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COMPACTLY SUPPORTED CURVELET TYPE SYSTEMS

KENNETH N. RASMUSSEN AND MORTEN NIELSEN

Abstract. In this article we study a flexible method for constructing curvelet
type frames. These curvelet type systems have the same sparse representation
properties as curvelets for appropriate classes of smooth functions, and the
flexibility of the method allows us to construct curvelet type systems with
a prescribed nature such as compact support in direct space. The method
consists of using the machinery of almost diagonal matrices to show that a
system of curvelet molecules which is sufficiently close to curvelets constitutes
a frame for curvelet type spaces. Such a system of curvelet molecules is then
constructed using finite linear combinations of shifts and dilates of a single
function with sufficient smoothness and decay.

1. Introduction

Second generation curvelets were introduced by Candès and Donoho, who
also proved that curvelets give an essentially optimal sparse representation of
images (functions) that are C2 except for discontinuities along piecewise C2-
curves [4]. It follows that efficient compression of such images can be archived
by thresholding their curvelet expansions. Curvelets form a multiscale system
with effective support that follows a parabolic scaling relation width ≈ length2.
Moreover, they also provide an essentially optimal sparse representation of
Fourier integral operators [2] and an optimal sparse and well organized so-
lution operator for a wide class of linear hyperbolic differential equations [3].
However, curvelets are band-limited, and contrary to wavelets it is an open
question whether compactly supported curvelet type systems exist.

In this article we study a flexible method for generating curvelet type
systems with the same sparse representation properties as curvelets (when
sparseness is measured in curvelet type sequence spaces). The method uses a
perturbation principle which was first introduced in [10], further generalized
in [8] and refined for frames in [9]. The constructed curvelet type system con-
sists of finite linear combinations of shifts and dilates of a single function with
sufficient smoothness and decay. This allows us to the flexibility to construct
curvelet type systems with a prescribed nature (see Section 6) such as compact
support in direct space. For the sake of convenience the construction will only
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COMPACTLY SUPPORTED CURVELET TYPE SYSTEMS 2

be done in R2, but it can easily be extended to Rd. The main results can be
found in Sections 4 and 5.

The curvelet type sequence spaces we use are associated with curvelet type
spaces Gs

p,q which were introduced in [1]. Here Gs
p,q was constructed by apply-

ing a curvelet type splitting of the frequency space to a general construction of
decomposition spaces; thereby obtaining a natural family of smoothness spaces
for which curvelets constitute frames (see Section 2). Originally, this construc-
tion of decomposition spaces based on structured coverings of the frequency
space was introduced by Feichtinger and Gröbner [6] and Feichtinger [5]. For
example, the classical Triebel-Lizorkin and Besov spaces correspond to dyadic
coverings of the frequency space (see [12]).

The outline of the article is as follows. In Section 2 we define second
generation curvelets and curvelet type spaces. Furthermore, we introduce
curvelet molecules which will be the building blocks for our compactly sup-
ported curvelet type frames. Next, in Section 3 we use the properties of
curvelet molecules to show that the ”change of frame coefficient” matrix is
almost diagonal if the curvelet molecules have sufficient regularity. With the
machinery of almost diagonal matrices, we can then in Section 4 show that
curvelet molecules which are close enough to curvelets constitute frames for
the curvelet type spaces. Finally, in Section 5 we construct these curvelet
molecules from finite linear combinations of shifts and dilates of a single func-
tion with sufficient smoothness and decay. We conclude the paper with a short
discussion in Section 6 of the possible functions which can used to construct
the curvelet molecules.

2. Second generation curvelets

We begin this section with a brief definition of curvelets and curvelet molecules
which will later be used to construct curvelet type frames. Furthermore, we
define the curvelet type spaces for which curvelets constitute frames. For a
much more detailed discussion of the curvelet construction, we refer the reader
to [3, 4], and for decomposition spaces, of which the curvelet type spaces are a
subclass, we refer to [1, 6].

Let ν be an even C∞(R) window that is supported on [−π, π] such that its
2π-periodic extension obeys |ν(θ)|2 + |ν(θ − π)|2 = 1, for θ ∈ [0, 2π). Define
νj,l(θ) := ν(2bj/2cθ − πl) for j ≥ 2 and l = 0, 1, . . . , 2bj/2c − 1. Next, with the
angular window in place, let w ∈ C∞

c (R) obey

|w0(t)|2 + ∑
j≥2
|w(2−jt)|2 = 1, t ∈ R,

with w0 ∈ C∞
c (R) supported in a neighborhood of the origin. We then define

(2.1) φj,l(ξ) := w(2−j|ξ|)(νj,l(θ) + νj,l(θ + π)), ξ = |ξ|(cos θ, sin θ) ∈ R2.
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Notice that the support of w(2−j|ξ|)νj,0(θ) is contained in a rectangle Rj =
I1j × I2j given by

