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Reinforcement Learning and Its Applications in
Modern Power and Energy Systems: A Review

Di Cao, Weihao Hu, Junbo Zhao, Guozhou Zhang, Bin Zhang, Zhou Liu, Zhe Chen,
and Frede Blaabjerg

Abstract——With the growing integration of distributed energy
resources (DERs), flexible loads, and other emerging technolo‐
gies, there are increasing complexities and uncertainties for
modern power and energy systems. This brings great challenges
to the operation and control. Besides, with the deployment of
advanced sensor and smart meters, a large number of data are
generated, which brings opportunities for novel data-driven
methods to deal with complicated operation and control issues.
Among them, reinforcement learning (RL) is one of the most
widely promoted methods for control and optimization prob‐
lems. This paper provides a comprehensive literature review of
RL in terms of basic ideas, various types of algorithms, and
their applications in power and energy systems. The challenges
and further works are also discussed.

Index Terms——Reinforcement learning, deep reinforcement
learning, power system operation and control, optimization.

I. INTRODUCTION

WITH the gradual depletion of fossil energy and in‐
creasing environmental pressure, a revolution in ener‐

gy sector is going on globally [1]. This revolution has the
following characteristics: high penetration of renewable ener‐
gies, wide application of power electronic devices, and in‐
creasing connection of flexible load, i.e., electric vehicle and
distributed energy storage system. These characteristics in‐
crease the system complexities and uncertainties, and bring
great challenges to the operation of power and energy sys‐
tems [2]. The physical model based approaches require the
accurate mathematical models and parameters, the construc‐
tion of which is challenging considering the increasing sys‐
tem complexities and uncertainties. With the proliferation of

the advanced sensor and smart meters, smart grid is produc‐
ing data with huge volumes, mutual correlations, and com‐
plex structures. The data contain valuable information that
can not only be utilized to extract intelligence for operation
and planning of power and energy systems, but also comple‐
ment the shortcomings of the physical model based methods
[3]. In the area of big data, machine learning (ML) can help
overcome the aforementioned limitations by directly learning
from data [4]. They can extract powerful knowledge from
historical data to deal with the highly uncertain system dy‐
namics. The learned model is adaptive and can be general‐
ized to newly encountered situations. Among the ML family,
reinforcement learning (RL) may be the most suitable one
for the optimization and control problems [5].

Various approaches have been proposed for the optimiza‐
tion and control of modern power and energy system. In gen‐
eral, the optimization method can be broadly classified into
classical algorithms [6], [7] and heuristic algorithms [8].
Classical algorithms such as stochastic programming and ro‐
bust optimization are proposed to address uncertainty prob‐
lems. Those methods deal with uncertainties by finding a
pre-determined solution. However, with the increasing pene‐
tration of distributed energy resources (DERs) and flexible
demands, both the generation and demand sides are facing
growing uncertainties. In this context, real-time control strat‐
egy based on the latest observation may achieve a better per‐
formance than the pre-determined ones. In addition, these
methods are based on physical models, which requires accu‐
rate physical models for the optimization of a defined objec‐
tive function. But it is difficult to maintain the reliable physi‐
cal models in practice, which limits their applicability. Heu‐
ristic methods, such as particle swarm optimization, are easy
to be implemented, but the computational burden rises expo‐
nentially with the number of control variables. For the con‐
trol of power and energy systems, the pole-placement [9]
and residue methods [10] are widely used. However, they on‐
ly consider the single operation condition of the system, lim‐
iting its robustness in other conditions. Therefore, robust
method is introduced, such as the fuzzy control [11], H∞ and
H2 control [12], and gap decision theory [13]. However, the
solutions obtained by these robust methods are usually con‐
servative. In this context, adaptive control theory is intro‐
duced. For example, the synergetic control theory [14], mod‐
el predictive control [15], and adaptive dynamic program‐
ming [16] are proposed. Also, they are the physical model
based methods and can be significantly affected by model in‐
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accuracies.
Different from the methods mentioned above, RL is a

class of method that is inspired from behavioral psychology.
RL can extract optimal operational knowledge from histori‐
cal data through continuous interactions with the environ‐
ment while the global optimum is unknown. They can get
rid of the dependency on the accurate physical model by
learning a surrogate model [17] or batch RL [18]. The
learned strategy is scalable, thus it can be exploited in an on‐
line manner to inform decisions based on the latest informa‐
tion. Owing to these advantages, RL has been widely ap‐
plied in industrial manufacturing [19], operation and schedul‐
ing [20], robotic control [21], etc. There are also wide-area
applications in power and energy system, including optimiza‐
tion of smart power and energy distribution grid, demand
side management, electricity market, operational control, etc.
This paper summarizes the recent researches on RL for the
optimization and control of power and energy systems and
discusses the potential research directions. The main contri‐
butions are as follows.

1) Typical RL, deep RL (DRL), and multi-agent DRL
(MADRL) for optimization and control of modern power
and energy systems are summarized thoroughly with the de‐
tailed analysis of advantages and disadvantages.

2) State-of-the-art applications of RL algorithms in power
and energy systems are organized with several categories.

3) A comprehensive analysis of the limitations of current
RL algorithms is presented.

The structure of this paper is as follows. Section II intro‐
duces the RL algorithms. A comprehensive review of the RL
for power systems applications is shown in Section III. Sec‐
tion IV discusses the challenges and prospects of RL in pow‐
er systems and conclude this paper.

II. REVIEW OF RL ALGORITHM

In this section, the Markov decision process (MDP) is
first illustrated, followed by the classical RL, advanced
DRL, and MADRL algorithms.

A. RL

ML algorithms can be classified into three categories: un‐
supervised learning, supervised learning, and RL. Unsuper‐
vised learning typically includes clustering, dimensionality
reduction, and association rule learning methods, etc. Super‐
vised learning, which typically acts as the function approxi‐
mator, aims to build an affine rule mapping from the train‐
ing input to the labeled output utilizing a predefined evalua‐
tion index [22]. Among supervised learning, deep neural net‐
work (DNN) is the one that has attracted more attention in
recent years.

