to influence construction style.

The most studied geogenic factors are Rn source (i.e., the geogenic radon source), related to
geochemical properties of a geological unit, and Rn transport, quantified by the factors that govern
the radon movement in the subsurface (i.e., soil permeability, faults and fractures, hydrogeology,
and pedology). These factors are combined into a quantity called geogenic Rn potential (GRP), which
conceptually, is designed to quantify the movement of geogenic Rn toward the shallow environment,
of which its availability is to be exhaled from the ground and infiltrate buildings (e.g., [31]). It is
noteworthy that to what extent available Rn leads to an actual IRC depends on anthropogenic factors.

The GRP is considered as the most important regionalized predictor of IRC, that is, the predictor
that shapes the geographical variability of the IRC. Therefore, models have been developed that
attempt to predict IRC conditional to the GRP. Anthropogenic factors are statistically assumed as the
noise terms, which in geostatistical language, is termed the nugget effect. The nugget effect is the short
scale randomness or noise in the ReV that quantifies the variability between samples at a very close
space in the experimental variograms. This assumption is probably not entirely correct, but spatial
statistics of anthropogenic factors affecting the IRC are poorly understood at present. First attempts
have, however, been made to include climate as a predicting factor, e.g., [32,33].

Several operational definitions have been proposed for quantification of the GRP. The most
popular seems to be the so-called Neznal-GRP [14],

GRPNez = (SRC-SRC0)/(−log10 k − 10) (1)

with SRC denoting soil Rn concentration (kBq/m3), k, gas permeability (m2), and log10, the logarithm
to base 10. SRC0, a small value, has been originally introduced for statistical reasons, but is set to zero
by many authors, e.g., [34]. In [14], it was set to 1 kBq/m3. The numerical value of GRPNez depends
on the sampling protocol, e.g., sampling depth and collection period (grab sampling or longer-term
collection). As an example, for applications outside the Czech Republic [35,36], the German GRP
map [34] is also based on the Neznal-GRP, but applies a sampling protocol [37] that is slightly different
from the original Czech one.

2.2. History of the Geogenic Radon Hazard Index

A comparatively new concept is the geogenic Rn hazard index (GRHI), which was conceptualized
around 2010. It was motivated by the lack of empirical GRP data in most of Europe as sufficient SRC
and permeability data exist only in a few countries, namely in the Czech Republic ([35,36] where the
concept originated), in Germany [34], where the GRP is used as an IRC predictor to estimate Rn priority
areas (RPA), in Belgium [38,39], and in parts of Italy [40], Austria [41], and Spain [42], as well as in
a few other countries where there was also no intention to generate country-wide coverage. Some
countries chose SRC itself as a risk indicator, e.g., Estonia [43] and others; for some, see [44].

First attempts towards developing a European GRP map were started around 2008 [45], but it
transpired that a realization of producing such a map is more complex than initially thought. The reason
was—and still is—that in the foreseeable future, no consistent GRP dataset with European coverage
is available.
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The concept of the GRHI arose from the need to calculate a quantity from whatever geogenic
quantities are regionally available. The challenge is to ensure consistency between the GRHI estimates
in neighbouring regions if estimated from different predictors. That is, values of the GRHI must be
equal between regions with the same objective geogenic controls, but with different data (e.g., in one
region, uranium concentration in topsoil and soil granulometry are available, whereas in another
region, SRC, soil type, and ambient dose rate). In other words, maps with different input variables
must be “stitched together” seamlessly. Optimal prediction of IRC was not envisaged in that first
stage of designing the GRHI [45]. Instead, IRC was understood as one of the possible candidates
for covariates.

The first attempt to calculate a GRHI was reported by [46–48]. A set of “transfer formulas” to
transform point data of SRC (e.g., permeability, uranium concentration in the ground, and ambient dose
rate), which are more widely available than SRC and permeability, was reported in [48] into a GRHI.
More recently, [49] suggested the attribution of a weight to the classified continuous or categorical
input quantities (i.e., the covariates) that reflects its relevance in contributing to the envisaged index.
The normalized (ranging from 0 to 1) weighted “mean class” will provide the GRHI, conceived as
dimensionless quantity. The weights are the correlations of a covariate with the GRP, estimated in
regions where the latter is available (Figure 1). The values of the input variables were associated
to a 10 km × 10 km grid, according to the European Atlas of Natural Radiation [9,10], classified in
several classes (four, called A to D, in the schematic of Figure 1), and then a weighted mean of the
classes was computed. Weights should depend on correlation with a target quantity (e.g., GRP, where
available; these regions would serve to “calibrate” the algorithm) and on the reliability of the cell value,
quantified by the number (n) of original data aggregated into a cell.
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hazard index (GRHI) [49]. TGDR—terrestrial gamma dose rate.

A variant without resorting to classification of variables, i.e., leaving numerical variables as
they are, has been shown in [50,51]. Covariates were transformed into their distribution functions
(percentiles) and weights were defined by their correlation with IRC or GRP.

The application of an explorative statistical technique as performed via a principal component
analysis (PCA) on several covariates was developed by [31], thus using the first PC as GRHI. Recent
attempts ([32,33,52,53]) utilized machine learning (ML) methods, which are considered particularly
powerful for “high dimensional” multivariate settings and in particular, also for confirmative statistical
techniques such as spatial regression (i.e., statistical approaches with many predictors).

A certain paradigmatic shift occurred during work on the EURAMET MetroRADON project,
which started in 2016. The idea of “sewing” GRHI, estimated separately in various regions out of
regionally available quantities, lost prominence against the idea to rely on databases which are available
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with European coverage. The advantage is that the consistency problem disappears; the drawback
is that regional coverage of a quantity may be denser than the global (European) one. This is the
case, most importantly, of the SRC and permeability, which are only available in a few countries,
but are certainly very important GRHI predictors (see Section 2.4). Another issue of the newer GRHI
conceptualization concerns the roles that the IRC may play and its relation to the GRP (Section 2.4).