I1j := {ξ1, tj ≤ ξ1 ≤ tj + Lj}, I2j := {ξ2, 2|ξ2| ≤ lj},
where tj is defined by minimizing Lj, Lj := δ1π2j and lj := δ22π2j/2 (δ1 de-
pends weakly on j, see [4, Section 2.2]). With Ĩ1j := ±I1j and R̃j = Ĩ1j × I2j the
system

ej,k(ξ) :=
2−3j/4

2π
√

δ1δ2
ei (k1+1/2)2−jξ1

δ1 ei k22−j/2ξ2
δ2 , k ∈ Z2,

is an orthonormal basis for L2(R̃j). Finally, we define

(2.2) η̂µ(ξ) := φj,l(ξ)ej,k(R>θµ
ξ), µ = (j, l, k),

where Rθµ
is rotation by the angle θµ := π2−bj/2cl, and as coarse-scale elements

we define η̂1,0,k(ξ) := δ−1
0 φ1,0(ξ)eik·ξ/δ0 , where φ1,0(ξ) := ω0(|ξ|) and δ0 > 0 is

sufficiently small. The system {ηµ}µ∈J×Z2 is called curvelets, J := {(j, l)|j ≥
1, l = 0, 1, . . . , 2bj/2c− 1}. It can be shown that curvelets constitute a tight frame
for L2(R

2) (see [4, Section 2.2]).
To later construct curvelet type frames, we need a system of functions

which share the essential properties of curvelets. As we shall see, curvelet
molecules, which were introduced in [3] and used there to study hyperbolic
differential equations, have all the properties we need. For κ ∈ N2

0, we define

|κ| := κ1 + κ2, and for suitably differentiable functions we define f (κ) := ∂|κ| f
∂

κ1
ξ1

∂
κ2
ξ2

.

Definition 2.1.
A family of functions {ψµ}µ∈J×Z2 is said to be a family of curvelet molecules with
regularity R, R ∈N, if for j ≥ 2 they may be expressed as

ψµ(x) = 2
3j
4 aµ(D2−j Rθµ

x− (k1/δ1, k2/δ2)),

where D2−j ξ = (2−jξ1, 2−j/2ξ2), δ1, δ2 > 0 and all functions aµ satisfy the fol-
lowing:

• For |κ| ≤ R there exists constants C > 0 such that

(2.3) |a(κ)µ (x)| ≤ C(1 + |x|)−2R.

• There exists constants C > 0 such that

(2.4) |âµ(ξ)| ≤ C min(1, 2−j + |ξ1|+ 2−
j
2 |ξ2|)R.

Here the constants may be chosen independent of µ, and the coarse-scale
molecules, j = 1, must satisfy an obvious modification. �
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It can be shown that curvelets constitute a family of curvelet molecules with
regularity R for any R ∈N.

To define the curvelet type spaces which together with the associated
sequence spaces will characterize the sparse representation properties of
curvelets we need a suitable partition of unity.

Definition 2.2.
Let Qj,l := supp(φj,l) for (j, l) ∈ J , where φj,l was defined (2.1). in A bounded
admissible partition of unity (BAPU) is a family of functions {ϕj,l}(j,l)∈J ⊂
S := S(R2) satisfying:

• supp(ϕj,l) ⊆ Qj,l, (j, l) ∈ J .
• ∑(j,l)∈J ϕj,l(ξ) = 1, ξ ∈ R2.
• sup(j,l)∈J |Qj,l|1/p−1‖F−1ϕ‖Lp(R2) < ∞, p ∈ (0, 1].

�
We are now ready to define curvelet-type spaces. We let f̂ (ξ) := F ( f )(ξ) :=
(2π)−1

∫
R2 f (x)e−ix·ξ dx, f ∈ L1(R

2), and by duality extend it uniquely from
S(R2) to S ′(R2).

Definition 2.3.
Let {ϕj,l}(j,l)∈J be a BAPU and ϕj,l(D) f := F−1(ϕj,lF f ). For s ∈ R, 0 < q < ∞
and 0 < p ≤ ∞, we define Gs

p,q := Gs
p,q(R

2) as the set of distributions f ∈ S ′ :=
S ′(R2) satisfying

‖ f ‖Gs
p,q :=

(
∑

(j,l)∈J

∥∥2js ϕj,l(D) f
∥∥q

Lp

)1/q
< ∞.

�
It can be shown that Gs

p,q is a quasi-Banach space (Banach space for p, q ≥ 1),
and S is dense in Gs

p,q (see [1] and [6]).
We also need the sequence spaces associated with the curvelet-type spaces.

For the sake of convenience, we write ‖ fk‖ instead of ‖{ fk}k∈K‖when the index
set is clear from the context.

Definition 2.4.
For s ∈ R, 0 < q < ∞ and 0 < p ≤ ∞, we define the sequence space gs

p,q as the
set of sequences {sµ}µ∈J×Z2 ⊂ C satisfying

‖sµ‖gs
p,q :=

∥∥∥2
j
(

s+3
2 (

1
2−

1
p )
)(

∑
k∈Z2

|sµ|p
)1/p∥∥∥

lq
< ∞,

where the lp-norm is replaced with the l∞-norm if p = ∞. �
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Notice that the sequence spaces lq are special cases of gs
p,q as we have

g
− 3

2 (
1
2− 1

q )
q,q = lq.

Next, we introduce frames for Gs
p,q and use the notation F � G when

there exists two constants 0 < C1 ≤ C2 < ∞, depending only on ”allowable”
parameters, such that C1F ≤ G ≤ C2F.

Definition 2.5.
We say that a family of functions {ψµ}µ∈J×Z2 in the dual of Gs

p,q is a frame for
Gs

p,q if for all f ∈ Gs
p,q we have

‖ f ‖Gs
p,q � ‖〈 f , ψµ〉‖gs

p,q .

