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ABSTRACT As the penetration level of renewable energy sources (RES) increases, the associated technical
challenges in the power systems rise. Enhancing the utilization of energy flexibility is known to be the
main key to overcome the load-supply balance challenge caused by RES. In this regard, the trend is
toward the utilization of demand-side flexibility. Meanwhile, individual penalty signals positively affect the
utilization of available flexibility from the demand-side. Previous studies in this field are based on designing
penalty signals according to electricity price and regardless of the demand situation. However, designing and
implementing a proper penalty signal with finite amplitude requires analyzing large datasets of load, storage
and generation. Therefore, to fill this gap in designing a proper penalty signal we have proposed a novel
approach in which, clustering is used to overcome the complexity of analyzing large datasets. The main goal
of the proposed method is to utilize energy flexibility from responsive batteries according to a request from
the aggregator without violating the consumers’ privacy and comfort level. Therefore, aggregator’s attainable
load and generation datasets are used in the case studies to maintain the practicality of the proposed method.
Simulation results show the proposed penalty signal designing method effectively increases the available
flexibility of microgrids.

INDEX TERMS Demand-side flexibility, microgrid clusters, individual penalty signal, clustering.

NOMENCLATURE
α Ratio of illumination intensity to the

standard one
δiMG(p(t)) Response of the ith pinning battery to the

penalty signal (kA)
ηc Battery’s charge coefficient
ηd Battery’s discharge coefficient
V̂ c
DCk Average voltage estimate in cth microgrid

for the kth agent (V)
8 Set of edges in the global layer
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ρ0 Normal operation current signal (kA)
ρc The accumulated penalty-based current

signal (kA)
ackj Element of the adjacency matrix
ci Cluster ith centroid
di Positive coupling gain
di+j,k Merging cost of combining the clusters

i+ j and k
dik , djk , dij Pairwise distances between the clusters

i/k, j/k, and i/j
FI Flexibility index
g(t) Power generation at time t (kW)
i, j, , k Index of cluster
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I iMG Baseline current (kA)
k Power temperature coefficient
L(t) Load at the time (kW)
li Margins of level i of SOC of the battery (%)
LevelG(t) Defined generation level at time t
LevelL(t) Defined load level at time t
LevelSOC Defined SOC level at time t
Mlin Margin of linear behavior of batteries (%)
NC
∈ R N th agents in C th microgrid

ni Number of members in cluster i
numi,j,k Number of members of clusters i, j and k

respectively
P(t) Generated penalty signal
Pb(t) Power of the battery at time t (kW)
Pb,c Charging power of a battery (kW)
Pb,d Discharging power of a battery (kW)
PPV (t) PV generation power at time t (kW)
S(t) Defined situation in the microgrid at time t
SOC(t) State of charge of the battery (%)
SOCmax Upper bound of SOC (%)
SOCmin Lower bound of SOC (% )
Tc Surface temperature of the PV cells (◦C)
Ts Temperature under the standard condition

(◦C)
xi Sample in cluster i
yi(p(t)) Current of each cluster (responsive battery of

each cluster) considering Penalty signal (kA)

I. INTRODUCTION
Flexibility is a recent concept in power systems, which has
been officially recognized by organizations like IEA [1],
NERC [2], and IRENA [3]. Flexibility can be defined as the
power system’s (PS’s) ability to respond to both expected
and unexpected changes in demand and supply [4]. How-
ever, there is no universal definition of flexibility. This con-
cept can contribute to an increase in the stability of the
grid and the integration of renewable energy sources (RES).
Intuitively, the increasing share of RES in PS is escalating
the need for flexibility [5]. Traditionally, balancing system
responsible parties rely on the flexibility of bulk generation
units to maintain the supply-demand balance of the grid.
However, the trend in this area is toward planning, schedul-
ing, and exploitation of flexibility mostly seen from the
demand-side [6] and low voltage grid, while later research
has investigated generation units and large-scale energy stor-
age systems (ESS) [7].

Recently, residential-scale battery energy storage systems
(BESS) have gained significant interest in both academia and
industry under the new paradigm of renewable energy and
demand response. This interest has been driven by the rapid
increase in the integration of variable renewable generation
to the grid, which eventually results in flexible resource
requirements in power systems. Another contributing factor is
the declining capital costs for ESS technologies, which made
them an economical choice. With the increasing installed

capacity of ESS, it becomes an urgent problem about how to
best operate BESS to meet different stakeholders’ needs [8].

Demand-side flexibility (DSF) is defined as the capability
of consumption modification in response to control signals.
Possible sources of those control signals are external market
signals (or penalty signals [9]) to smart meters or internal
control signals from the home energy management system
(HEMS). Two trends continue to drive the growth of demand-
side flexibility. First, there is growing customer interest in
smart home appliances, residential-scale BESS, and electric
vehicle charging, all of which can contribute significantly to
energy flexibility. Second, regulation is evolving to enable
flexibility beyond traditional demand response programs, and
new policy and market frameworks are poised to emerge as
grid-connected devices become widespread [7].

Designing proper penalty signals is a fundamental step in
increasing the utilization of flexibility and it is one of themain
challenges in this field. Time-varying price based penalty
signals are normally utilized for increasing the flexibility of
different sectors in recent studies [10]–[13]. In the majority
of these studies, the main goal is reducing the cost and
increasing the balance between load and generation. How-
ever, the main drawback of these studies is eliminating the
the comfort of users, and the need for high capacity storage
systems [14].