2.3. Concept and Desired Properties of the GRHI

The GRHI can be conceptualized in different terms:

• a quantity which measures the contribution of geogenic factors to the potential risk that exposure
to indoor Rn causes;

• a quantity which measures the availability of geogenic Rn at surface level;
• a measure of susceptibility of a location or of an area to increased indoor radon concentration for

geogenic reasons;
• a measure of “Rn proneness” or “Rn priorityness” (in the logic of the BSS) of an area due to

geogenic factors; i.e., a tool to decide whether an area is RPA.

Desired properties of the GRHI are:

(I) consistency, across borders between regions, characterized by different databases used for the
estimation; this implies independence of the actual database used,

(II) exhaustiveness, which should reflect as much as possible the available geogenic information;
(III) simplicity, which should be simple to calculate;
(IV) predictor of the IRC, which should be a valid predictor of the geogenic contribution of indoor Rn

concentration. This is motivated by its very concept.

These properties can be fulfilled only partly to different degrees by different concepts and are
even partly contradictory.

2.4. A Taxonomy of Approaches to Define a Geogenic hazard Index

Over the years, several attempts to define a GRHI have emerged. In Table 1, a tentative
classification with some examples is proposed. We identify two conceptually different approaches,
termed A and B (see Figure 2), and two variants, denoted by (1) and (2), referring to the exploitation of
predictor quantities.
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Table 1. Taxonomy of GRHI definitions. See Section 3.3 for more details.

A “Geogenic” B “Optimal~IRC”

(1) “global”

[54] physical reasoning leading to the radon availability
number (RAN).
[55–57] classification of factors related to lithology, soil
characteristics, relief, soil cover, sealing of the ground,
and other.
[58,59] cross-classification of control factors SRC,
permeability.
[60] Classification of lithology, U concentration, and
presence of features like faults and mines.
[61,62] Classification of geology and ADER.
[31] Principal component analysis (PCA) of various
geogenic factors.
[63] regression of Neznal-GRP vs. soil U concentration, IRC,
and ADER.
[64,65] Integration of hierarchical multicriteria analysis and
GIS, SMCDA, incorporating various geogenic variables.

[14] Neznal-GRP, method: regression IRC
vc. SRC and permeability classes
[42,66] Neznal-GRP, application
[67] logistic regression of IRC vs.
lithological classes, TGDR, permeability,
faults.
[32] ML regression IRC vs. many
geogenic predictors (geochemistry, soil
properties etc.)
[68] Regression IRC vs. many geogenic
predictors (geochemistry, soil properties
etc.) Multivariate classification through
contingency tables: a possible method,
no references so far.

(2) “local”

[69,70] multivariate classification: U.S. EPA approach;
missing values allowed.
[47] transfer models to estimate GRP from various
geogenic quantities.
[49] weighted mean of classified quantities, see Figure 1.
[50] correlation of various geogenic quantities with
Neznal-GRP.

[50] correlation of various geogenic
quantities with IRC

Approach A: Shortcut “geogenic”, attempts to construct the GRHI as combination of geogenic
quantities such as geochemical concentration, lithology, and soil properties. Some variants include the
IRC, motivated by the fact that the IRC also reflects, to some extent, geogenic radon. A combination is
performed such that the resulting GRHI represents as much as possible the spatial variability of what
is understood as quantifying the availability of geogenic radon for surface exhalation and infiltration
into buildings.

Approach B: “Optimal ~ IRC” combines the geogenic variables such that the combination
best predicts indoor radon, meeting given criteria. The GRHI is the predicted value, optionally
normalized e.g., to [0, 1]. Deviations between predicted and observed IRC are owed to data uncertainty
(predictors and IRC), model uncertainty, and additional non-geogenic, i.e., anthropogenic controls of
the IRC. The logic is summarized in Figure 2. In all cases, the models are built from all predicting data
available in a domain. In some versions, only regions with sufficient data are used for model building.

Variant (1): “Global” or “bottom up”, means that the model can be applied only at locations
where all predictors and response variable are available. This is typically the case for regression
models and models based on physical reasoning. Global models produce consistent results (property I,
see Section 2.3) by default.

Variant (2): “Local” or “top down”, denotes models that can also be applied if regionally or locally,
only some predictors are available. Consistency of results between regions in which different sets of
predictors are available is the big challenge of this variant.

Approaches A (geogenic) have in common that a kind of weighted mean of predictors is constructed.
The weighting may be implicit if in bi- or multi-variate scoring combinations of levels of categorical
predictors are assigned certain GRHI levels. Often this seems to be done based on experience about
the influence of a certain predictor. In other cases, the weights are defined as correlation coefficients
between predictors, via principal component analysis (PCA), or by hierarchical analysis (SMCDA).

Approaches B can be characterized as generalized regressions; among them, traditional
multivariate linear regression, general linear model (including categorical predictors), and machine
learning (ML, among them, MARS, random forests, and support vector machines).

The desired properties, Section 2.3., are fulfilled to different degrees by these approaches and
their variants:
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The consistency property (I) is automatically fulfilled by variant (1) in the domain in which it is
defined. For variant (2), this remains the crucial challenge.

Exhaustiveness property (II) is easier to fulfill for variants (2) than for (1), because for (2),
local databases can also be exploited. Whether they are depends on the sophistication of the model.

Simplicity (III) is difficult to achieve for high-dimensional datasets and if spatial modelling is
included. Easy for empirical classification and simple regression models.