The following is called the frame expansion of {ψµ}µ∈J×Z2 when it exists,

(2.5) f = ∑
µ∈J×Z2

〈 f , S−1ψµ〉ψµ

in the sense of S ′, where S is the frame operator S f = ∑µ∈J×Z2〈 f , ψµ〉ψµ,
f ∈ Gs

p,q. �
From [1, Lemma 4 and Section 7.3] we have that curvelets (2.2) constitute a
frame for the curvelet type spaces with a frame operator S that is equal to the
identity, S = I:

Proposition 2.6.
Assume that s ∈ R, 0 < q < ∞ and 0 < p ≤ ∞. For any finite sequence
{sµ}µ∈J×Z2 ⊂ C, we have

∥∥∥ ∑
µ∈J×Z2

sµηµ

∥∥∥
Gs

p,q
≤ C‖sµ‖gs

p,q .

Furthermore, {ηµ}µ∈J×Z2 is a frame for Gs
p,q with frame operator S = I,

‖ f ‖Gs
p,q � ‖〈 f , ηµ〉‖gs

p,q , f ∈ Gs
p,q.

�
Notice that frame expansions for two frames {ψµ}µ∈J×Z2 and {ηµ}µ∈J×Z2

have the same sparseness when measured in the associated sequence space
gs

p,q if {S−1ψµ}µ∈J×Z2 and {S−1ηµ}µ∈J×Z2 also constitute frames for Gs
p,q,

‖〈 f , S−1ψµ〉‖gs
p,q � ‖ f ‖Gs

p,q(R2) � ‖〈 f , S−1ηµ〉‖gs
p,q .

Hence, to get a curvelet type system {ψµ}µ∈J×Z2 with the same sparse
representation properties as curvelets {ηµ}µ∈J×Z2 , it suffices to prove that
{S−1ψµ}µ∈J×Z2 constitutes a frame for Gs

p,q.
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3. Almost diagonal matrices

To generate curvelet type frames in the following sections we introduce the
machinery of almost diagonal matrices in this section. Almost diagonal matri-
ces where used in [7] on Besov spaces, and here we find an associated notion
of almost diagonal matrices on gs

p,q. The goal is to find a definition so that
the composition of two almost diagonal matrices gives a new almost diagonal
matrix and almost diagonal matrices are bounded on gs

p,q.
To help us define almost diagonal matrices we use a slight variation of the

pseudodistance introduced in [11] which was constructed in [3]. For this we
need the center of ηµ in direct space, xµ := Rθµ

(k12−j/δ1, k22−j/2δ2), and the
”direction” of ηµ, ρµ := (cos θµ, sin θµ).

Definition 3.1.
Given a pair of indices µ = (j, k, l) and µ′ = (j′, k′, l′), we define the dyadic-
parabolic pseudodistance as

ω(µ, µ′) := 2|j−j′|(1 + min(2j, 2j′)d(µ, µ′)),

where
d(µ, µ′) := |θµ − θµ′ |2 + |xµ − xµ′ |2 + |〈ρµ, xµ − xµ′〉|.

�
The dyadic-parabolic distance was studied in detail in [3], and from there we
can deduce the following properties:

• For δ > 0 there exists C > 0 such that

(3.1) ∑
k∈Z2

ω(µ, µ′)−
3
2−δ ≤ C.

• For δ > 0 there exists C > 0 such that

(3.2) ∑
(j,l)∈J

ω(µ, µ′)−
1
2−δ ≤ C.

• For N ≥ 2 and δ > 0 there exists C > 0 such that

(3.3) ∑
µ′′∈J×Z2

ω(µ, µ′′)−N−δω(µ′′, µ′)−N−δ ≤ Cω(µ, µ′)−N− δ
2 .

• Let {ψµ}µ∈J×Z2 and {ηµ}µ∈J×Z2 be two families of curvelet molecules
with regularity 4R, R ∈N. Then there exists C > 0 such that

(3.4) |〈ψµ, ηµ′〉| ≤ Cω(µ, µ′)−R.

These properties lead us to the following definition of almost diagonal matrices
on gs

p,q.
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Definition 3.2.
Assume that s ∈ R, 0 < q < ∞ and 0 < p ≤ ∞. Let r := min(1, p, q) and
t := s + 3

2(
1
2 − 1

p ). A matrix A = {aµµ′}µ,µ′∈J×Z2 is called almost diagonal on
gs

p,q if there exists C, δ > 0 such that

|aµµ′ | ≤ C2(j′−j)tω(µ, µ′)−
2
r−δ.

�
Remark 3.3.
Note that by using (3.3), we get that the composition of two almost diagonal
matrices on gs

p,q gives a new almost diagonal matrix on gs
p,q. ◦

We are now ready to show the most important property of almost diagonal
matrices; they act boundedly on the curvelet type spaces.

Proposition 3.4.
If A is almost diagonal on gs

p,q, then A is bounded on gs
p,q.