Forecasting the available flexibility, especially in the
demand-side, depends on several parameters, including elec-
tricity generation and consumption forecast as well as grid
constraints and market prices and the behavior of the occu-
pants and their willingness to change their consumption pat-
tern [16]. However, the presence of the uncertain factors
influencing electricity generation and load, makes forecasting
energy flexibility very hard to be mathematically formulated.
Meanwhile, due to the huge volume of these datasets, con-
ventional approaches like computing the average of the data
are not efficient in analyzing this volume of data [10]. There-
fore, machine learning (ML) approaches are considered as a
powerful tool to deal with huge datasets. There are different
MLmethods such as classification, clustering, neural network
(NN), and so on, which were used in this field [17], [18].
Since clustering extracts useful information and reduces the
dimension, it is one of the common algorithms which is
used in this field [19]. Furthermore, clustering reduces the
complexity of analysis while ensuring the optimal results.

Microgrids can potentially be utilized in a low voltage grid
tomitigate the ramping and variability of both load and gener-
ation [20]. Therefore, they are considered to be a promising
solution to increase the integration of RES. There are three
main types ofmicrogrids, AC, DC, andHybrid (AC/DC). Due
to the increasing utilization of DC power sources, such as
solar photovoltaic and DC loads like motor drive systems,
and the fact that there is no need for multiple conversion
stages of AC-DC and DC-AC, DCmicrogrids gain increasing
attention in power systems. Furthermore, in contrast with
AC microgrids, they do not have the challenges of syn-
chronization, reactive power flow, and harmonics. In other
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FIGURE 1. Single line diagram of the DC microgrid clusters in [15] with the proposed
information flow to generate individual penalty signal.

words, in comparison with AC microgrids, DC microgrids
have clear advantages of higher efficiency and reliability,
better compatibility with DC sources and loads, and simpler
control structure [21], [22]. Therefore, we have focused on
DC microgrids in this paper. Despite extensive research, load
forecasting and flexibility estimation remain to be a difficult
problem.More than that, effective utilization of the forecasted
flexibility and delivering it to the grid is also an unsolved
problem. Although the existing research has successfully
demonstrated the superior performance of deep learning on
forecasting tasks, inherently, most of the studies are actually
based on deterministic models, which lack the ability to
capture uncertainty.

The main contribution of this paper is designing a novel
individual penalty signal generator for utilization of the avail-
able flexibility from responsive batteries based on a request
from the aggregator without violating the consumers’ privacy
and comfort level. To overcome the computational complex-
ity and time, Linkage-Ward (LW) clustering algorithm, as the
most suitable method for quantitative variables, has been
used in the proposed method. In addition to filling a gap in
designing the proper penalty signal for flexibility utilization
in the microgrids, the proposed method offers the following
advantages over conventional price-based approaches:
• Based on the authors’ knowledge, this is the first paper
that penalty-signal design considers all three main fac-
tors, i) load, ii) generation, iii) SOC level of batteries
and the trade-off between them. Therefore, the proposed
method is more practical and realistic.

• Since clustering is utilized for analyzing the huge vol-
ume of the datasets, the complexity and time of compu-
tation decrease. Moreover, it can be used for different
datasets which makes the proposed method scalable.

• The proposed designmethod utilizes aggregator’s attain-
able data and there is no need for the training dataset of
each consumer. More than that, this approach protects
the privacy and comfort of consumers.

The rest of the paper is organized as follows. Section II
describes the cyber-physical dc microgrid cluster considered
in this paper. Section III is about the proposed level extrac-
tion, including the proposed information flow to design an
individual penalty signal. Section IV develops the proposed
machine learning-based individual penalty signals generat-
ing method. Section V presents numerical simulations to
show the merits and effectiveness of the proposed method.
SectionVI discusses the futureworks, and finally, SectionVII
concludes the paper.

II. CYBER-PHYSICAL DC MICROGRID CLUSTERS
Fig. 1 shows the DC microgrid clusters in [15] with the
proposed information flow in this paper to generate indi-
vidual penalty signals. Each microgrid includes a BESS,
PV generation unit, and loads. Each BESS is connected to
the DC bus through a DC/DC bidirectional converter with
voltage regulation ability. In the cyber layer, each BESS is
considered as an agent. A distributed fixed-time-based dual-
layer secondary controller is designed in [15] to improve
inter and intra-microgrid dynamic performance within a fixed

208852 VOLUME 8, 2020



A. Rosin et al.: Clustering-Based Penalty Signal Design for Flexibility Utilization

FIGURE 2. General underlying proposed penalty signal design for the
microgrid.

settling time. The local layer in [15] is for voltage and current
regulation and using the following equations:

ˆ̇V c
DCk (t) = V̇ c

DCk (t)+
∑
j∈N c

k

ackjV̇
c
DCj (t)− V̇

c
DCj (t) (1)

İ cDCk (t)) = di
∑
j∈N c

k

ackj

(
I cDC j (t)

I c,maxDC j

−
I cDCk (t)

I c,maxDCk

)
= 0 (2)

ak jc is the element of the adjacency matrix in microgrid c and
defined as:

akj =

{
> 0, if (xk , x j) ∈ 8
0, otherwise

The global layer is responsible for loss minimization and
loads mismatch mitigation as:

İ iMG(t) =
∑
m∈N c

ImMG(T )− I
i
MG(T ) = 0 (3)

In designing individual penalty signals, the following
assumptions have been made:
Assumption 1: The pinning batteries in the clusters are

assumed penalty-responsive.
Assumption 2: Regarding [23], the output response of the

batteries to the penalty signal is a first-order linear function.
Assumption 3: BESS are operating in local control level

and cost-effectively mode.

III. PROPOSED PRE-PROCESSING PHASE
The presence of fluctuations and uncertainties in PV power
generation and load consumption patterns, time-varying mar-
ket price, and the varying stored energy in batteries caused
complexity in defining an effective penalty signal. In other
words, all these factors and the trade-off between them
should be considered as constraints for generating a proper
penalty signal. Therefore, in this research, we have proposed
a novel approach to design a realistic, state-aware penalty
signal for each specific state of the microgrid. The proposed
method considers all the aforementioned factors, measures
the operational criticalness of the microgrid, and generates
the proper penalty signal accordingly. Fig. 2 illustrates the
general flowchart of the proposed method.