Predictor of the IRC (property IV) is fulfilled by default by approach B since the models are
defined, by virtue of the regression paradigm, as yielding optimal predictors; how good they are differs
between models. For models according to approaches A, this has to be checked afterwards.

This is summarized in Table 2.

Table 2. Compliance of approaches A and B and variants (1) and (2) with the desired properties of
the GRHI.

A + (1) A + (2) B + (1) B + (2)

I consistent yes difficult yes difficult
II exhaustive no yes no yes
III simple some not simple relatively simple some not simple relatively simple
IV predictor IRC to be checked to be checked yes yes

3. Methods

3.1. The Geogenic Radon Potential Compared to the Geogenic Radon Hazard Index

The strict GRP concept consists of building a variable that reflects the Rn generation and
transport processes based on their physical knowledge. This quantity is understood as location
specific and scale-dependent or, in geostatistical terminology, having a point or block support,
e.g., the 10 km × 10 km grid cells used in the European Atlas of Natural Radiation.

The physically most straightforward definition may be

GRP = SRC × k (2)

which is the advective Rn flux normalized to the pressure gradient through an interface. It neglects
diffusive transport, which is fair except for soil with very low permeability.

The most commonly used definition, the Neznal-GRP [14], already has some traits of the GRHI
(type B) because it is derived from matching a combination of SRC and permeability, aggregated into
classes, to classes of the IRC by a kind of regression procedure. However, mapping the GRP requires
datasets of soil Rn concentration SRC and permeability k, which are only available in few countries,
see Sections 2.1 and 2.2.

While the GRP is derived from physics of Rn generation and transport, encompassing SRC
(representing Rn source) and k (representing Rn transport), the GRHI is an extension which takes
advantage of whatever geogenic quantity is available to quantify Rn availability at the surface and its
potential to infiltrate into buildings (Section 2.3). Thus, GRP definitions may be considered as a sub-set
of GRHI definitions.

3.2. Databases

To our knowledge, databases available on the European scale, covering almost the entire
continent, include:

• Geological maps:

- OneGeology [71] (Developed by EuroGeoSurveys’ European Geological Data Infrastructure
within the framework of the GeoERA programme, 2018);
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- IGME 5000: 1:5 Million International Geological Map of Europe and Adjacent Areas [72,73];
- Map of the World karst areas [74];
- Global Active Fault database (GAF) [75].

• Soil properties: LUCAS database [76]; the database includes the following quantities
(among others): topsoil fine fraction (as proxy of the soil permeability); available water content
(AWC) (proxy of the soil porosity), chemical properties [77]. Another database of soil information
is SoilGrid, containing global data estimated on a fine grid by machine learning [78].

• Geochemistry: GEMAS [79] and FOREGS [80], from which European uranium, thorium, and
potassium maps have been created during the work on the European Atlas of Natural Radiation
([9,10] and references there).

• Aquifers (International Hydrogeological Map of Europe (IHME) 1:1,500,000) [81].
• Ambient dose rate: Across Europe, more than 5000 automatic stations continuously monitor

ambient dose rate (ADR) as part of national radiological emergency warning systems. The data
are stored and displayed by European Radiological Data Exchange Platform (EURDEP) [82,83]
and the EANR. Normally, the ADR represents the natural background, of which their terrestrial
component ([84]) is mainly due to natural radionuclides U, Th (more precisely their progeny),
and K. Therefore, ADR is a proxy to geogenic radon (see below). A problem is that the data
originate from technically different systems of which their harmonization is difficult.

Some examples of regionally available databases are:

• Ambient dose rate (ADR): e.g., Spain [85], the Czech Republic [86], Portugal [87], part of
Germany [88,89];

• Saturated soil water content: Germany [90];
• Groundwater recharge coefficient: Ireland [91,92];
• Airborne gamma ray spectrometry: Ireland (Tellus project [93]).

Legends of geological maps are often simplified into lithological units which show similar
geochemical characteristics and can be merged even though they are characterised by different
stratigraphic positions (for example, Jurassic and Cretaceous limestone). The geochemical merging of
lithologies is necessary to have sufficient IRC or SRC sample size per geological unit or for computational
handling. In an example shown in [94], 178 units of the One Geology map were simplified into 28 units
following a scheme proposed by [95].

Given that Rn availability at the surface is physically controlled by Rn source and Rn transport,
the estimate of the Rn source term can be reasonably obtained by using geochemistry and geology,
as geochemical surrogate. The estimation of Rn transport is, however, more problematic. Although no
European database of soil permeability exists, there is hope that soil properties, hydrogeology, and
tectonics may serve as proxies of permeability or in general, to emulate the Rn transport in the ground.

Predictors can be exhaustive in the sense that at every point of the domain (e.g., Europe), a predictor
value is available. This is typically the case for categorical predictors such as geology, which is available
as a map covering the entire domain. Others are available as finite sets of discrete point samples, typical
sets of measured soil, or indoor Rn concentrations, geochemical concentrations, ADR, etc. These are
sometimes made exhaustive by geostatistics (interpolation) before they can be used further. Other
methods have this geostatistical trait intrinsically, typically some machine learning methods.