Compared with supervised learning and unsupervised
learning, RL is regarded as active learning. The basic struc‐
ture of RL is shown in Fig. 1.

There are mainly two components: the agent and the envi‐
ronment [23]. The decision process of RL can be described
as follows. At each time step, the agent obtains an observa‐
tion of the environment. Then, it makes decisions according
to the observation following the current policy. The environ‐
ment is affected by the action and then transfers to a new
state. Meanwhile, it returns a reward value to the agent for
the judgement of the action. The agent aims to maximize the
reward obtained from the environment by learning an opti‐
mal control strategy through continuous interactions with the
environment. RL can develop the optimal control behavior
through continuous interaction with the environment and the
gradient calculated by the feedback reward signal [23]. The
main RL algorithms and their relationship are shown in
Fig. 2.

1) MDP
In the framework of RL, the interaction between agent

and environment is formalized by MDP [23]. An MDP can
be described by the tuple sarTγπ , which is explained
as follows.

1) Action aÎA: A is the action set, and a is a specific ac‐
tion.

2) State sÎ S: S is a finite state set, and s is a given state.
3) Transition model T(sas')~Pr(s'|sa): the transition mod‐

el determines the prediction probability of the next step state
s' given the current state s and action a.

4) Reward function r(sa): r is the immediate reward by
the agent when taking action a under state s.

5) γÎ[01]: the discount factor γ is used to balance the im‐
portance of immediate rewards relative to future rewards.

6) Policy π(s)® a: a policy mapping from states to ac‐
tions is yielded when solving an MDP. An optimal policy π*

means that the maximum expected discount cumulative re‐
ward can be obtained.

The illustration of MDP is shown in Fig. 3.
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Q-learning

Deep
Q-learning

(DQN)

Double
DQN

Dueling
DQN
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State-action-
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state-action
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Fig. 2. Main RL algorithms and their relationships.
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Fig. 1. Framework of RL algorithm.
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At each epoch, the environment takes the current state st

and action at as the input, and the output is the current re‐
ward rt and the state of the next step st + 1. The quality of ac‐
tion at under state st is measured by the cumulative discount‐
ed reward, which is obtained by the agent from current time-
step onward:

Qπ (stat)=E(Rt|st = sat = a)=E ( )|

|
||∑

k = 0

¥

γkrt + k + 1 st = sat = a (1)

where E(·) is the expectation of the cumulative discounted re‐
ward; Rt is the current cumulative reward by the agent from
time step t onward; and Qπ (stat) is the so-called action-val‐
ue function. RL algorithm aims to look for an optimal policy
π* so as to maximize the action-value function.
2) Q-learning

Considering that the future system information is un‐
known, it is intractable for agent to determine the optimal
policy π*. Thus, iterative update of action-value function
based on Bellman equation is adopted by the Q-learning al‐
gorithm [23] as:

Qi + 1 (stat)=E(rt + γmax Qi (st + 1at + 1) |st = sat = a) (3)

With iteration i®¥, the Q-value will converge to the opti‐
mal value Q* (sa). Then, the optimal control schedules can
be obtained based on a greedy strategy:

a* = arg max
aÎA

Q* (sa) (4)

Original Q-learning algorithm stores the action values in a
discretized lookup-table, the size of which is determined by
the dimensions of states and actions. However, multivariate
continuous state and action variables are typically needed in
practical applications of power and energy system. The dis‐
cretization of the state and action variables not only leads to
the sharp increase of the computational complexity, but also
wastes valuable information about the structure of state and
action domain that are essential for solving problems.

B. DRL

Traditional RL algorithms have several limitations. Firstly,
they suffer from “curse of dimensionality” when coping
with scenarios with high-dimension and continuous state and
action space. Secondly, hand-specified state representations
are typically required. As a function approximator, DNN can
be applied to address the above limitations by approximating
the state-action function with the parameters of neural net‐
work (NN). Combining the DNN and the RL algorithm has
two advantages: ① the strong feature extraction ability of
DNN helps avoid the manually feature design process, and
the control decisions can be directly derived from the raw in‐
puts through end-to-end learning procedure; ② DNN helps
RL generalize problems with a large state space [24]. De‐
spite these benefits, there are also some challenges, i.e., the
training data of DNN are typically assumed to be indepen‐
dent and identically distributed [25]. However, since RL al‐

gorithms are usually applied to solve sequential-control prob‐
lems, the training data are highly correlated, violating the in‐
dependence assumption. In addition, the distribution of the
training data may be non-stationary when the agent explores
the environment, which means the training data may not be
identically distributed. The highly correlated and non-station‐
ary training data may cause the divergence of the training
process. Various methods have been proposed to address
them and they can be classified into two categories: the val‐
ue-based algorithms and the policy gradient algorithms.
1) Value-based Algorithm

One of the breakthroughs for DRL is the value-based
DQN algorithm, which uses DNN as the function approxima‐
tor to fit the action-value function. The structure of the DQN
algorithm is shown in Fig. 4.

DQN algorithm adopts a replay buffer to store a large
number of transitions sars' . The experience replay mech‐
anism helps break the correlation among training data by ran‐
domly sampling a mini-batch data from the memory when
updating the NN. DQN also introduces a target Q network
to alleviate the non-stationary distribution of training data,
significantly improving the stability of training process. At
each time step, the parameters of the action-value function
are optimized by minimizing the following loss func‐
tion [26]:

L(θ)=Eπ ((Q(stat|θ)- r(stat)- γ max
a

Q(st + 1at + 1|θ'))2) (5)

where θ and θ' are the parameters of the action-value func‐
tion. DQN has several improved versions to reduce overesti‐
mation, such as double DQN [27], dueling DQN [28].