However, considering all factors as continuous parame-
ters increases the computational complexity. To reduce the
computational complexity and increase the calculation speed,
we have proposed a new data-driven algorithm which defines
different levels for each factor by analyzing the measured
dataset and quantize them. Due to the high volume of
these datasets, clustering, as a recent method of reducing
the volume of data, is utilized in this paper. Clustering is
applied to the data of each hour separately and representa-
tives of clusters are extracted [24]. The discrete levels are
defined based on the representatives of clusters. The proposed
level-extraction approach can be categorized into three main
phases:

A. QUANTIFYING SOC LEVELS
It is an undeniable fact that the high-energy storage capacity
of batteries plays an important role in increasing the flexibil-
ity of microgrid [25], [26]. This stored energy in batteries is
indicated with the state of charge (SOC) which is computed
as [10]:

SOC(t + 1) = SOC(t)+ ηcPb,c(t)− ηdPb,d (t) (4)

SOCmin < SOC(t) < SOCmax (5)

It should be noted that, if the SOC of a battery gets out of
its limits, the behavior of the battery would be non-linear.
Therefore, it is important to consider this as a constraint in the
propermanagement of themicrogrid. In this work, to consider
this constraint in generating penalty signal, 4 different levels
of SOC based on the margin of the linear behavior of the
battery (Mlin) are defined. The margin of these levels are
computed based on (7).

Mlin = (SOCmax
− SOCmin)/4 (6)

li = [(SOCmin
+ (i− 1)Mlin), (SOCmin

+ iMlin)]

i = 1, 2, 3, 4 (7)

To quantify these levels a new parameter (LevelSOC ) is
defined as (8) and entitled as ‘‘Very low’’, ‘‘Low’’ and
’’Normal’’ and ‘‘High’’. As shown in Fig. 3, the lowest
LevelSoC shows that the SOC of the battery is in a critical
situation and the highest one shows that the battery is fully
charged, and by implementing a penalty signal the stored
energy can be used in the microgrid.

LevelSOC (t) =


1, if SOC(t) ∈ l1, Very low
2, if SOC(t) ∈ l2, Low
3, if SOC(t) ∈ l3, Normal
4, if SOC(t) ∈ l4, High

(8)

B. QUANTIFYING GENERATION AND
CONSUMPTION LEVELS
To decrease the computation complexity and volume of
data, clustering is utilized to segment the load and genera-
tion datasets. Generally speaking, clustering methods aim to
group given data points into the optimal number of classes

VOLUME 8, 2020 208853
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FIGURE 3. Graphical representation of the SOC levels.

FIGURE 4. Different algorithms of clustering.

based on their similarity and define a centroid for each clus-
ter [24]. These centroids are representatives of the whole
data and researchers can analyze these to extract information
about the whole dataset. Analyzing representatives not only
decreases the complexity of calculation but also reduces the
computation time.

As shown in Fig. 4, clustering algorithms can be catego-
rized into two main classes, exclusive ones, where a data
point just belongs to one cluster, and overlapping ones, that
a data point belongs to different clusters. The main algo-
rithms of exclusive clustering are partitional and hierarchical
clustering [24]. K-means is a famous method of partitional
clustering and defines the similarity of data points based on
the distance of data points. This method is sensitive to initial
values. Therefore, its main drawback is different results in
each iteration. Hierarchical methods are more common in
analyzing the huge volume of datasets. Hierarchical meth-
ods are divided into two main groups, i) divisive algorithms
(top-down) and ii) agglomerative algorithms (bottom-up).
In divisive algorithms, at first all data points belong to a
single cluster, then based on the diversity this cluster is
divided into different numbers of clusters. Agglomerative
algorithms treat each data point as a single cluster and then
these clusters merge based on their similarity until all data
points belong to one cluster [24]. In this paper, the Linkage-
Ward (LW) clustering algorithm, the most suitable method
for quantitative variables, has been used for segmenting given
data into the predefined number of clusters. The merging
policy analyzes the dissimilarity between the existing clusters
and chooses the two clusters to be merged by guaranteeing
the minimum increase in the merging cost function in each
iteration. The merging cost is the dissimilarity and defined
as [10]:

di+j,k = adik + adjk + bdij + c|dik − djk | (9)

where

a =
numi + numj

numi + numj + numk
,

b = −
numk

numi + numj + numk
,

c = 0

ci is the mean of the members of each cluster and chosen as
the centroid of the cluster:

ci =
1
ni

ni∑
i=1

xi (10)

One of the main challenges of clustering methods in deter-
mining the optimal number of clusters. In this research,
an elbow method is used for extracting this number. The
main idea of the elbow method is computing the dissimilarity
between the members of each cluster and its centroid for the
different number of clusters based on (11). The number in
which adding another cluster does not minimize this error as
much, considered as the optimal number of clusters [10].

ec =
k∑
i=1

Ni∑
j=1

(xj − ci)2 (11)

In the following, the LW algorithm is used to cluster the load
and generation datasets.

1) PV LEVEL EXTRACTION
Since, the generated power of PV units, Ppv, is affected by the
temperature as formulated in (12), it is not constant during the
day. Therefore, it is important to analyze the data at each hour
of the day and find the upper and lower levels of generation
at each hour [10].