Conceptually, one distinguishes between proxies (or surrogates) and physical predictors (Figure 3).
The latter are ones that are in a causal relationship with the target variable, e.g., uranium concentration
in the ground as a physical direct predictor of SRC. Proxies are ones that are statistically related to the
target, but not directly linked by physical causality. An example is terrestrial component (TGDR) of
ambient dose rate (ADR) as Z1 in the figure, which is statistically related to IRC (=Z2) because both
share the same predictor, namely the uranium content in the ground (Z0). However, both ADR and
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IRC are also influenced by other variables, e.g., 137Cs fallout and Th concentration in soil (Z0”’ and
Z0”) influencing dose rate and ground permeability (Z0

′), the IRC; therefore, their correlation is weak.
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3.3. Estimation Methods

Whichever definition of GRP or GRHI and whichever approach is chosen, the problem remains to
estimate these quantities at a certain location or area. Since they cannot be measured directly, they have
to be calculated from other quantities. The focus is on extracting information from several, or in some
methods, many, regionalized databases. Putting it most generally, at each target point (or spatial target
unit, such as pixels or whichever mapping support intended) of the mapped domain, one obtains the
GRHI value by combining available data appropriately, where the criterion for appropriateness is
different for approaches A and B. With most methods, spatial (or location) dependence of GRHI(x)
is implicitly assured by one of its predictors. However, some methods additionally include location
(coordinates) as explicit predictors. In the case of type B approaches (optimal predictors of IRC),
the GRHI would be defined as the model outcome, with the understanding that the residuals IRC
(observed)—IRC (modeled) represent anthropogenic factors and factors not accounted for by the
geogenic predictors.

3.3.1. Concepts Type A

Multivariate Classification

Levels of categorical covariates are combined into levels of the categorical target variable.
For example, geological units are levels of the predictor “geology”, in this case, unordered levels—such
a variable is called nominal; permeability classes are levels of permeability, in this case, ordered
levels—the variable is called ordinal. The target variable can be, for example, GRP classes (ordinal).
To a large extent, combination rules are empirical, based on experience.

As an example, in the Czech Republic, a rule has been established to assess the risk class of
a location based on cross-tabulation of classes of SRC and permeability [14]. The U.S. EPA [69,70]
proposed a scheme incorporating IRC, geological evidence, permeability, U concentration (by airborne
gamma ray spectrometry), and “architecture type” (kind of foundation). Missing data are possible,
leading to lower confidence of the index value; therefore, the method has been classified into “local” in
Table 1, where other examples are also quoted.

Principal Component Analysis (PCA)

In a high-dimensional setting, such as for the prediction of geogenic Rn from many potentially
predicting quantities, one would first attempt to identify the amount of information that the set of
covariates actually contains; many of the predictors tend to be correlated between themselves, hence
carrying redundancy. Principal Component Analysis (PCA) is a well-known, explorative method
of which its main objective is to reduce the data complexity with minimal loss of information and
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to create a set of new uncorrelated variables (factors) linearly linked to the original ones. They are
arranged such that most information is contained in the first or the first two or three factors.

PCA has advantages and disadvantages. The advantages are: (i) there is no response variable
and all variables are, in theory, of equal importance; (ii) it reduces the number of variables to be
further considered.

The disadvantages are: (i) principal components as new variables are less easy to interpret than
the original ones; (ii) there is no test to verify the goodness of the results; PCA is an exploratory
analysis with subjective interpretation, although there are rules for reading the variables in the factorial
space; (iii) the number of retained factors must be selected with great care in order to not discard
essential (for a given objective) information contained in the original variables; (iv) in classical PCA,
only numerical covariates can be included, but not categorical—in particular, nominal ones. Detailed
descriptions of PCA technique can be found in [96] and references therein and [97].

The GRHI can be defined as the first PC or as a combination of a few components with highest
weight. Regionalization is performed along the line explained at the end of the following sub-section.

Transfer Models

A set of formulas or rules is established that transforms available variables into a GRHI; they are
of the type GRHI = f (Y1, . . . , Yn); if predictor Yi is not available, estimate it from different variables Ui

as Yi = f(i) (U1, . . . , Uk) and so on. Rules are look-up tables, which associate a level of a categorical
variable with a needed Yi; (e.g., factor = geology, level i of this factor = Li = quaternary sediment,
which has Yj = mean soil Rn concentration value yj = 20 kBq/m3). The transfer formulas are deduced
from studies about relationships between geogenic variables.

The idea is to take advantage of whatever data are available in a region. The evident problem is
consistency between two neighboring regions, which are physically identical (same geology, same soil
type, same geochemistry etc.), but in which different predictors are available and in which the GRHI
therefore has to be estimated differently. The consistency problem is visualized in Figure 4.
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Two ways of regionalization are conceivable, i.e., establishing the GRHI as spatial function GRHI(x)
for every point (or spatial unit) x of the domain. (1) For discrete sample type predictors, estimate them
at every needed point of the domain, usually by geostatistical means, and build GRHI(x) = f (Y*1 (x),
. . . , Y*n (x)), Y*(x) the interpolated value. Alternatively, (2), calculate GRHI(xi) at points xi, where
predictors are available, and afterwards subject GRHI to geostatistics to obtain interpolated GRHI* (x)
for every x.

Spatial Multi-Criteria Decision Analysis (SMCDA)

GIS-based (or Spatial) MCDA (SMCDA) is a set of procedures that can be used to combine
criteria maps (i.e., variable layers) with respect to their relative importance and derive relative weights
for the criteria [98,99]. In the context of this work, SMCDA involves combining and handling of
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different criteria that determine the presence of RPAs, then uses the Analytical Hierarchy Process
(AHP) [100] to assess their relative importance and derives the weights for each criterion; then, the
final suitability scores ([65]) are calculated by using the weighted linear combination (WLC) of original
criteria maps [101]. A more elaborate example is shown in [65].

SMCDA is an explorative technique; it does not make use of a response variable and of validation
techniques. SMCDA involves subjectivity (e.g., in choosing the criteria and defining the relative
importance of each factor). Result validation can be provided by direct measurements and by
sensitivity analysis ([102,103]). Some SMCDA versions can be understood as mathematically optimized
multivariate classifications. The technique was developed to help decision makers in sustainability
planning and to provide outputs to be easily understood by non-experts. The method has also been
applied for finding best consensual solutions in cases of stakeholder conflicts, e.g., [104]. It could be
that it can be applied to RPA delineation, including under the constraints of conflicting stakeholder
interests, which is a big political issue as current experience shows.