Proof:
We only prove the result for p < ∞ as the result for p = ∞ follows in a similar
way with lp replaced by l∞. Let ω0(µ, µ′) := ω(j, l, 0, j′, l′, 0), {sµ}µ∈J×Z2 ∈
gs

p,q, and assume for now that p ≥ 1. We begin with looking at the lp-norm
of ‖As‖gs

p,q . By using Minkowski’s inequality, Hölder’s inequality and (3.1) we
get
(

∑
k∈Z2

|(As)µ|p
)1/p

≤C
(

∑
k∈Z2

(
∑

(j′,l′)∈J
2(j′−j)tω0(µ, µ′)−

1
2r−

δ
2 ∑

k′∈Z2

|sµ′ |ω(µ, µ′)−
3
2r−

δ
2

)p)1/p

≤C ∑
(j′,l′)∈J

2(j′−j)tω0(µ, µ′)−
1
2r−

δ
2

(
∑

k∈Z2

(
∑

k′∈Z2

|sµ′ |ω(µ, µ′)−
3
2r−

δ
2

)p)1/p

≤C ∑
(j′,l′)∈J

2(j′−j)tω0(µ, µ′)−
1
2r−

δ
2

×
(

∑
k∈Z2

∑
k′∈Z2

|sµ′ |pω(µ, µ′)−
3
2r−

δ
2
(

∑
k′∈Z2

ω(µ, µ′)−
3
2r−

δ
2
)p−1

)1/p

≤C ∑
(j′,l′)∈J

2(j′−j)tω0(µ, µ′)−
1
2r−

δ
2
(

∑
k′∈Z2

|sµ′ |p
)1/p

.
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We then have

‖As‖gs
p,q ≤ C

(
∑

(j,l)∈J

(
∑

(j′,l′)∈J
2j′tω0(µ, µ′)−

1
2r−

δ
2
(

∑
k′∈Z2

|sµ′ |p
)1/p

)q)1/q

.

For q ≥ 1 we use Hölder’s inequality and (3.2) to get

‖As‖gs
p,q ≤C

(
∑

(j,l)∈J
∑

(j′,l′)∈J
2j′qtω0(µ, µ′)−

1
2r−

δ
2

×
(

∑
k′∈Z2

|sµ′ |p
)q/p(

∑
(j′,l′)∈J

ω0(µ, µ′)−
1
2r−

δ
2
)q−1

)1/q

≤C‖s‖gs
p,q .

For q < 1 the result follows by a direct estimate. The case p < 1 remains, and
here we first observe that

Ã := {ãµµ′}µ,µ′∈J×Z2 =
{
|aµµ′ |p2(j′−j)(t−tp)}

µ,µ′∈J×Z2

is almost diagonal on gs
1, q

p
. Furthermore, if we let

v := {vµ}µ∈J×Z2 := {|sµ|p2−j(t−tp)}µ∈J×Z2 we have

‖v‖1/p
gs

1, q
p

=

(
∑

(j,l)∈J

(
∑

k∈Z2

2jtp|sµ|p
)q/p)1/q

= ‖s‖gs
p,q .

Before we can put these two observations into use, we need that

|(As)µ|p ≤ ∑
(j′,l′)∈J

∑
k′∈Z2

|aµµ′ |p|sµ′ |p = 2j(t−tp) ∑
(j′,l′)∈J

∑
k′∈Z2

ãµµ′vµ.

We then have

‖As‖gs
p,q ≤ ‖Ãv‖1/q

gs
1, q

p

≤ C‖v‖1/q
gs

1, q
p

= C‖v‖gs
p,q .

�

4. Curvelet type frames

In this section we study a family of curvelet molecules {ψµ}µ∈J×Z2 which is
a small perturbation of curvelets {ηµ}µ∈J×Z2 .The goal is first to show that if
{ψµ}µ∈J×Z2 is close enough to {ηµ}µ∈J×Z2 , then {ψµ}µ∈J×Z2 is a frame for
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Gs
p,q. Next to get a frame expansion, we show that {S−1ψµ}µ∈J×Z2 is also a

frame, where S is the frame operator

S f = ∑
µ∈J×Z2

〈 f , ψµ〉ψµ.

The results are inspired by [9] where perturbations of frames were studied in
Triebel-Lizorkin and Besov spaces.

Let {ε−1(ηµ − ψµ)}µ∈J×Z2 be a family of curvelet molecules with regular-
ity 4d|t| + 2

r + δe independent of ε for some ε, δ > 0. Then {ψµ}µ∈J×Z2 is a
family of curvelet molecules with regularity 4d|t|+ 2

r + δe, and motivated by
{ηµ}µ∈J×Z2 being a tight frame for L2(R

2), we formally define 〈 f , ψµ′〉 as

(4.1) 〈 f , ψµ′〉 := ∑
µ∈J×Z2

〈ηµ, ψµ′〉〈 f , ηµ〉, f ∈ Gs
p,q.

It follows from (3.4) and Proposition 3.4 that 〈·, ψµ′〉 is a bounded linear func-
tional on Gs

p,q; in fact we have

∑
µ∈J×Z2

|〈ηµ, ψµ′〉||〈 f , ηµ〉| ≤
∥∥∥
{

∑
µ∈J×Z2

|〈ηµ, ψµ′〉||〈 f , ηµ〉|
}

µ′∈J×Z2

∥∥∥
gs

p,q

≤ C‖〈 f , ηµ〉‖gs
p,q ≤ C‖ f ‖Gs

p,q .(4.2)

Furthermore, {ψµ}µ∈J×Z2 is a norming family for Gs
p,q as it satisfies

‖〈 f , ψµ〉‖gs
p,q ≤ C‖ f ‖Gs

p,q . This can be used to show that S is a bounded
operator on Gs

p,q, and for small enough ε this will be the key to showing that
{ψµ} is a frame for Gs

p,q.