PPV (t) = α[1+ k(Tc − TS )] (12)

Due to the high volume of the measured generation dataset,
clustering is used for segmenting these data points and defin-
ing a few representatives for it. Considering the optimal
number of clusters (kg) based on (11), LW is applied to the
data of PV generation power at each hour of the day. The
centroid of each cluster is computed based on (10). Then,
centroids are sorted from the highest to the lowest one, and
labels of centroids are assigned as:

Centroids set = {c1, . . . , ckg}, ci > ci+1 (13)

LevelG(t) =


1, if g(t) ∈ c1
2, if g(t) ∈ c2
...

kg, if g(t) ∈ ckg

(14)

2) LOAD LEVEL EXTRACTION
Applying a penalty signal at each hour to the microgrids may
jeopardize the comfort level of customers. To maintain the
comfort of the customers, the level of consumption power at
each hour must be taken into consideration while generating
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a penalty signal. To do this, the measured load dataset is con-
sidered. To overcome the complexity of computation, after
applying LWon data for reducing the volume, considering the
optimal number of clusters extracted from (11), the centroid
of clusters are computed based on (10) and sorted from
the highest to the lowest one (15). To show the importance
of applying the penalty signal a new parameter, entitled as
LevelL , is defined as (16) based on the sorted centroids.

Centroids set = {c1, . . . , cKL }, ci > ci+1 (15)

LevelL(t) =


1, if g(t) ∈ c1
2, if g(t) ∈ c2
...

kg, if g(t) ∈ ckg

(16)

C. OPERATIONAL STATE EVALUATION
To evaluate the criticalness the microgrid’operational state,
a new decision-making parameter, called S(t), is defined as
explained in (17). This parameter evaluates the microgrid’s
condition by considering the trade-off between the load,
generation, and SOC level of batteries, and decides if the
penalty signal should be generated or not. In other words, this
parameter measures the properness of the operational state in
the microgrid to generate the penalty signal.

S(t) =

 1, if
LevelSOC (t)
LevelG(t)

≥ 1.2 & LevelSOC (t) > 1

0, if g(t) ∈ Ckg
(17)

As it is shown in (17), two main constraints should be sat-
isfied for generating the penalty signal. The first one is the
ratio of SOC level to the generation level and the second one
is about the SOC level of the batteries. If this ratio is very
high (more than 1.2) and the SOC is not at its lowest level,
the penalty signal will be generated and the load should be
feed by the stored energy in the batteries.

IV. PROPOSED PENALTY SIGNAL DESIGN METHOD
Suppose that themicrogrid is in a critical operational state and
a penalty signal should be generated. The amplitude of this
signal must be defined considering the SOC level of batteries,
the load level, the predicted power generation. Considering
all the above-mentioned factors, the proposed penalty signal
is formulated as:

P(t) = S(t)
LevelSOC (t)+ LevelL(t)
LevelSOC (t)+ LevelL(t)

(18)

Fig. 5 summarizes the proposed individual machine learning-
based penalty signal design method. This control signal is
generated in the cyber-security layer of the microgrid. It is
implemented to responsive batteries and their response is
added to the IMG in the global layer of the microgrid and
increases that. The effect of implementing penalty signals
to the responsive batteries is added to the current of each

FIGURE 5. Flowchart of the proposed clustering-based penalty signal
design method.

microgrid in the global layer as [23],

yi(P(t)) = I iMG(t)+ δ
i
MG(P(t)) (19)

Index of flexibility [23] has been used to quantify the utilized
flexibility:

FIi = 1−
ρc

ρ0
(20)

where ρ0 is the accumulated penalty and ρ0 is the normal
operation and are calculated as [23]:

ρc =

T∑
t=0

P(t)yi(P(t)) (21)

ρ0 =

T∑
t=0

IMGi (t) (22)

Furthermore, as shown in (23), (24), the SOC of a battery
has a direct relationwith the Idc of it. Therefore, by decreasing
the Idc of battery, the SOC of the battery decreases. As it is
mentioned in [25], Idc of a battery has an inverse relation with
the IMG in the global layer. Therefore, by implementing a
penalty signal, IMG increases, and consequently, Idc and SOC
of the battery decreases.

SOC(t) ∝ Pb(t) (23)

Pb(t) = Vdc(t)Idc(t) (24)

VOLUME 8, 2020 208855
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FIGURE 6. a: Load and b: PV generation patterns of 10 typical days.

FIGURE 7. Optimal cluster level for: a. load, b. PV.

V. SIMULATION RESULTS
To evaluate the performance of the proposed method, one
year datasets of PV generation, and load consumption [25] are
used. Fig. 6 shows the daily profiles of 10 randomly chosen
days of these datasets. To extract the optimal level of load
and PV generation for clustering, the elbowmethod is applied
to these datasets. As shown in Fig. 7, the optimal cluster
level is 4 and 3 for load and PV generation, respectively.
Considering these optimal cluster levels, the LW is applied
to these datasets, and centroids of each cluster are computed.
Accordingly, LevelL and Levelg are assigned to each centroid.
Fig. 8 illustrates the centroids of load/power generation and
their labels, respectively. Extracting 4 and 3 different levels
for load and PV generation based on the proposed clustering
algorithm and defining 4 different levels for SOC of batter-
ies, 48 different states may occur at each hour of the day.

FIGURE 8. The centroid of a: generation and b: load patterns at each hour
and their levels’ label.

FIGURE 9. The state of microgrid considering different levels of load,
generation, and SOC of batteries (red circles display critical situation in a
microgrid in which a penalty signal should be generated).

All these probable states are shown in Fig. 9. Among all
these conditions for microgrid, comparing to the pre-defined
threshold, in 24 cases the penalty signal should be generated,
which are shown with red dots in Fig. 9. As shown, we have
the most critical states when the SOC of battery is minimum
(α = 1) and so is the PV generation. Because in this situation,
if the battery is used for feeding the load, the SOC of the
battery will get out of the safe band and will show nonlinear
behavior. Therefore, in this case, the microgrid should feed
the load from the main grid. Table 1, shows ten randomly
chosen scenarios of states in the microgrid and the amount
of designed penalty signal. The effect of the penalty signal on
the SOC of the battery in two typical days is shown in Fig. 10.
As it is shown in these case studies when the microgrid is
in a critical state, the penalty signal is implemented to the
battery and the stored energy of the battery feeds the load,
and SOC decreases. Table 2, shows the calculated flexibility
index for each microgrid after applying the penalty signal
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TABLE 1. Operational state criticalness of microgrid for generating
penalty signal in 10 random scenarios.