For further resources, see e.g., [105–109] and the Wikipedia entry “Multiple-criteria decision
analysis”.

3.3.2. Concepts Type B

Multivariate Regression (MR)

Regression means, to find the expected value EZ of a response, dependent, or target variable
Z, given (or: conditional to) one or several predictors or independent variables Y. This is done
by minimizing a loss function, originally the sum of squared deviations of observations z from
predicted or estimated E(Z | Y = y). The theory has been developed for two centuries, with abundant
literature available, and shall therefore not be repeated here. Variants include categorical predictors
(general linear model) and non-linear link functions between Z and Y and non-Gaussian error models
(generalized linear regression); most importantly, logistic regression, aimed to predict a binary variable
(a condition fulfilled or not) or a probability. Among important problems are collinear and nested
predictors (i.e., the independent variables are dependent among them), which can invalidate analyses.
Including location (coordinates) as predictor leads to the reasoning of geostatistics. Regionalization to
obtain Z(x) for every point x in the domain proceeds along the lines described above.

Machine Learning (ML)

This class of methods took their name from the idea that the physical structure that underlies
a dataset (which can be understood as realizations of a true physical process) shall be recovered
from the data themselves, without stipulating a model. The rationale is that in complex situations
(many predictors or covariates, related among them, etc.), this model is not only badly known, but is
actually difficult to write down explicitly because of its complexity. Instead, the algorithm identifies
patterns in the data which are observable representations of the physical reality, which approximate
the physical model by numerical decision rules. Once recognized, the patterns can be used to predict
a response (e.g., IRC) from observed predictors (e.g., geology, uranium concentration in the ground,
climate, . . . ). In this sense, ML is a type of regression without a specified regression model. The
conceptual difference against regression is visualized in Figure 5. A standard textbook on ML is [110].

In radon science, ML has first been used, to our knowledge, by [53,67] and [52] for spatial settings
and by [111] in time series analysis. Current work at the BfS aims to improve regional GRP and IRC
prediction by including high numbers (up to 100) of potential predictors [32].

ML offers the possibility to include location (parameterized by the coordinates) as covariates. For
Rn estimation, trials at the BfS seem to show that this does not lead to improvement, probably because
sufficient spatial information is already contained in the regionalized predictors.
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4.1. Geological Classification

The very first trial was made by [112,113]. Geological units taken from OneGeology were coded
or “calibrated” according the Neznal-GRP for units where data were available, mainly in the Czech
Republic, Germany, and Belgium. Regions that could not be coded in this way have been left blank in
Figure 6. Classes were defined deliberately.

Evidently, this approach suffers from (1) lack of data and (2) the fact that “extrapolating” from
units where GRP information is available to nominally the same or geologically similar geological
units, but without data, is questionable.

The general geographical pattern is very similar to the one of the European Indoor Radon
Map [9,10], as of course it must be, but no correlation analysis or validation was attempted because
this trial was a technical feasibility study only. Class 1 is the lowest and 4 is the highest GRHI.
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4.2. Multiple Regression

The result was first shown in [68]. Starting with about 100 predictors (database references in
Section 3.2):

• Geochemistry: A combination of FOREGS and GEMAS databases, 59 elements; missing uranium
values estimated by lanthanum and cerium because these elements are highly correlated; about
5000 data points in Europe.

• Soil properties: from LUCAS; point data projected to geochemical data points by geostatistics.
Fine fraction tentatively defined as

FF = (clay + silt + 0.05 sand)/(100 + coarse fraction) (3)

as permeability proxy (the definition is debatable);
• Geology: IGME 5000.

Through trying (among others, by inspecting correlations between variables), for further analysis,
the set of covariates was reduced to pH, TOC, FF, CF (coarse fraction), soil bulk density, ln(U), K2O,
Al2O3, SiO2, Fe2O3, CaO, and geo1; with geo1 = {carbonate, meta-sediments, siliciclastics, Cenozoic
sediments, basic igneous rocks, intermediate igneous, pre-Variscan acid igneous; Variscan acid igneous,
post-Variscan acid igneous}.

The target variable is AML of the European Atlas of Natural Radiation (AML = AMcell[ln(IRC)]
= arithmetic mean of the logarithms of IRC within 10 km × 10 km cell), interpolated to geochemical
locations, i.e., AML in hypothetical cells around these locations.

Applying a general linear model with stepwise elimination of irrelevant covariates (F-test) led
to {geo1, FF, pH, bulk density, K2O, ln(U)} as the best predictor, which explains r2 = 26% of variance.
Inclusion of annual mean temperature would increase this to 29%.

The model f(Y)(x) (Y—vector of covariates, x – location) was subjected to ordinary kriging to the
original Atlas cell locations and the results quantile rescaled to [0,1] by z→ FZ(z). Different rescaling
is equally possibly, e.g., by linear rescaling, z→ (z–zmin)/(zmax–zmin), tgh, or nscore transforms. The
result is shown in Figure 7. In the map, 0 is the lowest and 1 is the highest GRHI.Int. J. Environ. Res. Public Health 2020, 17, x 14 of 24 
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The algorithm Multivariate Adaptive Regression Splines (MARS) (an introduction can be 
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model is evaluated based on the generalized cross-validation (GCV) statistic. In this study, the 
implementation in the “earth” package [115] in R was used. 