The DNN utilized in DQN avoids the discretization of
state space. However, since DQN relies on finding an action
which maximizes the action-value function, it still needs to
discretize the action domain for the applications with contin‐
uous action variables. The discretization of action domain
may lead to the curse of the dimensionality issue since the
number of total actions increases exponentially with the num‐
ber of action types. Moreover, the discretization of action
space may cause information loss and lead to sub-optimal so‐
lutions. This makes it intractable to apply the DQN-based
method to applications with high-dimension and continuous
action space.
2) Policy Gradient Algorithm

Policy gradient algorithm is a kind of algorithm suitable
for the tasks with continuous and high-dimension action
space. Instead of learning the action-value function, policy
gradient algorithm directly learns an affine rule mapping

1s 2s 3s Ts
1a 2

…a

1r 2r 1Tr −

1Ta −

T(s1, a1, s2) T(s2, a2, s3) T(sT−1, aT−1, sT)
Ts 1−

Fig. 3. Illustration of MDP.

Sampled batch size; Update information

s's

Replay memory:

Online network Target network

Loss function: (θQ)L

s, a, r, s'

Q(st, at |θ ) Q'(st+1, at+1|θ' )

Fig. 4. Structure of DQN algorithm.
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from the observed state to control decision. Policy gradient
algorithm maintains a policy function parameterized by the
weights of θ. It aims to maximize the expected cumulative
reward Ex~pθ (τ) (R|π) by optimizing θ. Specifically, the parame‐

ters are optimized via the gradient:
ÑRθ =Ep(τ|θ) (R(τ)Ñθ lg pθ (τ)) (6)

where τ ={s1a1s2a2sTaT} is a trajectory, T is the epi‐
sode length; and R(τ) is the cumulative reward of the trajec‐
tory. The parameters of the NN are optimized towards the di‐
rection that increases the probability of the trajectory τ with
a larger reward. The variance of the gradient is high in poli‐
cy gradient algorithm. To this end, a baseline term is typical‐
ly subtracted from R(τ).

The baseline term in the policy gradient algorithms is typi‐
cally replaced by the value function V (s) learned by the crit‐
ic function. This fits to the actor-critic algorithm, which is a
subset of the policy gradient algorithms. The basic structure
of actor-critic-based algorithms is shown in Fig. 5.

DDPG is an actor-critic-based algorithm. It employs two
functions for different purposes: the actor function μ(×|θμ)
learns the control policy and the critic function Q(×|θQ) pro‐
vides the judgement of the actor. The actor and critic are
trained against each other so that the actor can learn a better
control strategy and the critic can provide a more accurate
judgement. The DDPG also introduces the experience replay
mechanism and the target networks to stabilize the training.
The parameters of the critic network θQ are optimized by
minimizing the following loss function [29]:

{L(θQ)=
1
N∑i = 1

N

(Q(stat|θ
Q)- yt)

2

yt = r(stat)+ γQ' (st + 1μ' (st + 1|θ
μ')|θQ')

(7)

where N is the number of samples in one batch; Q' (×) and
μ' (×) are the target critic and actor networks, respectively;
and θQ' and θμ' are the parameters of target critic and actor
networks, respectively. The parameters of the actor network
are optimized according to the following deterministic policy
gradient [30]:

Ñ
θμ
μ=E ( )Ñ

θμ
Q(sa|θQ)|

s= stu= u(st|θ
μ)
=

E ( )Ñθ μθ (s|θμ)|s= st
ÑaQ(sa|θQ)|

s= stu= u(st|θ
μ) (8)

The parameters of target networks are optimized by the
soft update mechanism to alleviate the non-stationary distri‐

bution of training data.
Different from the experience replay mechanism used in

DQN and DDPG, A3C algorithm employs multiple parallel‐
ized workers to break the correlations among the training da‐
ta and stabilize the training. The gradients are first calculat‐
ed by multiple local actors, and then passed to the global
NN to perform the optimization. An entropy term is also
added to the loss function to improve exploration and help
convergence to a better policy. The parameters of the policy
function π(×|θμ) are optimized by [31]:

ÑR
θμ
»

1
N∑n= 1

N∑
t = 0

T

(A(stat)Ñθμ
lg π

θμ
(an

t |s
n
t )+ βÑ

θμ
H(π(st|θ

μ))

(9)

where A(stat) is the advantage function; H(×) is the entropy
function; β is the weight of the entropy term; and T is the
horizon of time step. SAC is also an entropy-regularized-
based DRL algorithm. It adopts a value function and two ac‐
tion-value functions, and alternates between updating using
the sampled batches from the memory and collecting experi‐
ences following the current policy [32].

Classical policy gradient algorithms also include trust re‐
gion policy optimization (TRPO) [33] and proximal policy
optimization (PPO) [34] methods, both of which are pro‐
posed to solve the poor data efficiency issues of vanilla poli‐
cy-based methods. PPO avoids the abrupt policy changes
during training by employing a novel objective function with
a clipped probability ratio. It achieves better reliability and
stability than the vanilla policy gradient algorithms, and is
much easier to implement than the TRPO method.

C. MADRL Algorithm

The algorithms mentioned above only use single agent.
However, a lot of applications involve the interactions
among multiple agents, such as multiplayer games and multi-
robot control problem. The application of single-agent DRL
algorithm to multi-agent environment yields a poor perfor‐
mance as the environment can become non-stationary from
the point of view of each individual agent. This prevents the
use of memory replay mechanism and brings stability chal‐
lenges during training. The policy gradient algorithms suffer
from high variance when the coordination among agents is
required. The details of MADRL are elaborated as follows.
1) Markov Game

Markov game is a multi-agent extension of MDP. It con‐
sists of four components: a state set S, action sets for all the
agents A1A2...AN, a transition function T(×):
SA1 A2...AN ®P(S), and reward functions for all agents ri:
SA1 A2...AN ® r. Each agent i chooses actions At according
to its local observations, and then obtains a reward that is a
function of the state and action of all agents. Next, the envi‐
ronment reacts to all agents’ action and transfers to next
state. The aim of agent i is to learn a policy to maximize the

discounted cumulative reward Ri =∑
t = 0

T

γtr t
i.