Theorem 4.1.
There exists ε0, C1, C2 > 0 such that if {ε−1(ηµ − ψµ)}µ∈J×Z2 is a family of
curvelet molecules with regularity 4d|t| + 2

r + δe independent of ε for some
ε ≤ ε0 and δ > 0, then we have

(4.3) C1‖ f ‖Gs
p,q ≤ ‖〈 f , ψµ〉‖gs

p,q ≤ C2‖ f ‖Gs
p,q f ∈ Gs

p,q,

where we used the notation from Definition 3.2.

Proof:
That {ψµ}µ∈J×Z2 is a norming family gives the upper bound, thus we only
need to establish the lower bound. For this we use that {ε−1(ηµ − ψµ)}µ∈J×Z2

is also a norming family so we have

‖〈 f , ηµ − ψµ〉‖gs
p,q ≤ Cε‖ f ‖Gs

p,q .

It then follows that

‖ f ‖Gs
p,q ≤ C‖〈 f , ηµ〉‖gs

p,q
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≤ C
(
‖〈 f , ψµ〉‖gs

µ
+ ‖〈 f , ηµ − ψµ〉‖gs

p,q

)

≤ C
(
‖〈 f , ψµ〉‖gs

p,q + ε‖ f ‖Gs
p,q

)
.

By choosing ε < 1/C we get the lower bound.
�

As one might guess from Theorem 4.1, the boundedness of the matrix

{〈ηµ, S−1ψµ′〉}µ,µ′∈J×Z2 on gs
p,q is the key to showing that {S−1ψµ}µ∈J×Z2 is

also a frame for Gs
p,q. For the sake of convenience, we use the notation from

Definition 3.2 in the following.

Proposition 4.2.
There exists ε0 > 0 such that if {ε−1(ηµ−ψµ)} is a family of curvelet molecules
with regularity 4d|t| + 2

r + δe independent of ε for some ε ≤ ε0 and δ > 0,
and {ψµ}µ∈J×Z2 is a frame for G0

22 = L2(R
2), then {〈ηµ, S−1ψµ′〉}µ µ′∈J×Z2 is

bounded on gs
p,q.

Proof:
The fact that {ψµ}µ∈J×Z2 is a frame for L2(R

2) ensures that S−1 is a bounded
operator on L2(R

2). We first show that S−1 is bounded on Gs
p,q. This will

follow from showing that

(4.4) ‖(I − S) f ‖Gs
p,q ≤ Cε‖ f ‖Gs

p,q , f ∈ Gs
p,q,

choosing ε small enough and using the Neumann series. Assume for a moment
that
D := {dµ′µ}µ′,µ∈J×Z2 := {〈(I − S)ηµ, ηµ′〉}µ′,µ∈J×Z2 satisfies

(4.5) ‖Ds‖gs
p,q ≤ Cε‖s‖gs

p,q .

By using that S is self-adjoint, we then have

‖(I − S) f ‖Gs
p,q ≤ C‖{〈(I − S) f , ηµ′〉}‖gs

p,q = C‖D{〈 f , ηµ〉}‖gs
p,q

≤ Cε‖{〈 f , ηµ〉}‖gs
p,q ≤ Cε‖ f ‖Gs

p,q .

So to show (4.4) it suffices to prove (4.5). Note that

〈(I − S)ηµ, ηµ′〉 = ∑
µ′′∈J×Z2

〈ηµ, ηµ′′〉〈ηµ′′ , ηµ′〉 − ∑
µ′′∈J×Z2

〈ηµ, ψµ′′〉〈ψµ′′ , ηµ′〉

= ∑
µ′′∈J×Z2

〈ηµ, ηµ′′〉〈ηµ′′ − ψµ′′ , ηµ′〉+ ∑
µ′′∈J×Z2

〈ηµ, ηµ′′ − ψµ′′〉〈ψµ′′ , ηµ′〉.

By setting

D1 := {d1(µ′)(µ′′)} := {〈ηµ′′ − ψµ′′ , ηµ′〉},
D2 := {d2(µ′′)(µ)} := {〈ηµ, ηµ′′〉},
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D3 := {d3(µ′)(µ′′)} := {〈ψµ′′ , ηµ′〉},
D4 := {d4(µ′′)(µ)} := {〈ηµ, ηµ′′ − ψµ′′〉},

we have the decomposition

D = D1D2 +D3D4.

Since {ε−1(ηµ − ψµ)}µ∈J×Z2 is a family of curvelet molecules with regularity
4d|t| + 2

r + δe independent of ε, we have from (3.4) that ε−1D1,D2,D3, ε−1D4
are almost diagonal on gs

p,q. Next, we use Remark 3.3, and by Proposition 3.4,

‖Ds‖gs
p,q ≤ Cε‖s‖gs

p,q .

Consequently, (4.4) holds, and for sufficiently small ε the operator S−1 is
bounded on Gs

p,q. Finally, let s := {sµ}µ∈J×Z2 ∈ gs
p,q and h =: ∑µ sµηµ. By

using (2.6) we have that h ∈ Gs
p,q, and as {ψµ}µ∈J×Z2 is a frame for L2(R

2),
we have that S−1 is self-adjoint which gives

∑
µ∈J×Z2

〈ηµ, S−1ψµ′〉sµ = ∑
µ∈J×Z2

〈S−1ηµ, ψµ′〉sµ = 〈S−1h, ψµ′〉.