FIGURE 10. Effect of the designed penalty signal on the SOC in two
different typical days.

based on (20). As it is shown in this table, implementing the
penalty signal increases the flexibility of each microgrid.

VI. DISCUSSIONS
A. COMPARATIVE ANALYSIS
Clustering is a powerful unsupervised method of data mining
that does not require any parameter tuning which is utilized in
this paper to generate the penalty signal. Therefore, in com-
parison with the fuzzy logic controller (FLC) for generating
the penalty signal in [25], the proposed approach does not
require any tuning of parameters for various datasets and is
scalable for applying to the different number of microgrids.
However, FLC is tedious to develop fuzzy rules and member-
ship functions of each dataset.

TABLE 2. Calculated FI in case of implementing individual penalty signal
for each cluster.

TABLE 3. Comparison of the proposed clustering-based and FLC-based
method.

Furthermore, our proposed method requires less memory
and it has less computation time and complexity. In addition
to these, to get accurate results, various rules should be
defined for FLC. On the other hand, increasing the number
of rules increases the computational complexity and requires
much human expertise to define the rules and regularly updat-
ing them [25]. Table 3 presents a comparison of these two
methods.

B. FUTURE WORK
Future works will address several issues like implementing a
real-time series of penalty signals, exploiting the flexibility
from all loads, not only the ESS, through disaggregation and
forecasting the flexibility in the load patterns. In particular,
we would like to deeply investigate the following subjects:

Cyber Security; Modern power systems (MPSs) have now
gradually transitioned into a complex cyber-physical energy
system (CPES). The cyber layer has not only made it pos-
sible for MPSs to become more responsive to faults and
other systemic problems but also to co-ordinate production
and load energy by reacting faster and smarter to changes.
Moreover, individual households are empowered to install
energy management systems to manage their production and
load as well as interactions with the power system. The
efficient transformation of an MPS into a CPES is doubly
important today because global climate-change issues have
made it necessary to integrate large amounts of RES. How-
ever, this transformation comes with a price: vulnerability to
cyberattacks [15].

Moreover, aggregated power electronic converters in
microgrids, which are key enablers for integrating RES into
MPSs, are typically controlled by employing a hierarchical
three-stage structure, namely, primary, secondary and tertiary
layers. This leaves behind additional vulnerabilities and pos-
sible attack points in different layers of the system. In the
context of this paper, the penalty signals could be a potential
target by a cyber attacker to influence the optimal operation.
These cyber-attacks could also affect the flexible usage of
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RESs and hamper the system objectives. Hence, advanced
and resilient technologies and mitigation measures will be
developed as future scope of work and implemented at every
level to ensure the secure energy flexibility of microgrids.
Co-simulation Platform; Simulation packages for assessing
system integration of components typically cover only one
sub-domain, while simplifying the others. Co-simulation
overcomes this by coupling sub-domain models that are
described and solved within their native environments, using
specialized solvers and validated libraries [27]. Besides, it is
possible to solve a problem that consists of subproblems with
different time steps through co-simulations.

In the case of utilizing flexibility from demand-side
through generation penalty signals, in practice, one issue
would be different time steps of flexibility resources, their
control systems (most likely power electronic devices), fore-
cast data, and market signals. Our future focus will be on
developing a co-simulation platform capable of integrat-
ing models of the electrical ESS and flexibility resources,
their control system, the grid constraints (developed in the
RTDS [28], MATLAB or Python, ) and forecasting models
and algorithms (MATLAB or Python) as well as energy
market, to achieve realistic, accurate and optimize scheduling
and operation plan for flexibility resources. Currently, devel-
oped co-simulation platforms [29]–[31] have not considered
these cases and capabilities. Thereafter, it will be possible to
develop a real-time tool to provide flexibility feedbacks for
different stakeholders.

VII. CONCLUSION
Designing a practical penalty signal relies on two main
factors, (i) energy consumption behavior (consumer’s load,
generation, and the SOC level of the batteries) and (ii) ana-
lyzing a large volume of data. Since conventional methods
are inefficient to handle the mentioned factors properly, this
paper proposed a new clustering-based method to analyze
these datasets and extract different levels for load and PV
generation and quantify them. Based on the defined levels a
novel method is proposed to design the proper state-aware
penalty signal in each time step.

Simulation results showed that the aggregator will be able
to effectively leverage the flexibility of responsive batter-
ies in the microgrid clusters without jeopardizing the cus-
tomer’s comfort level while removing the need for new
investments in the generation and distribution measurement
facilities.Implementing the designed penalty signal increases
the flexibility index of each microgrid at least by 50 percent.

Since the proposed method is based on the data that the
aggregator or utility already has access to, it will not violate
customer’s privacy or raise any security concerns. Moreover,
analyzing the datasets with the clustering method decreases
the computation time and complexity and makes it more
scalable and applicable to other kinds of microgrids too.

REFERENCES
[1] H. Chandler, Harnessing Variable Renewables: A Guide to the Balancing

Challenge. Paris, France: International Energy Agency, 2011.

[2] Accomodating High Levels of Variable Generation, North Amer. Electr.
Rel. Corp., Princeton, NJ, USA, 2009.

[3] E. Taibi, T. Nikolakakis, L. Gutierrez, C. Fernandez, J. Kiviluoma,
S. Rissanen, and T. J. Lindroos, ‘‘Power system flexibility for the energy
transition: Part 1, overview for policy makers,’’ IRENA, Abu Dhabi,
U.A.E., Tech. Rep., 2018.