2) Classification of MADRL
The existing MADRL algorithms can be classified into the

following groups.
1) Improved experience replay mechanism. Experience re‐

play mechanism is a major breakthrough that enables the

Value function Action

Critic

Actor
TD error

Reward

Policy function

Environment

State

Fig. 5. Structure of actor-critic-based algorithms.
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combination of deep learning and RL. It helps break the cor‐
relation between training data, which is a pre-condition of
the convergence of NN. However, the experience replay
mechanism fails in MADRL setting since it assumes the en‐
vironment to be stationary while the environment is non-sta‐
tionary from any individual agent point of view. Therefore,
the data sampled from the replay buffer cannot represent the
current dynamics of the environment. To this end, several
works try to add information to the experience tuple to help
the algorithm adapt to MADRL settings [35] - [37]. Lenient-
DQN-based MADRL algorithm fits into this category by as‐
signing a leniency value to each experience tuple stored in

the replay buffer. The leniency value gradually decays dur‐
ing training. This motivates the agent to focus on the fresh
memory instead of the past experiences that no longer re‐
flect the dynamics of the environment [37].

2) Centralized training and decentralized execution. A ba‐
sic idea to guarantee a stationary environment in MADRL
setting is to allow each agent know the policy of other
agents. Inspired by this, [38] proposes a centralized training
and decentralized execution framework based algorithm,
which is named multi-agent DDPG (MADDPG). Its basic
structure is shown in Fig. 6.

Each agent employs a centralized critic, which takes the
global observation and actions of other agents as inputs to
guarantee the Markov property. Since the global information
is used by the critic during training, the actor can inform de‐
cisions based on local information when implemented in
practice. Centralized training and decentralized execution
framework are effective approaches to overcome the nonsta‐
tionary issue in MADRL setting when off-line training can
be implemented in a simulator. Attention mechanism can be
further integrated with this framework to enhance the perfor‐
mance of the MADRL algorithm [39].

3) Recurrent network-based approaches. Recurrent NNs
(RNNs) enhance the memory capability of NNs. RNNs are
used in single-agent DRL to address partially observable
problems and long-term credit assignment issues. Recent
studies also extend RNNs to the MADRL setting to solve
the challenges of partially observable Markov games
[40], [41].

4) Parameter sharing. Parameter sharing is a frequent com‐
ponent in MADRL, which employs training a network
whose parameters are shared among agents. Since the agents
take different information as inputs, they can inform differ‐
ent decisions. This approach is proposed in [42], [43].

III. APPLICATION IN MODERN POWER AND ENERGY SYSTEM

Applications of RL algorithms for power and energy sys‐
tems have been growing in recent years, including the opti‐
mization of smart power and energy distribution grid, flexi‐
ble load demand, electricity market, and operational control

and so on.

A. Optimization of Smart Power and Energy Distribution
Grid

1) Optimization of Distribution Network
The voltage fluctuation and power quality issues caused

by the increasing penetration of DERs and electric vehicles
(EVs) in distribution networks bring great challenges to the
operation of the distribution network. Traditional methods
such as stochastic programming and robust optimization
could not effectively address highly uncertain environment.
In addition, they rely heavily on the accurate parameters of
the distribution system, which is difficult to obtain in prac‐
tice. As a data-driven approach, DRL can provide more flexi‐
ble control decisions in real time according to the latest in‐
formation.

Reference [44] proposes a Monte Carlo tree search based
RL method for the regulation of battery storage system to
mitigate the voltage fluctuations caused by the high penetra‐
tion of PV in the distribution network. Reference [45] pro‐
poses a two-timescale voltage regulation strategy combining
the DQN algorithm and the physical model-based optimiza‐
tion. The alternating current power flow model is used for
the control of smart inverters in a smaller timescale, while
the DQN is to control the shunt capacitors in a larger times‐
cale taking the long-term discounted reward value into ac‐
count. These methods can inform decisions according to the
latest information of distribution network in real time with‐
out the requirement of accurate physical models after train‐
ing. However, the aforementioned methods deal with the con‐

…

…

Actor Target actor

Execution

Soft update

Agent 1 Agent M

Training

Loss

Policy
gradient

Update

Soft update
UpdateCritic Target critic

Actor Target actor
Soft update

Agent 2

Loss

Policy
gradient

Update

Soft update
UpdateCritic Target critic

Actor Target actor
Soft update

Loss

Policy
gradient

Update

Soft update
UpdateCritic Target critic

Fig. 6. Structure of MADDPG algorithms.
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straints by adding penalty to the reward function. Therefore,
the learned strategy may not be feasible in practice. To solve
this problem, [46] proposes a volt-var control strategy of dis‐
tribution network based on safe off-policy DRL algorithm.
The volt-var control problem is first modeled as a con‐
strained MDP. Then, a safe SAC algorithm is applied to
solve the MDP. The proposed method explicitly models the
operation constraints in the MDP, which can better satisfy
the constraints, thus it is more suitable for the optimization
problems with high security requirement. A Lagrangian-
based DRL method is proposed in [47] for the optimization
of distribution network. An approximated deterministic gradi‐
ent is derived in this study instead of using the gradient pro‐
vided by the critic network, which may be affected by high
variance and approximation errors. Simulation results demon‐
strates that the proposed method can achieve similar results
to the interior-point method but better capture the operation
constraints than supervised learning-based approach. The ac‐
curate knowledge of physical model is still required for
these methods when the reward value is caculated during
training. To this end, [17] proposes a model-free voltage reg‐
ulation strategy based on the surrogate model and DRL algo‐
rithm. The surrogate model is first trained in a supervised
manner to capture the complex mapping from the injected
power to the voltage of each node. Then, the learned surro‐
gate model is regarded as the environment and provides the
immediate reward signal to guide the optimization of the
DRL algorithm. Results demonstrate that the proposed ap‐
proach can achieve similar level performance to that ob‐
tained by the approaches with accurate system model. Refer‐
ence [48] proposes a batch DRL based approach for the re‐
configuration of distribution network. It can learn the recon‐
figuration strategy from the recorded data without interacting
with the distribution network, thus reducing the dependence
on the accurate physical models. Reference [49] proposes a
batch RL-based approach for the voltage regulation by ad‐
justing the load tap changers. A linearized power flow model
is applied to estimate the voltage of each node under various
tap setting conditions, which helps avoid affecting the opera‐
tion of distribution network during the training process.
2) Optimization of Microgrid