If we combine this with {ψµ}µ∈J×Z2 being a norming family (4.2), we get
∥∥∥ ∑

µ∈J×Z2

〈ηµ, S−1ψµ′〉sµ

∥∥∥
gs

p,q
= ‖〈S−1h, ψµ′〉‖gs

p,q ≤ C‖S−1h‖Gs
p,q

≤ C‖h‖Gs
p,q ≤ C‖s‖gs

p,q

which proves that {〈ηµ, S−1ψµ′〉}µ,µ′∈J×Z2 is bounded on gs
p,q.

�
That {S−1ψµ}µ∈J×Z2 is a frame for Gs

p,q now follows as a consequence of

{〈ηµ, S−1ψµ′〉}µ,µ′∈J×Z2 being bounded on gs
p,q. We state the following results

without proofs as they follow directly in the same way as in the Besov space
case. The proofs can be found in [9]. First, we have the frame expansion.

Lemma 4.3.
Assume that {ψµ}µ∈J×Z2 is a family of curvelet molecules with regularity
4d|t|+ 2

r + δe and a frame for L2(R
2). If {〈ηµ, S−1ψµ′〉}µ,µ′∈J×Z2 is bounded

on gs
p,q, then for f ∈ Gs

p,q we have

f = ∑
µ∈J×Z2

〈 f , S−1ψµ〉ψµ

in the sense of S ′.
�
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Next, we have that {S−1ψµ}µ∈J×Z2 is a frame for Gs
p,q

Theorem 4.4.
Assume that {ψµ}µ∈J×Z2 is a family of curvelet molecules with regularity
4d|t|+ 2

r + δe and a frame for L2(R
2). Then {S−1ψµ}µ∈J×Z2 is a frame for Gs

p,q

if and only if {〈ηµ, S−1ψµ′〉}µ,µ′∈J×Z2 is bounded on gs
p,q.

�
It follows from Proposition 4.2, Lemma 4.3 and Theorem 4.4 that if {ψµ}µ∈J×Z2

is a family of curvelet molecules which is close enough to curvelets, then the
representation ∑µ∈J×Z2〈 f , S−1ψµ〉ψµ, f ∈ Gs

p,q, has the same sparse represen-
tation properties as curvelets when measured in gs

p,q. As a final result we also
have a frame expansion with {S−1ψµ}µ∈J×Z2 .

Lemma 4.5.
Assume that {ψµ}µ∈J×Z2 is a family of curvelet molecules with regularity
4d|t|+ 2

r + δe and a frame for L2(R
2). If the transpose of {〈ηµ, S−1ψµ′〉}µ,µ′∈J×Z2

is bounded on gs
p,q, then for f ∈ Gs

p,q we have

f = ∑
µ∈J×Z2

〈 f , ψµ〉S−1ψµ

in the sense of S ′.
�

All that remains now is to construct a flexible family of curvelet molecules
which is close enough to curvelets in the sense of Proposition 4.2.

5. Construction of curvelet type systems

In this section we construct a flexible curvelet type systems. We do this by
showing that finite linear combinations of shifts and dilates of a function g
with sufficient smoothness and decay can constitute a system {ψµ}µ∈J×Z2

such that {ε−1(ηµ − ψµ)}µ∈J×Z2 is a family of curvelet molecules with reg-
ularity 4(|t|+ 2

r + δ) independent of ε > 0. From the previous section, we then
have that the representation ∑µ∈J×Z2〈 f , S−1ψµ〉ψµ, f ∈ Gs

p,q, has the same
sparse representation properties as curvelets when measured in gs

p,q. Notice
that by starting out with a compactly supported function g, we get a com-
pactly supported curvelet type system.

First we take g ∈ CM+1(R2), ĝ(0) 6= 0, which for fixed N′ > 2, M > 0
satisfies

|g(κ)(x)| ≤ C(1 + |x|)−N′ , |κ| ≤ M + 1,(5.1)



COMPACTLY SUPPORTED CURVELET TYPE SYSTEMS 13

Next, for m ≥ 1 we define gm(x) := Cgm2g(mx), where Cg =: ĝ(0)−1. It then
follows that

|g(κ)m (x)| ≤ Cm2+|κ|(1 + m|x|)−N′ , |κ| ≤ M + 1,
∫

R2
gm(x)dx = 1.(5.2)

We recall that curvelets (2.2) are a family of curvelet molecules for any regu-
larity R ∈N. From the definition of a family of curvelet molecules (Definition
2.1), we have that for j ≥ 2 curvelet molecules can be expressed as

ηµ(x) = 2
3j
4 aµ(D2−j Rθµ

x− (k1/δ1, k2/δ2)),

where aµ must satisfy (2.3) and (2.4). For the coarse scale, j = 1, similar
requirements exist. So to construct a family of curvelet molecules {ψµ}µ∈J×Z2

such that {ε−1(ηµ − ψµ)}µ∈J×Z2 is a family of curvelet molecules, we need to
construct a family of functions {bµ}µ∈J×Z2 such that ε−1(aµ − bµ) satisfy (2.3)
and (2.4). We define {ψµ}µ∈J×Z2 as

ψµ(x) := 2
3j
4 bµ(D2−j Rθµ

x− (k1/δ1, k2/δ2))

for j ≥ 2, and similar for the coarse scale elements, j = 1. To construct
{bµ}µ∈J×Z2 we use the following set of finite linear combinations,

ΘK,m := {bµ : bµ(·) =
K

∑
i=1

cigm(·+ di), ci ∈ R, di ∈ R2}.