The target variable was AML (like above), but only 10 km × 10 km cells with n > 30 original 
indoor Rn data were used for training the model. The model was fitted using >100 candidate 
predictors using the model inherent predictor selection. The hyperparameters of the final model are 
degree = 1 (i.e., no interaction between variables) and nprune = 83 (i.e., 83 terms in the final model). 
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4.3. Machine Learning

The algorithm Multivariate Adaptive Regression Splines (MARS) (an introduction can be found
in [110] and [114]) creates piecewise linear models where each predictor models an isolated part of the
original data. For this purpose, each data point for each predictor is evaluated as a split candidate by
creating linear regression models. The contribution of the individual terms in the model is evaluated
based on the generalized cross-validation (GCV) statistic. In this study, the implementation in the
“earth” package [115] in R was used.

The target variable was AML (like above), but only 10 km × 10 km cells with n > 30 original indoor
Rn data were used for training the model. The model was fitted using >100 candidate predictors
using the model inherent predictor selection. The hyperparameters of the final model are degree = 1
(i.e., no interaction between variables) and nprune = 83 (i.e., 83 terms in the final model). The selected
predictors comprise:

• Geology: IGME 5000: lithological unit (attribute “Portr_Petr”, 92 classes);
• Hydrogeology: IHME 1500 ([116]): attribute “Litho level 2” (85 classes);
• Soil: regions of Europe (285 classes) ([117]);
• Soil physical properties [76]: Silt content, Clay content, available water capacity, bulk density,

coarse fragments;
• Soil hydraulic properties: hydraulic conductivity [118]: Saturated hydraulic conductivity (at depths

0 cm, 60 cm, and 200 cm);
• Location: Longitude and latitude.

The result is shown in Figure 8 (first in [68]). The calculated values were linearly rescaled to [0,1],
like above. For multiple regression and ML, the pattern is very similar to the one of IRC, which was
of course to be expected because IRC is the independent variable in the models. The ML method
performed very well with r2 = 0.52 between predicted and observed AM (IRC per 10 km × 10 km cell)
of the test dataset (which has not been used for model building). Again, 0 is the lowest and 1 is the
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However, the model building procedure applied for ML in this study has some limitations, namely

(1) categorical predictor data (geology, hydrogeology, soil regions) could be re-classified with respect
to Rn to reduce the classes and the risk of over-fitting.
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(2) no external predictor selection procedure was applied, only the model inherent predictor selection.
This might result in the appearance of non-informative predictors in the final model and might
cause over-fitting.

(3) The cross-validation procedure in this study (stratified sampling) did not account for spatial
auto-correlation in the data. This might produce a too optimistic r2 as a consequence of spatial
auto-correlation because test data might be within the correlation length of training data (see [119]
for details). Therefore, independence between training and test data is not guaranteed. In newer
versions (currently in work), spatial cross-validation is being implemented.

Further, it should be noted that other ML algorithms, especially ensemble techniques (e.g., random
forest) might be more powerful than MARS for modelling a noisy target variable such as IRC.
Nonetheless, the ML result presented in this study indicates the potential of ML for GRHI mapping
and will be even more robust when the previously mentioned methodological specifications will
be implemented.

4.4. Principal Component Analysis

Reference [31] explored dimensional reduction by PCA of the following set of variables:

• Geochemistry: GEMAS + FOREGS, U, Th, and K, as in the European Atlas of Natural Radiation.
• Soil properties: Fine fraction FF in topsoil from LUCAS, as in the Natural Atlas.
• Tectonic fault lines: global fault layer from ArcAtlas, ESRI; areal density.
• Earthquake epicenters: [120].
• Geothermal and volcanic areas: in terms of heat flow (the heat flow map of Europe has been

obtained by analyzing the Global Heat Flow (International Heat Flow Commission of the
International Association of Seismology and Physics of the Earth’s Interior, IASPEI).

Note that indoor Rn (IRC) is not among the variables, nor is soil Rn (SRC). All data were projected
into the 10 km × 10 km grid of the European Atlas of Natural Radiation; map of the heat flow was
obtained by kriging point data; maps of the fault and earthquake density were obtained by kernel
density estimation; maps of the FF, uranium, thorium, and potassium were available from the database
of the European Atlas of Natural Radiation. Values of the variables were assigned to the 10 km × 10 km
grid centroids in order to obtain the dataset for the PCA. The raw (unrotated) PCA result is shown in
Figure 9. One can recognize two essential groups: (U, K), which represent the source term and FF,
faults etc., which represent transport properties.
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component versus the coefficients for the second component. This graph shows which variables have
the largest effect on each component. Percentages: Explained variance (in percentages) of first principal
components F1 and F2 (From [30]).
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The GRHI at point x is defined as

GRHI(x) =
∑

(over variables j) w(1)
j yj(x) (4)

where yj(x)—value of variable j (e.g., U concentration etc.) at location x, w(1)
j—loading of variable j in

the first principal component = abscissa (F1) value in Figure 10.
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Figure 10. GRHI map derived from the first principal component (From [30]).

The resulting GRHI is mapped in Figure 10. While the expected geographical pattern is partly
apparent, it does not seem appropriate in other parts of Europe, notably Scandinavia, the Bohemian
Massif, and the Pannonian Basin, if compared to the maps in Figures 7 and 8. The difference is owed to
the fact that it is generated by a different approach, namely A instead of B.

5. Conclusions

Mapping geogenic radon appears to be neither a straightforward nor a technically easy task.
The reasons lie in its definition; in particular, would we like to first capture the geogenic variability
(approach A) or optimal predictability of indoor Rn (approach B)? Furthermore, concerning the
estimation technique, which technique to use? How will various predictors be included?

Different trials for approximately the last 10 years led to variably satisfying results, but in any
case, served to gain experience with different approaches and techniques. The first version of the
European Atlas of Natural Radiation did not include a European map of geogenic Rn because it was
felt that the concept and techniques were not yet sufficiently developed. It seems that we are now
converging towards a robust European geogenic Rn map, or perhaps several, reflecting different
properties, represented by approaches A and B, which both have their justifications.