The RL algorithms have also been applied to the optimiza‐
tion of microgrids in [50] - [55]. Reference [51] proposes a

DRL based approach for the economic energy scheduling of
microgrid embedded with renewable energies. Since the
DRL algorithm does not need the system model and uncer‐
tainty information, it can be used in uncertain environment.
Reference [52] proposes an RL based approach for the opti‐
mization of microgrid by utilizing the capability of battery,
while in [53], a double DQN based approach is used. Refer‐
ence [54] proposes a bi-level energy management strategy of
microgrids. The upper level is modeled by an adaptive RL
agent, the aim of which is to decide the retail price to maxi‐
mize the social welfare of the entire system. Then, at the
lower level, each microgrid agent solves a mixed-integer
nonlinear programming problem to maximize their profits
utilizing the capability of generation and storage devices.
The RL agent in the upper level can automatically discover
the relationship between the exchanged power at points of
common coupling (PCCs) and the retail price only with infor‐
mation about the solar irradiance and total load demands of
each microgrid. Therefore, the privacy of the customers and
the microgrids are maintained. Reference [55] proposes an
RL based approach for the energy management of multi-mi‐
crogrids. DNN is first trained in a supervised manner to
learn the behavior of multiple microgrid. Then, the Monte
Carlo RL algorithm is applied to develop a near-optimal pric‐
ing strategy, with the aim to maximize the revenue and mini‐
mize the peak to average ratio at the same time. This meth‐
od is suitable for the problems with great search spaces and
hidden information.
3) IES Management

IES refers to the integrated system of energy production,
supply, and marketing in the process of planning, construc‐
tion, and operation. It is mainly composed of energy supply
network, such as power supply, gas supply, cooling/heating
network, energy exchange unit (combined cooling and heat‐
ing power plant, generator set, boiler, air conditioner, heat‐
ing pump, etc.), energy storage link (battery, gas storage,
heat and cold storage, etc.), terminal integrated energy sup‐
ply unit (microgrid) and a large number of customers, as
shown in Fig. 7. Energy management of IES is challenging
since it requires the coordinated regulation and control of
multiple energy supply units and the collaborative optimiza‐
tion of supply and demand, both of which are characterized
by randomness.

Gas; Heating; CoolingElectricity;

Heating grid

Renewable energy

Wind
power

PV …
Combined
heat and

power (CHP)
system

Heating
pump Battery

Cooling storage

Lithium bromide unit

Customers’ electricity load

Customers’ heating load

Heat storage

Gas grid

Customers’ cooling load
Cooling grid

Power
grid

Power to
gas (P2G) Gas turbine Gas tank

Customers’ gas load

Fig. 7. Framework of IES.
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Reference [56] designs an intelligent energy management
system with CHP, and establishes an optimization model
based on RL method aiming to minimize operation cost and
carbon emission. Focusing on effectively optimizing the op‐
eration cost of IES with wind power access, [57] adopts
PPO algorithm to decide wind power conversion rate. Be‐
sides, due to its remarkable self-learning advantages, PPO
has better optimization performances than traditional optimi‐
zation algorithms. In [58], with the aim of minimizing us‐
ers’ energy costs at the residential level, DDPG algorithm is
applied to exploit optimal control scheme in a multi-energy
system. A dynamic energy conversion and management strat‐
egy, which is based on DDPG algorithm, is proposed to
smooth the net load curve while considering the economy of
the system [59]. To reduce the peak load and motivate users
to participate in demand response, [60] proposes an RL-
based energy management strategy in electricity and natural
gas network.

Employing RL-based approaches for the optimization of
smart power and energy distribution grids can provide the
following advantages. Firstly, they can develop near-optimal
control behaviors by the continuous interaction with the envi‐
ronment. The learned strategy is scalable to new situations
and can provide decisions in milliseconds, without resolving
the problem. Therefore, they can provide more flexible con‐
trol performances than pre-determined decisions when facing
highly uncertain environment. Secondly, they are data-driven
and reduce the dependence on accurate system model.

B. Demand-side Management

The integration of renewable energy to power system
must be carefully done to guarantee system security. At the
same time, the users’ adjustable flexible load significantly
increases with the rapid development of residential smart
power consumption. Demand-side management can improve
the stability of power grid by changing load consumption be‐
havior via economic incentives and increasing the flexibility
of demand. As a model-free algorithm, RL can deal with the
uncertainty of the environment and extract human preferenc‐
es by integrating the feedback reward signal into control log‐
ic [61].

The first category to apply RL methods for demand-side
management is the control of domestic hot water and heat‐
ing ventilation air-conditioning devices. The objectives can
be the energy cost reduction of building energy systems [62]-
[64], and the increase of the energy conservation [65]- [67].
The second category is to apply RL methods to solve optimi‐
zation problems of residential appliances. RL-based ap‐
proaches are proposed for minimizing the cost of smart ap‐
pliances [68] and shiftable loads [69]. In order to learn the
optimal demand response scheduling strategy of household
appliances, [70] proposes a model-free DRL method, which
does not require the concrete distribution of the appliance da‐
ta, electricity price, and outdoor temperature. The DNN is
trained by TRPO and can effectively learn from real-time da‐
ta of residential appliances. In [71], classical DRL algo‐
rithms, DQN and deep policy gradient (DPG), are used to
provide a real-time optimization scheduling strategy for ener‐

gy management systems. Considering the randomness of
load and flexibility of PV production, [72] develops a con‐
trol strategy of battery to maximize self-consumption of PV
generations.

EV charging is a challenging problem owing to the ran‐
domness in the commuting behaviors of EV owner and traf‐
fic conditions, and the fluctuations of electricity price. Tradi‐
tional methods rely on the forecasting information and it is
difficult to obtain distribution of random variables in prac‐
tice. As a model-free/data-driven approach, RL can learn the
transfer probability and develop an optimal control strategy
without the requirement of mathematical models.