Proposition 5.1.
Let N′ > N > 2, M > 0 and j > 0. If g ∈ CM+1(R2), ĝ(0) 6= 0, fulfills (5.1) and
aµ ∈ L2(R

2) ∩ CM+1(R2) fulfills

|a(κ)µ (x)| ≤ C(1 + |x|)−N′ , |κ| ≤ M + 1

|âµ(ξ)| ≤ C min(1, 2−j + |ξ1|+ 2−
j
2 |ξ2|)M+1,

then for any ε > 0 there exists K, m ≥ 1 (m independent of j) and bµ ∈ ΘK,m
such that

|a(κ)µ (x)− b(κ)µ (x)| ≤ ε(1 + |x|)−N, |κ| ≤ M(5.3)

|âµ(ξ)− b̂µ(ξ)| ≤ ε min(1, 2−j + |ξ1|+ 2−
j
2 |ξ2|)M.(5.4)

Proof:
Let ε > 0 and κ, |κ| ≤ M, be given. We construct the approximation of aµ in
direct space in three steps. First by a convolution operator ωm = aµ ∗ gm, then
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by θq,m which is the integral in ωm taken over a dyadic cube Q, and finally by
a discretization over smaller dyadic cubes bl,q,m. From (5.2) we have

(5.5) a(κ)µ (x)−ω
(κ)
m (x) =

∫

R2

(
a(κ)µ (x)− a(κ)µ (x− y)

)
gm(y)dy.

Define U := mλ/2N, where λ := min(1, N′ − N). For |x| ≤ U, we use the mean
value theorem to get

|a(κ)µ (x)− a(κ)µ (x− y)| ≤ C min(1, |y|).
Inserting this in (5.5) we have

|a(κ)µ (x)−ω
(κ)
m (x)| ≤ C

∫

R2

min(1, |y|)m2

(1 + m|y|)N′ dy

≤ Cm−λ ≤ Cm−λ/2

UN ≤ Cm−λ/2

(1 + |x|)N .(5.6)

For |x| > U, we split the integral over Ω := {y : |y| ≤ |x|/2} and Ωc. If y ∈ Ω,
then |x− y| ≥ |x|/2, and we have

∫

Ω
|a(κ)µ (x)− a(κ)µ (x− y)||gm(y)|dy ≤ C(1 + |x|)−N′

≤ C
(1 + U)λ(1 + |x|)N ≤

Cm−λ2/2N

(1 + |x|)N .(5.7)

Integrating over Ωc with |x| > U gives
∫

Ωc
|a(κ)µ (x)− a(κ)µ (x−y)||gm(y)|dy

≤ C
(1 + |x|)N′ +

∫

Ωc

Cm2

(1 + |x− y|)N′(1 + m|y|)N′ dy

≤ C
(1 + |x|)N′ +

Cm−λ

(1 + |x|)N ≤
C(m−λ2/2N + m−λ)

(1 + |x|)N .(5.8)

So by choosing m sufficiently large in (5.6)-(5.8), we get

(5.9) |a(κ)µ (x)−ω
(κ)
m (x)| ≤ ε

3
(1 + |x|)−N.

For the next step we fix m and choose q ∈ N. Let Q denote the dyadic cube
with sidelength 2q+1, sides parallel with the axes and centered at the origin.
We then approximate ωm with θq,m defined as

θq,m(·) =
∫

Q
aµ(y)gm(· − y)dy.
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In which case we have

ω
(κ)
m (x)− θ

(κ)
q,m(x) =

∫

Qc
aµ(y)g(κ)m (x− y)dy,

and it follows that,

|ω(κ)
m (x)− θ

(κ)
q,m(x)| ≤

∫

|y|≥2q

Cm2+|κ|

(1 + |y|)N′(1 + m|x− y|B)N′ dy := L.

We first estimate the integral for |x| ≤ 2q−1 which gives |y| > |x| and |x− y| ≥
2q−1. Hence we obtain

L ≤ Cm2+|κ|

(1 + |x|)N′

∫

|u|≥2q−1

1
(1 + m|u|)N′ du ≤ Cm|κ|−λ2−λq

(1 + |x|)N′ .(5.10)

For |x| > 2q−1, we split the integral over Ω := {y : |y| ≥ 2q} ∩ {y : |y| ≤ |x|/2}
and Ω′ := {y : |y| ≥ 2q} ∩ {y : |y| > |x|/2}. If y ∈ Ω, then |x− y| ≥ |x|/2, and
we get

∫

Ω

m2+|κ|

(1 + |y|)N′(1 + m|x− y|)N′ dy ≤ Cm2+|κ|

(1 + m|x|)N′

∫

|y|≥2q

1
(1 + |y|)N′ dy

≤ Cm|κ|−λ2−λq

(1 + |x|)N .(5.11)

Similar for Ω′ we have
∫

Ω′

m2+|κ|

(1 + |y|)N′(1 + m|x− y|)N′ dy ≤ C
(1 + |x|)N′

∫

R2

m2+|κ|

(1 + m|x− y|)N′ dy

≤ Cm|κ|

(1 + |x|)N′ ≤
m|κ|2−λq

(1 + |x|)N .(5.12)

By choosing q sufficiently large in (5.10)-(5.12), we obtain

(5.13) |ω(κ)
m (x)− θ

(κ)
q,m(x)| ≤ ε

3
(1 + |x|)−N.