At the moment, it seems that of all the methods investigated, for approach A (“geogenic”),
the most promising method is PCA, while for B (“optimal to IRC”), machine learning is most powerful,
but methodologically has not yet been fully explored. However, further multivariate methods
should be explored, notably spatial multi-criteria decision analysis for A and B and varieties of PCA,
for approach A.

We hope that this work serves as an incentive for further research. We see two open fields:
Conceptual: Refinement of GRHI definitions; specify which definition serves which purpose.

Probably different definitions will lead to different maps. In the end, different definitions should be
given different names to avoid confusion.



Int. J. Environ. Res. Public Health 2020, 17, 4134 17 of 23

Technically: improvements are certainly possible in existing methodology, but it would also not
be a big surprise to see new methods appearing, given the current dynamic in radon science.

The main motivations behind conceiving the GRHI are (1) to create a unified measure of the natural
availability of geogenic radon which can be estimated from different types of geogenic quantities and
(2) to generate a methodically homogeneous European-scale map of geogenic radon. Consequently,
methods and results shown here were tailored to exploit databases that cover most of Europe. However,
there is no reason why the same rationale should not be applicable on a regional scale, possibly in
higher resolution.
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Acronyms

AD(E)R ambient dose (equivalent) rate (usually nSv/h or µSv/h, ADR also nGy/h)
AM arithmetic mean
BSS Basic Safety Standards
EANR European Atlas of Natural Radiation
FF fine fraction of soil matter (dimensionless)
GIS Geographic information system
GRHI geogenic radon hazard index (dimensionless)
GRP geogenic radon potential (usually treated as dimensionless value)
IRC long-term mean indoor radon concentration (usually Bq/m3)
k gas permeability of the ground (m2)
MARS multivariate adaptive regression splines
ML machine learning
MR multivariate regression
PC(A) principal component (analysis)
ReV regionalized variable; variable which refers to a location
RL reference level of indoor Rn concentration, according the BSS
Rn radon; here Rn-222

RPA
radon priority area: area, in which a high fraction of indoor spaces has or is expected to
have IRC above the RL, and in which particular action according BSS has to be taken.

SMCDA spatial multicriteria decision analysis
SRC soil radon concentration (usually kBq/m3)
TGDR Terrestrial gamma dose rate (usually nSv/h or nGy/h), terrestrial component of AD(E)R

References

1. Zeeb, H.; Shannoun, F.; World Health Organization. WHO Handbook on Indoor Radon: A Public Health
Perspective; World Health Organization: Geneva, Switzerland, 2009. Available online: https://apps.who.int/
iris/handle/10665/44149 (accessed on 13 April 2020).

2. EC. European Council: Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety
standards for protection against the dangers arising from exposure to ionising radiation. Off. J. Eur. Union
2014, 57, 1–73. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2014:013:
FULL&from=EN (accessed on 25 June 2017).

www.euramet.com
https://apps.who.int/iris/handle/10665/44149
https://apps.who.int/iris/handle/10665/44149
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2014:013:FULL&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2014:013:FULL&from=EN


Int. J. Environ. Res. Public Health 2020, 17, 4134 18 of 23

3. IAEA. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards—General
Safety Requirements Part 3. 2014. Available online: www-pub.iaea.org/MTCD/publications/PDF/Pub1578_
web-57265295.pdf (accessed on 31 May 2020).

4. Bartzis, J.; Zeeb, H.; Bochicchio, F.; Mc Laughlin, J.; Collignan, B.; Gray, A.; Kalimeri, K. An Overview of the
Activities of the RADPAR (Radon Prevention and Remediation) Project. 11th International Workshop on the
Geological Aspects of Radon Risk Mapping. 2012. Available online: http://www.radon.eu/workshop2012/

pres/09bartzis_ppt_prague_2012.pdf (accessed on 31 May 2020).
5. Bochicchio, F.; Hulka, J.; Ringer, W.; Rovenska, K.; Fojtikova, I.; Venoso, G.; Bartzis, J.; Fenton, D.; Gruson, M.;

Holmgren, O. National radon programmes and policies: The RADPAR recommendations. Radiat. Prot.
Dosim. 2014, 160, 14–17. [CrossRef] [PubMed]

6. Tunyagi, A.; Dicu, T.; Szacsvai, K.; Papp, B.; Dobrei, G.; Sainz, C.; Cucos, A. Automatic system for
continuous monitoring of indoor air quality and remote data transmission under SMART_RAD_EN
project. Studia Ubb Ambient. LXII 2017, 2, 71–79. Available online: https://pdfs.semanticscholar.org/ff16/

cc57c1ba04985067aa2ac706f8d45bbac2ff.pdf (accessed on 12 April 2020). [CrossRef]
7. Radon Measurements in Big Buildings. Available online: http://www.ribibui.org/ (accessed on 19 April 2020).
8. Radon Real Time Monitoring System and Proactive Indoor Remediation. Available online: http://www.

liferespire.it/ (accessed on 12 April 2020).
9. Cinelli, G.; Tollefsen, T.; Bossew, P.; Gruber, V.; Bogucarskis, K.; De Felice, L.; De Cort, M. Digital version of

the European Atlas of natural radiation. J. Environ. Radioact. 2019, 196, 240–252. [CrossRef] [PubMed]
10. EC. European Commission, Joint Research Centre. Catalogue number KJ-02-19-425-EN-C, EUR 19425 EN;

Cinelli, G., De Cort, M., Tollefsen, T., Eds.; European Atlas of Natural Radiation, Publication Office of the
European Union: Luxembourg, 2019; ISBN 978-92-76-08259-0. [CrossRef]

11. Metro RADON—Metrology for Radon Monitoring. Available online: http://metroradon.eu/ (accessed on 20
April 2020).

12. Cosma, C.; Cucos, A.; Dinu, A.; Papp, B.; Begy, R.; Sainz, C. Soil and building material as main sources of
indoor radon in Baita-Stei radon prone area (Romania). J. Environ. Radioact. 2013, 116, 174–179. [CrossRef]
[PubMed]

13. Gruber, V.; Bossew, P.; De Cort, M.; Tollefsen, T. The European map of the geogenic radon potential. J. Radiol.
Prot. 2013, 33, 51–60. [CrossRef] [PubMed]

14. The new method for assessing the radon risk of building sites. In Czech Geological Survey. Available online:
http://www.radon-vos.cz/pdf/metodika.pdf (accessed on 12 May 2020).