In [73], a batch RL algorithm is proposed to reduce the
charging cost of EV. Results show that the EV owner can
save 10%-50% of the cost when using the proposed charg‐
ing method. An adaptive energy management model based
on Q-learning is proposed to guarantee driver’s power re‐
quirement and improve the fuel economy, in which the con‐
trol variable is set as the engine’s torque, and the input vari‐
ables are state-of-charge (SOC) of battery and the speed of
generator [74]. Reference [75] explores a novel energy man‐
agement strategy based on DQN for hybrid electric bus. The
training results indicate that DQN-based strategy performs
better than Q-learning and dynamic programming on time
consumption and fuel economy. Similarly, compared with tra‐
ditional control methods, RL-based approaches can obtain re‐
al-time decisions and achieve substantial economy savings
for hybrid EVs without predefined mathematic model rules
[76]-[78]. Reference [79] further improves the fuel economy
of EV using DDPG algorithm, whose main idea is to consid‐
er a large amount of traffic information into the training pro‐
cess. Reference [80] proposes a DQN-based approach for the
optimization of EV charging while [81] extends this work by
integrating the DQN algorithm with the long-short term
memory (LSTM) NN. To ensure that the battery operates
within the allowable ranges, [82] models the charging of EV
as a constrained MDP and solves it by the safe DRL.

C. Electricity Market

With the increasing penetration of DERs and flexible de‐
mands, the electricity market is facing more uncertainties
and complexities from both the generation and demand
sides. This motivates the generation companies to design
more sophisticated bidding strategy to reduce the revenue
loss when participating in the liberalized electricity market.
Reference [83] applies the Q-learning algorithm to find out
the optimal bidding price in a pay-as-bid electricity market
by learning from its past experience. The method reduces
the dependence on the information of market clearing price
and its probability distribution function. Reference [84] ap‐
plies a modified RL algorithm based on the temperature vari‐
ation mechanism to determine the bidding volume of the
generation company. Q-learning and its variants are also em‐
ployed for electricity market modeling in [85] - [88]. A dy‐
namic pricing algorithm is proposed in [89] based on LSTM
network and Q-learning algorithm. LSTM is first utilized to
extract the future PV generation trends, which are then fed
into the Q-learning algorithm for decision making. For wind
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power companies, the uncertainty of wind power generation
should be considered when developing the bidding strategy.
Reference [90] proposes a Roth-Erev RL algorithm for the
bidding strategy development of wind power plants. Note
that Q-learning algorithms require the discretization of states
and actions since they employ a look-up table to approxi‐
mate the real action-value function. The discretization in‐
creases the computation burden and causes the information
loss during training, which may lead to sub-optimal solu‐
tions. To this end, several improved DRL algorithms have
been developed. Reference [91] proposes a DDPG-based ap‐
proach for the optimization of bidding decisions of a genera‐
tion company. The prioritized experience replay mechanism
is also applied to enhance the capability of the algorithm. To
reduce the revenue loss of wind power producer, [92] adopts
the A3C algorithm for the strategic bidding of wind power
producer when participating in the energy and reserve mar‐
ket. Reference [93] formulates the joint bidding problem of
energy volume and price as an MDP, which is then solved
by the DDPG algorithm. NN is used to learn a response
function and extract the state transfer pattern from historical
data in a supervised learning manner.

D. Operational Control

In order to ensure the safe and stable operation of the sys‐
tem, different stability controllers have been developed. Typi‐
cally, the parameters of controllers are tuned based on the
linearized model of the system under a certain operation con‐
dition. However, the integration of more power electronics-
interfaced DERs and loads makes it even more challenging.

To solve this problem, adaptive control is used for the self-
tuning of the controller parameter settings. In [94], a multi-
step Q(λ) RL learning-based controller is proposed for auto‐
matic generation control (AGC) to enhance the robustness
and dynamic performance of load frequency control. In [95],
a Q-learning-based power system stabilizer (PSS) is pro‐
posed to prevent unstable low-frequency oscillations. More‐
over, the data provided by the wide-area measurement sys‐
tem (WAMS) are used as the input signal to further enhance
the control effect. Reference [96] proposes a DQN-based ap‐
proach for the autonomous voltage control (AVC) of power
grid. Reference [97] proposes a DQN-based power system
emergency control algorithm via under-voltage load shed‐
ding and generator dynamic braking. An open-source plat‐
form for benchmarking RL algorithm for the control of pow‐
er system is also developed. Reference [98] applies dueling
DQN method for the autonomous topology control of power
grid. Imitation learning is first applied to obtain an initial
policy for the DRL agent, then dueling DQN is used to ex‐
tract the optimal control strategy by interacting with the envi‐
ronment. After that, the domain knowledge of power sys‐
tems is leveraged to increase the robustness of the learned
strategy.

As mentioned above, the Q-learning algorithm is only suit‐
able for the discretized action domain. To address that, in
[99], the state-of-the-art DDPG, which has continuous action
domain search capability, is applied as the basic method for

load frequency control to minimize frequency deviation with
faster response characteristics and robustness. In [100], the
DDPG algorithm is also applied to train an agent to act as
“grid mind” for the secure operation of power grid. After
training in massive simulations, the well-trained agent mas‐
ters the optimal voltage control policy, which can make au‐
tonomous voltage control strategies to support grid operators
according to the real-time data from phasor measurement
units (PMUs). In [101], in order to ensure the stability of the
system considering the uncertainty of DERs and loads, the
traditional oscillation suppression problem is formed as a
faster exploration-based DRL. Then, the DDPG is intro‐
duced to solve this problem to offer flexibility and robust
control to power systems. In [102], to guarantee the stability
of the system with different wind speeds, a data-driven ap‐
proach is proposed for the adaptive robust control of static
synchronous compensator with additional damper controller
(STATCOM-ADC) to address the uncertainty of the system.
In [103], the A3C-based agent is proposed for the self-tun‐
ing of proportional resonance power system stabilizer (PR-
PSS) to enhance the damping of the hydropower dominant
system. In [104], an RL-based optimal method is proposed
for the control of energy storage system (ESS) in AC-DC mi‐
crogrid. Specifically, one NN is applied to act as an identifi‐
er to estimate the state of system. Subsequently, the other
NN is trained to learn the optimal control policy for the
ESS, which can reduce the disturbances caused by the charg‐
ing and discharging of ESS.