[4] J. Cochran, ‘‘Flexibility in 21st century power systems,’’ Nat. Renew.
Energy Lab., Golden, CO, USA, Tech. Rep. NREL/TP-6A20-61721, 2014.

[5] A. Fernández-Guillamón, E. Gómez-Lázaro, E. Muljadi, and
Á. Molina-García, ‘‘Power systems with high renewable energy sources:
A review of inertia and frequency control strategies over time,’’ Renew.
Sustain. Energy Rev., vol. 115, Nov. 2019, Art. no. 109369.

[6] R. Ahmadiahangar, A. Rosin, I. Palu, and A. Azizi, ‘‘New approaches
for increasing demand-side flexibility,’’ in Proc. Demand-side Flexibility
Smart Grid, 2020, pp. 51–62.

[7] J. Hu, M. R. Sarker, J. Wang, F. Wen, and W. Liu, ‘‘Provision of flexible
ramping product by battery energy storage in day-ahead energy and reserve
markets,’’ IET Gener., Transmiss. Distrib., vol. 12, no. 10, pp. 2256–2264,
May 2018.

[8] Y. Xu and X. Shen, ‘‘Optimal control based energy management of
multiple energy storage systems in a microgrid,’’ IEEE Access, vol. 6,
pp. 32925–32934, 2018.

[9] C. Dang, X. Wang, X. Wang, F. Li, and B. Zhou, ‘‘DG planning incorpo-
rating demand flexibility to promote renewable integration,’’ IET Gener.,
Transmiss. Distrib., vol. 12, no. 20, pp. 4419–4425, Nov. 2018.

[10] M. Babaei, E. Azizi, M. T. Beheshti, and M. Hadian, ‘‘Data-driven
load management of stand-alone residential buildings including renewable
resources, energy storage system, and electric vehicle,’’ J. Energy Storage,
vol. 28, Apr. 2020, Art. no. 101221.

[11] G. Xu, C. Shang, S. Fan, X. Hu, and H. Cheng, ‘‘A hierarchical energy
scheduling framework of microgrids with hybrid energy storage systems,’’
IEEE Access, vol. 6, pp. 2472–2483, 2018.

[12] R. Ahmadiahangar, T. Haring, A. Rosin, T. Korotko, and J. Martins, ‘‘Res-
idential load forecasting for flexibility prediction using machine learning-
based regression model,’’ in Proc. IEEE Int. Conf. Environ. Electr. Eng.,
Jun. 2019, pp. 1–4.

[13] X. Liu, ‘‘Research on flexibility evaluation method of distribution system
based on renewable energy and electric vehicles,’’ IEEE Access, vol. 8,
pp. 109249–109265, 2020.

[14] D. Prudhviraj, P. B. S. Kiran, and N. M. Pindoriya, ‘‘Stochastic energy
management of microgrid with nodal pricing,’’ J. Mod. Power Syst. Clean
Energy, vol. 8, no. 1, pp. 102–110, 2020.

[15] S. Sahoo, S. Mishra, S. M. Fazeli, F. Li, and T. Dragicevic, ‘‘A
distributed fixed-time secondary controller for DC microgrid clus-
ters,’’ IEEE Trans. Energy Convers., vol. 34, no. 4, pp. 1997–2007,
Dec. 2019.

[16] S. Shafiee, M. Fotuhi-Firuzabad, and M. Rastegar, ‘‘Investigating the
impacts of plug-in hybrid electric vehicles on power distribution systems,’’
IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1351–1360, Sep. 2013.

[17] T. Haring, R. Ahmadiahangar, A. Rosin, and H. Biechl, ‘‘Impact of load
matching algorithms on the battery capacity with different household occu-
pancies,’’ in Proc. 45th Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2019,
pp. 2541–2547.

[18] N. Shabbir, R. Ahmadiahangar, L. Kutt, and A. Rosin, ‘‘Comparison of
machine learning based methods for residential load forecasting,’’ in Proc.
Electr. Power Qual. Supply Rel. Conf. (PQ) Symp. Electr. Eng. Mechatron-
ics (SEEM), Jun. 2019, pp. 1–4.

[19] E. Azizi, H. KHARRATI-SHISHAVAN, B. MOHAMMADI-IVATLOO,
and A. Mohammadpour Shotorbani, ‘‘Wind speed clustering using
linkage-ward method: A case study of Khaaf, Iran,’’ GAZI Univ. J. Sci.,
vol. 32, no. 3, pp. 945–954, Sep. 2019.

[20] A. Majzoobi and A. Khodaei, ‘‘Application of microgrids in supporting
distribution grid flexibility,’’ IEEE Trans. Power Syst., vol. 32, no. 5,
pp. 3660–3669, Sep. 2017.

[21] S. Mudaliyar and S. Mishra, ‘‘Coordinated voltage control of a grid con-
nected ring DC microgrid with energy hub,’’ IEEE Trans. Smart Grid,
vol. 10, no. 2, pp. 1939–1948, Mar. 2019.

[22] Y. Li, L. He, F. Liu, C. Li, Y. Cao, and M. Shahidehpour, ‘‘Flexible
voltage control strategy considering distributed energy storages for DC dis-
tribution network,’’ IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 163–172,
Jan. 2019.

[23] R. G. Junker, R. Relan, and H. Madsen, ‘‘Designing individual penalty
signals for improved energy flexibility utilisation,’’ IFAC-Papers Line,
vol. 52, no. 4, pp. 123–128, 2019.

208858 VOLUME 8, 2020



A. Rosin et al.: Clustering-Based Penalty Signal Design for Flexibility Utilization

[24] E. Azizi, S. Ghaemi, B.Mohammadi-Ivatloo, andM. J. Piran, ‘‘Application
of comparative strainer clustering as a novel method of high volume of data
clustering to optimal power flow problem,’’ Int. J. Electr. Power Energy
Syst., vol. 113, pp. 362–371, Dec. 2019.