For the final step we fix q, choose l ∈ N and approximate θq,m by a discretiza-
tion

bl,q,m(·) = ∑
I∈Hl,q

|I|aµ(xI)gm(· − xI),

where xI is the center of the dyadic cube I and Hl,q is the set of dyadic cubes
with sidelength 2−l which together give Q. Note that bl,q,m ∈ ΘK,m, K = 2q+l+1.

We introduce F(·) := aµ(·)g(κ)m (x− ·) which gives

|θ(κ)q,m(x)− b(κ)l,q,m(x)| ≤ ∑
I∈Hl,q

∫

I
|aµ(y)g(κ)m (x− y)− aµ(xI)g(κ)m (x− xI)|dy
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≤ ∑
I∈Hl,q

∫

I
|F(y)− F(xI)|dy.

By using the mean value theorem, we then get

|θ(κ)q,m(x)− b(κ)l,q,m(x)| ≤ ∑
I∈Hl,q

∫

I
|y− xI | max

z∈l(xI ,y)
|κ′|≤1

|F(κ′)(z)|dy

≤ C22q−l max
|z|≤2q+1

|κ′|≤|κ|+1

|g(κ
′)

m (x− z)|,(5.14)

where l(xI , y) is the line-segment between xI and y. If |x| ≤ 2q+2 and |κ′| ≤
|κ|+ 1, then we have

(5.15) |g(κ
′)

m (x− z)| ≤ Cm3+|κ| ≤ Cm3+|κ|2qN

(1 + |x|)N .

For |x| > 2q+2 and |z| ≤ 2q+1, we have |x − z| ≥ |x|/2, and hence for |κ′| ≤
|κ|+ 1, it follows that

(5.16) |g(κ
′)

m (x− z)| ≤ Cm3+|κ|

(1 + m|x|)N′ ≤
Cm3+|κ|

(1 + |x|)N′ .

By choosing l sufficiently large, we obtain by combining (5.14)-(5.16) that

(5.17) |θ(κ)q,m(x)− b(κ)l,q,m(x)| ≤ ε

3
(1 + |x|)−N.

Finally by combining (5.9), (5.13) and (5.17), we get

(5.18) |a(κ)µ (x)− b(κ)l,q,m(x)| ≤ ε(1 + |x|)−N.

To approximate aµ in frequency space we use three steps similar to the approx-
imation in direct space. Note that bl,q,m still fulfills (5.18) if we choose l, q, m
even larger. First we use ω̂m to approximate âµ in which case we have

|âµ(ξ)− ω̂m(ξ)| = |âµ(ξ)
M

1+M âµ(ξ)
1

1+M (1− Cg ĝ(ξ/m))|

≤ C min(1, 2−j + |ξ1|+ 2−
j
2 |ξ2|)M(1 + |ξ|)−1|1− Cg ĝ(ξ/m)|.

By choosing ξg > 0 such that C(1 + ξg)−1|1− Cg ĝ(ξ/m)| ≤ ε/3 and m such
that C|1− Cg ĝ(ξ/m)| ≤ ε/3 for |ξ| < ξg, we get

(5.19) |âµ(ξ)− ω̂m(ξ)| ≤
ε

3
min(1, 2−j + |ξ1|+ 2−

j
2 |ξ2|)M.
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Next, we fix m, choose q and limit the Fourier integral of aµ to Q from the
approximation in direct space,

θ′q,m(ξ) = ĝm(ξ)
∫

Q
aµ(x)eix·ξ dx.

This gives

|ω̂m(ξ)− θ′q,m(ξ)| ≤ |ĝm(ξ)|
∫

|x|>2q
|aµ(x)eix·ξ |dx ≤ C2−λq.(5.20)

In the last step, we fix q and approximate θ′q,m by b̂l,q,m. We introduce G(x) :=
aµ(x)eix·ξ which gives

|θ′q,m(ξ)− b̂l,q,m(ξ)| ≤|ĝm(ξ)|
∣∣∣
∫

Q
aµ(x)eix·ξ dx− ∑

I∈Hl,q

|I|aµ(xI)eixI ·ξ
∣∣∣

≤|ĝm(ξ)| ∑
I∈Hl,q

∫

I
|G(x)− G(xI)|dx

≤ C22q−l

1 + |ξ/m| max
x∈R2

|κ′|≤1

|G(κ′)(x)| ≤ Cm22q−l.(5.21)

By combining (5.19)-(5.21) for sufficiently large l, q, m, we get

|âµ(ξ)− b̂l,q,m(ξ)| ≤ ε min(1, 2−j + |ξ1|+ 2−
j
2 |ξ2|)M.

It follows that by choosing l, q, m large enough bl,q,m fulfills both (5.3) and (5.4).
Furthermore, we have bl,q,m ∈ ΘK,m, K = 2q+l+1.

�

6. Discussion

In this paper we studied a flexible method for generation curvelet type systems
with the same sparse representation properties as curvelets when measured in
gs

p,q. With Proposition 4.2, Lemma 4.3 and Theorem 4.4 we proved that a sys-
tem of curvelet molecules which is close enough to curvelets has these sparse
representation properties. Furthermore, with Proposition 5.1 we constructed
such a system of curvelet molecules from finite linear combinations of shifts
and dilates for a single function with sufficient smoothness and decay.

Examples of functions with sufficient smoothness and decay are the
exponential function e−|·|

2
and the rational functions (1 + | · |2)−N with N

sufficiently large. An example with compact support can be constructed by
using a spline with compact support. Furthermore as the system is con-
structed using finite linear combinations of splines, we get a system consisting
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of compactly supported splines.
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