The application summary of single-agent RL in power and
energy systems is shown in Table I while those for MADRL
are presented in Section III-E.

E. Application of MADRL

Single-agent RL algorithms rely heavily on the centralized
framework, which requires complete communication links
and costly communication devices. With the increasing pene‐
tration of DERs and flexible loads, modern power and ener‐
gy systems are becoming more complex and larger with
more operation conditions and control options, which make
it difficult for these methods to scale up. These issues can
be effectively solved by the MADRL framework, as shown
in Table II.

Two main categories are identified and reviewed here ac‐
cording to the implementation types.
1) Independent Learner

The first category is the independent learner-based ap‐
proach, which directly applies the single-agent algorithm in‐
to the multi-agent setting. Reference [105] applies multiple
Q-learning agents to deal with the decision-making problem
of multiple home appliances. Each agent models one type of
appliance and all agents are trained separately. Each Q-learn‐
ing agent aims to maximize its own reward. Reference [106]
develops an MADRL-based approach for the volt-var control
of three-phase unbalanced network. The actions are assigned
to different agents to reduce the action dimension of each
agent. All agents take the global information as input and
are trained together to learn a near-optimal control strategy.
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TABLE Ⅰ
SUMMARY OF WORKS OF SINGLE-AGENT RL

Refer‐
ence

[44]

[45]

[46]

[47]

[17]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Field

Distribution
network

Distribution
network

Distribution
network

Distribution
network

Distribution
network

Distribution
network

Distribution
network

Microgrid

Microgrid

Microgrid

Microgrid

Microgrid

Microgrid

Integrated energy
system (IES)

IES

IES

IES

IES

Demand response

Demand response

Demand response

Demand response

Demand response

Demand response

Demand response

Demand response

Energy
management

Energy
management

Energy
management

Algorithm

Monte Car‐
lo-based RL

DQN

SAC

DDPG

DDPG

Batch SAC

Batch RL

A3C

Q-learning

DDPG

DQN

Q-learning

Monte Carlo

Q-learning

PPO

DDPG

DDPG

Q-learning

Q-learning

Q-learning

Q-learning

Fitted
Q-iteration

Fitted
Q-iteration

Learning
automaton

Q-learning

Q-learning

TRPO

DQN

Policy itera‐
tion with Q

function

Type

Others

Value-based

Actor-critic

Actor-critic

Actor-critic

Actor-critic

others

Actor-critic

Value-based

Actor-critic

Value-based

Value-based

Value-based

Value-based

Policy-based

Actor-critic

Actor-critic

Value-based

Value-based

Value-based

Value-based

Value-based

Value-based

Others

Value-based

Value-based

Policy-based

Value-based

Value-based

Objective

Voltage deviation and
energy consumption

Voltage deviation

Power loss and
operation cost

Generation cost

Voltage deviation

Operation cost

Voltage deviation

Operation cost

Customers’ benefit

System cost

Operation cost

Price signal

Demand-side peak-to-
average ratio (PAR)

Operation cost and
carbon emission

Operation cost

User’s energy cost

System cost and peak
load shifting target

Peak load and
customers’ cost

Operation cost

Operation cost

Operation cost

Fuel economy

Operation cost

Fuel economy

Customers’ cost

Operating cost

System cost

Customers’ benefit

Net energy cost

Refer‐
ence

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

Field

Energy
management

Energy
management

Energy
management

Energy
management

Energy
management

Energy
management

Energy
management

Demand
response

Demand
response

Demand
response

Electricity
market

Electricity
market

Electricity
market

Electricity
market

Electricity
market

Electricity
market

Electricity
market

Electricity
market

Electricity
market

Operational
control

Operational
control

Operational
control

Operational
control

Operational
control

Operational
control

Operational
control

Operational
control

Operational
control

Operational
control

Algorithm

Batch RL

DQN

Q-learning

DQN

DQN

DQN, Dou‐
ble DQN

DDPG

DQN

DQN

CPO

Q-learning

Q-learning

Q-learning

Q-learning

Q-learning

Roth-Erev
RL

DDPG

A3C

DDPG

Q-learning

Q-learning

DDPG

DQN

DQN

DDPG

DDPG

DDPG

DDPG

A3C

Type

Value-based

Value-based

Value-based

Value-based

Value-based

Value-based

Actor-critic

Value-based

Value-based

Value-based

Value-based

Value-based

Value-based

Value-based

Value-based

Others

Actor-critic

Actor-critic

Actor-critic

Value-based

Value-based

Actor-critic

Value-based

Value-based

Actor-critic

Actor-critic

Actor-critic

Actor-critic

Actor-critic

Objective

Customers’ cost

Fuel economy

Fuel economy

Operation cost

Fuel economy

Fuel efficiency

Fuel economy

Charging cost

Charging cost

Charging cost

Supplier’s profit

Participant’s
benefit

Supplier’s profit

Profit of generator

Profit of photoval‐
tic (PV) owner

Profit of wind
power producer

Profit of producer

Profit of wind
power producer

Profit of load
serving entity

Frequency target

Center of angles

Voltage profiles

Power system
emergency control

Available transfer
capabilities

Frequency target

Voltage profiles

Speed and phase
angle

Damping

Damping
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Reference [107] proposes a data-driven method for home
energy management. Extreme learning algorithm is first uti‐
lized to forecast the PV generation and electricity, which are
then utilized for decision making by multiple control agents
modeled by Q-learning algorithms. Reference [108] also ap‐
plies multi-Q-learning-based approach for the emergency fre‐
quency control.