[25] R. Ahmadiahangar, E. Azizi, S. Sahoo, T. Haring, A. Rosin, D. Vinnikov,
T. Dragicevic, M. T. Hamidi Beheshti, and F. Blaabjerg, ‘‘Flexibility
investigation of price-responsive batteries in the microgrids cluster,’’ in
Proc. IEEE 14th Int. Conf. Compat., Power Electron. Power Eng. (CPE-
POWERENG), Jul. 2020, pp. 456–461.

[26] X. Hou, J. Wang, T. Huang, T. Wang, and P. Wang, ‘‘Smart home energy
management optimization method considering energy storage and electric
vehicle,’’ IEEE Access, vol. 7, pp. 144010–144020, 2019.

[27] S. Sahoo, T. Dragicevic, and F. Blaabjerg, ‘‘Cyber security in control
of grid-tied power electronic Converters–Challenges and vulnerabilities,’’
IEEE J. Emerg. Sel. Topics Power Electron., early access, Nov. 14, 2020,
doi: 10.1109/JESTPE.2019.2953480.

[28] P. Palensky, A. A. Van Der Meer, C. D. Lopez, A. Joseph, and
K. Pan, ‘‘Cosimulation of intelligent power systems: Fundamentals, soft-
ware architecture, numerics, and coupling,’’ IEEE Ind. Electron. Mag.,
vol. 11, no. 1, pp. 34–50, Mar. 2017.

[29] R. AhmadiAhangar, A. Rosin, A. N. Niaki, I. Palu, and T. Korøtko,
‘‘A review on real-time simulation and analysis methods of micro-
grids,’’ Int. Trans. Electr. Energy Syst., vol. 29, no. 11, 2019,
Art. no. e12106.

[30] B. P. Bhattarai, M. Levesque, B. Bak-Jensen, J. R. Pillai, M. Maier,
D. Tipper, and K. S. Myers, ‘‘Design and cosimulation of hierarchical
architecture for demand response control and coordination,’’
IEEE Trans. Ind. Informat., vol. 13, no. 4, pp. 1806–1816,
Aug. 2017.

[31] P. Palensky, A. van der Meer, C. Lopez, A. Joseph, and K. Pan, ‘‘Applied
cosimulation of intelligent power systems: Implementing hybrid simula-
tors for complex power systems,’’ IEEE Ind. Electron. Mag., vol. 11, no. 2,
pp. 6–21, Jun. 2017.

ARGO ROSIN (Member, IEEE) received the
Dipl.Eng., M.Sc., and Dr.Sc.Eng. degrees in elec-
trical engineering from the Tallinn University
of Technology (TUT), Tallinn, Estonia, in 1996,
1998, and 2005, respectively. He became a Pro-
fessor of Power Supply in 2018. He is currently
the Head of the Microgrids and Metrology Group,
Department of Electrical Power Engineering and
Mechatronics, TUT. He is a Co-Founder and Lead-
ing Researcher with the first global cross-border

Smart City Center of Excellence—Finest Twins (2019–2026), which focuses
on developing research and cross-border innovation networks and capabil-
ities in five domains–data, governance, mobility, energy, and built environ-
ment. He is also the Co-Founder of the Estonian Centre of Excellence for zero
energy and resource-efficient smart buildings and districts. He has published
several international (Springer and IET) books and more than 80 articles on
smart grid and microgrids, energy management, and control and diagnostic
systems. His research interests include the energy efficiency of household
and industrial systems, energy demand-side management, microgrids, and
industrial control systems. He has supervised on project related field of six
doctoral theses and over 30 master theses. He has received several national
awards, including the Golden Badge of the Estonian Ministry of Defence
for productive cooperation and The Best Development Work 2005 from the
Tallinn City Government.

ROYA AHMADIAHANGAR (Member, IEEE)
received the M.Sc. and Ph.D. degrees in power
system engineering from the Babol Noshirvani
University of Technology (Ranked 1st in Times
Magazine, 2017–2019), Babol, Iran, in 2009 and
2014, respectively. In her Ph.D. studies, she was
awarded the Iranian Ministry of Science Schol-
arship for Ph.D. studies (Merit Scholarship) and
Ranked 1st in the Ph.D. program. She is currently
a Postdoctoral Researcher with the Department

of Electrical Power Engineering and Mechatronics, Tallinn University of
Technology, Estonia, since 2018. She has authored or coauthored one book
and five book chapters, and more than 40 published articles on the power
system and smart grids. Her research interests include the integration of
DER in smart grids, demand response and demand-side flexibility, machine-
learning applications in smart grid and planning, and management of power
systems.

ELNAZ AZIZI (Graduate Student Member, IEEE)
received the B.Sc. and M.Sc. degrees in elec-
trical engineering from the University of Tabriz,
Tabriz, Iran, in 2014 and 2016, respectively. She
is currently pursuing the Ph.D. degree with the
Electrical and Computer Engineering Department,
Tarbiat Modares University, Tehran, Iran, and a
Visiting Research Scholar with the Department
of Electrical Power Engineering and Mechatron-
ics, Tallinn University of Technology, Tallinn,

Estonia. Her research interests include machine learning, smart grid, and
optimization.