15. Szabó, K.Z.; Jordan, G.; Horváth, Á.; Szabó, C. Mapping the geogenic radon potential: Methodology and
spatial analysis for central Hungary. J. Environ. Radioact. 2014, 129, 107–120. [CrossRef] [PubMed]

16. Tanner, A.B. Radon migration in the ground: A supplementary review. In Natural Radiation Environment;
Gesell, T.F., Lowder, W.M., Eds.; III. Symp. Proc.: Houston, TX, USA, 1978; Volume 1, pp. 5–56.

17. Malmqvist, L.; Isaksson, M.; Kristiansson, K. Radon Migration through Soil and Bedrock. Geoexploration
1989, 26, 135–144. [CrossRef]

18. Nazaroff, W.W. Radon transport from soil to air. Rev. Geophys. 1992, 30, 137. [CrossRef]
19. Etiope, G.; Martinelli, G. Migration of carrier and trace gases in the geosphere: An overview. Phys. Earth

Planet. Inter. 2002, 129, 185–204. [CrossRef]
20. Ciotoli, G.C.; Lombardi, S.; Annunziatellis, A. Geostatistical analysis of soil gas data in a high seismic

intermontane basin: Fucino Plain, central Italy. J. Geophys. Res. 2007, 112, B05407. [CrossRef]
21. Sakoda, A.; Ishimori, Y.; Yamaoka, K. A comprehensive review of radon emanation measurements for

mineral, rock, soil, mill tailing and fly ash. Appl. Radiat. Isot. 2011, 60, 1422–1435. [CrossRef] [PubMed]
22. Tchorz-Trzeciakiewicz, D.E.; Olszewski, S.R. Radiation in different types of building, human health. Sci. Total

Environ. 2019, 667, 511–521. [CrossRef] [PubMed]
23. Bala, P.; Kumar, V.; Mehra, R. Measurement of radon exhalation rate in various building materials and soil

samples. J. Earth Syst. Sci. 2018, 126, 31. [CrossRef]
24. Demoury, C.; Ielsch, G.; Hemon, D.; Laurent, O.; Laurier, D.; Clavel, J.; Guillevic, J. A statistical evaluation of

the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in
France. J. Environ. Radioact. 2013, 126, 216–225. [CrossRef] [PubMed]

www-pub.iaea.org/MTCD/publications/PDF/Pub1578_web-57265295.pdf
www-pub.iaea.org/MTCD/publications/PDF/Pub1578_web-57265295.pdf
http://www.radon.eu/workshop2012/pres/09bartzis_ppt_prague_2012.pdf
http://www.radon.eu/workshop2012/pres/09bartzis_ppt_prague_2012.pdf
http://dx.doi.org/10.1093/rpd/ncu099
http://www.ncbi.nlm.nih.gov/pubmed/24748489
https://pdfs.semanticscholar.org/ff16/cc57c1ba04985067aa2ac706f8d45bbac2ff.pdf
https://pdfs.semanticscholar.org/ff16/cc57c1ba04985067aa2ac706f8d45bbac2ff.pdf
http://dx.doi.org/10.24193/subbambientum.2017.2.07
http://www.ribibui.org/
http://www.liferespire.it/
http://www.liferespire.it/
http://dx.doi.org/10.1016/j.jenvrad.2018.02.008
http://www.ncbi.nlm.nih.gov/pubmed/29496295
http://dx.doi.org/10.2760/520053
http://metroradon.eu/
http://dx.doi.org/10.1016/j.jenvrad.2012.09.006
http://www.ncbi.nlm.nih.gov/pubmed/23164693
http://dx.doi.org/10.1088/0952-4746/33/1/51
http://www.ncbi.nlm.nih.gov/pubmed/23295644
http://www.radon-vos.cz/pdf/metodika.pdf
http://dx.doi.org/10.1016/j.jenvrad.2013.12.009
http://www.ncbi.nlm.nih.gov/pubmed/24412775
http://dx.doi.org/10.1016/0016-7142(89)90058-6
http://dx.doi.org/10.1029/92RG00055
http://dx.doi.org/10.1016/S0031-9201(01)00292-8
http://dx.doi.org/10.1029/2005JB004044
http://dx.doi.org/10.1016/j.apradiso.2011.06.009
http://www.ncbi.nlm.nih.gov/pubmed/21742509
http://dx.doi.org/10.1016/j.scitotenv.2019.02.343
http://www.ncbi.nlm.nih.gov/pubmed/30833249
http://dx.doi.org/10.1007/s12040-017-0797-z
http://dx.doi.org/10.1016/j.jenvrad.2013.08.006
http://www.ncbi.nlm.nih.gov/pubmed/24056050


Int. J. Environ. Res. Public Health 2020, 17, 4134 19 of 23

25. Ambrosino, F.; Thinov, L.; Briestenský, M.; Giudicepietro, F.; Roca, V.; Sabbarese, C. Analysis of geophysical
and meteorological parameters influencing 222Rn activity concentration in Mladeč caves (Czech Republic)
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