SUBHAM SAHOO (Member, IEEE) received the
B.Tech. degree in electrical and electronics engi-
neering from the Veer Surendra Sai University
of Technology, Burla, India, in 2014, and the
Ph.D. degree in electrical engineering from the
Indian Institute of Technology Delhi, New Delhi,
India, in 2018. He was a Visiting Student with
the Department of Electrical and Electronics Engi-
neering, Cardiff University, U.K., in 2017, and as
a Postdoctoral Researcher with the Department of

Electrical and Computer Engineering, National University of Singapore,
from 2018 to 2019. He is currently working as a Research Fellow with
the Department of Energy Technology, Aalborg University, Denmark. His
current research interests include the control and stability of microgrids
and cybersecurity in power electronic systems. He was a recipient of the
Innovative Students Projects Award for the Doctoral level by Indian National
Academy of Engineering (INAE) for the year 2019.

VOLUME 8, 2020 208859

http://dx.doi.org/10.1109/JESTPE.2019.2953480


A. Rosin et al.: Clustering-Based Penalty Signal Design for Flexibility Utilization

DMITRI VINNIKOV (Senior Member, IEEE)
received the Dipl.Eng., M.Sc., and Dr.Sc.techn.
degrees in electrical engineering from the Tallinn
University of Technology, Tallinn, Estonia,
in 1999, 2001, and 2005, respectively. He is cur-
rently the Head of the Power Electronics Group,
Department of Electrical Power Engineering and
Mechatronics, Tallinn University of Technology,
and a Guest Researcher with the Institute of
Industrial Electronics and Electrical Engineering,

Riga Technical University, Latvia. He is also the Head of Research and
Development and a Co-Founder of Ubik Solutions LLC—Estonian Start-up
Company dedicated to innovative and smart power electronics for renewable
energy systems. Moreover, he is one of the founders and leading researchers
of ZEBE—Estonian Centre of Excellence for zero energy and resource-
efficient smart buildings and districts. He has authored or coauthored
two books, five monographs, and one book chapter and has more than
200 published articles on power converter design and development, and is
the holder of numerous patents and utility models in this field. His research
interests include the applied design of power electronic converters and
control systems, renewable energy conversion systems (photovoltaic and
wind), impedance-source power converters, and implementation of wide
bandgap power semiconductors. He is the Chair of the IES/PELS Joint
Societies Chapter of the IEEE Estonia Section.

FREDE BLAABJERG (Fellow, IEEE) received
the Ph.D. degree in electrical engineering from
Aalborg University, in 1995. He was with
ABB-Scandia, Randers, Denmark, from 1987 to
1988. He became an Assistant Professor in 1992,
an Associate Professor in 1996, and a Full Pro-
fessor of power electronics and drives in 1998.
In 2017, he became a Villum Investigator. His
current research interests include power electron-
ics and its applications, such as in wind turbines,

PV systems, reliability, harmonics, and adjustable speed drives. He has
published more than 600 journal articles in the fields of power electronics
and its applications. He is the coauthor of four monographs and an editor
of ten books in power electronics and its applications. He received the
honoris causa from Universitatea Politehnica Timisoara (UPT), Romania,
and Tallinn Technical University (TTU), Estonia. He has received 32 IEEE
Prize Paper Awards, the IEEE PELS Distinguished Service Award in 2009,
the EPE-PEMC Council Award in 2010, the IEEEWilliam E. Newell Power
Electronics Award 2014, the VillumKann Rasmussen Research Award 2014,
the Global Energy Prize in 2019, and the IEEE Edison Medal in 2020. He
was the Editor-in-Chief of the IEEE TRANSACTIONS ON POWER ELECTRONICS,
from 2006 to 2012. He has been a Distinguished Lecturer of the IEEE
Power Electronics Society, from 2005 to 2007, and of the IEEE Industry
Applications Society, from 2010 to 2011 and from 2017 to 2018. Since 2019,
he has been serving as the President of the IEEE Power Electronics Society.
He is also the Vice-President of the Danish Academy of Technical Sciences.
He is nominated in 2014–2018 by Thomson Reuters to be between the most
250 cited researchers in Engineering in the world.

TOMISLAV DRAGICEVIC (Senior Member,
IEEE) received the M.Sc. and Industrial Ph.D.
degrees in electrical engineering from the Fac-
ulty of Electrical Engineering, Zagreb, Croatia,
in 2009 and 2013, respectively. From 2013 to
2016, he was a Postdoctoral Research Associate
with Aalborg University, Denmark, where he was
an Associate Professor, from 2016 to 2020. Since
2020, he has been a Professor with the Technical
University of Denmark. He made a guest professor

stay at Nottingham University, U.K., during Spring/Summer of 2018. His
principal field of interest is the design and control of microgrids, and the
application of advanced modeling and control concepts to power electronic
systems. He has authored or coauthored more than 200 technical articles
(more than 100 of them are published in international journals, mostly in
IEEE), eight book chapters, and a book in the field. He was a recipient of
the Koncar Prize for the Best Industrial Ph.D. Thesis in Croatia, and the
Robert Mayer Energy Conservation Award. He is the Winner of Alexander
van Humboldt Fellowship for experienced researchers. He serves as an
Associate Editor for the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,
IEEE TRANSACTIONS ON POWER ELECTRONICS, IEEE JOURNAL OF EMERGING AND

SELECTED TOPICS IN POWER ELECTRONICS, and IEEE Industrial Electronics
Magazine.

SADEGH BOLOUKI (Member, IEEE) received
the B.S. degree in electrical engineering from
the Sharif University of Technology, Tehran,
Iran, in 2008, and the Ph.D. degree in electri-
cal engineering from the École Polytechnique de
Montréal, Montreal, QC, Canada, in 2014. He is
currently an Assistant Professor of Electrical and
Computer Engineering with Tarbiat Modares Uni-
versity, Tehran. From January 2014 to July 2015,
he was a Research Associate with the Department

of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem,
PA, USA. Then, he was a Postdoctoral Research Associate with the Univer-
sity of Illinois at Urbana-Champaign, from August 2015 to July 2017. His
research interests include the areas of machine learning, network science,
and game theory.

208860 VOLUME 8, 2020