Learning in multi-agent setting is much more complex
than in single-agent cases as each agent needs to learn the
dynamic of the environment as well as the policies from oth‐
er agents. For each agent, the environment is nonstationary
since the policies of other agents change continuously during
training, leading to the violation of Markov property. Al‐
though this category of methods violates the basic assump‐
tion of RL and lacks convergence guarantees, they have actu‐
ally been used in some scenarios in practice, and simulation
results demonstrate that good results and better scalability
can be achieved in certain circumstances.
2) Centralized Training and Decentralized Execution

Centralized training and decentralized execution have the
general MADRL framework which employs centralized crit‐
ics to guarantee the Markov property utilizing the global in‐
formation during training. Reference [109] proposes an
MADRL-based approach to solve the autonomous voltage
control problem. The voltage control problem with several
zones is first modeled as a microgrid. Then the MADDPG
algorithm is applied to solve the microgrid by modeling
each zone as an intelligent agent. Simulation results demon‐
strate its scalability for large systems. Reference [110] also
applies the MADDPG algorithm for the load frequency con‐
trol. The trained controller can make cooperative control de‐
cisions just based on local information. This helps reduce
the dependence on highly cost communication devices. Al‐
though the centralized training and decentralized execution
mechanism help solve the nonstationary problem in multi-
agent setting, it is still challenging to address problems with
large populations. To this end, [111] proposes an attention-
based MADDPG for the optimization of distribution net‐
work. The attention mechanism helps each agent attend to
the specific information that is mostly related to its immedi‐
ate reward. Thus, it is suitable for problems with large popu‐
lations. Reference [112] also applies the attention-based
MADRL algorithm for the optimization of energy system
with heating ventilation air-conditioning devices in multiple

commercial buildings. However, the function approximation
errors persists in DDGP algorithm and may lead to subopti‐
mal policies. To this end, [113] develops the multi-agent
twin delayed DDPG (TD3) algorithm, which also adopts the
centralized training and decentralized execution framework
while modeling each control subject as a TD3 agent. Simula‐
tion results demonstrate that the agents can make real-time
near-optimal decisions just based on local information.

IV. CONCLUSION AND FUTURE WORK

The increasing complexity and uncertainty in modern pow‐
er and energy systems, as well as the wide-area deployment
of advanced sensors make the ML-based approach a promis‐
ing alternative for power system operation and control. This
paper conducts a comprehensive review of RL algorithms
and their applications in power and energy systems. A re‐
view of widely accepted algorithms in RL, DRL, and
MADRL is first provided. Then, the applications of RL algo‐
rithms in power and energy systems are investigated in de‐
tail, including the optimization of distribution networks and
microgrid, energy management, electricity market, demand
response, and operation control. Several applications of
MADRL are presented as well.

Although numerous applications of RL in modern power
and energy systems have been studied, there are still many
interesting problems worth further studies, including but are
not limited to the follows.

1) Since the power and energy systems have a high re‐
quirement for safety, the physical constraints should be bet‐
ter handled when building the RL model instead of directly
adding soft constraints to the reward function. Safe RL is a
suitable way to deal with the optimization and control prob‐
lems by solving a constrained MDP. Other ways that can em‐
bed the physical knowledge in the RL model may also im‐
prove the reliability and motivate the real-world implementa‐
tion.

2) The offline training relies on the accurate physical mod‐
el while the online training may affect the operation of pow‐
er and energy systems. Batch RL and surrogate model are
two ways to reduce the dependence on physical model with‐
out impacting the operation of system. However, they re‐
quire a certain amount of historical data. Transfer learning
may be another promising alternative by training the RL

TABLE Ⅱ
SUMMARY OF WORKS OF MADRL

Reference

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Field

Demand-side management

Distribution network

Demand-side management

Operational control

Operational control

Operational control

Distribution network

Demand response

Distribution network

Algorithm

DQN

DQN

Q-learning

DQN

MADDPG

MADDPG

MADDPG + attention

MAAC

MATD3

Type

Independent learner

Independent learner

Independent learner

Independent learner

Centralized training and decentralized execution

Centralized training and decentralized execution

Centralized training and decentralized execution

Centralized training and decentralized execution

Centralized training and decentralized execution

Objective

Electricity dissatisfaction cost

Voltage deviation and power loss

Utility cost

Emergency frequency control

Voltage deviation

Frequency and power deviation

Voltage deviation

Energy cost

Voltage deviation
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model offline and transferring the learned control strategy to
real-world environments with few-shot recorded samples and
iterations.

3) Modern power and energy systems are becoming more
complex and larger with more operation conditions and con‐
trol options. Single-agent RL algorithm adopts centralized
framework that relies heavily on the complete communica‐
tion links, and thus is incapable of dealing with communica‐
tion delay and scaling up to large systems. MADRL can par‐
tially mitigate this issue by adopting a centralized training,
decentralized execution framework. However, existing
MADRL algorithms face great challenges when dealing with
very large systems that require large populations. Further re‐
search may apply advanced MADRL algorithms with novel
population scaling mechanisms to enable the RL method to
scale up to very large systems.

4) A lot of control and optimization problems in power
and energy systems have typical hierarchical structures, as
well as the decision-making process of human being. Hierar‐
chical framework can reduce the deployment cost of com‐
plete communication devices of centralized control and
avoid the isolation issue of local control, and thus it is anoth‐
er promising way for the control of large systems. Owing to
the complexity of hierarch structure and the lack of a gener‐
al hierarchical framework, applications of RL for hierarchi‐
cal control are rare in power and energy systems. Future re‐
search may apply RL-based hierarchical control framework
for large systems.

5) With the increased integration power electronic devices,
DERs and flexible loads, the complexities and uncertainties
are growing in modern power and energy systems. Classical
offline training and online execution manner of RL is incapa‐
ble of dealing with the continuously generated unmolded dy‐
namics. Meta-learning and continuous learning can be inte‐
grated with the RL algorithm to achieve the life-long learn‐
ing ability. This helps the continuous transformation of on-
line data into powerful knowledge, which can successively
enhance the control behavior of the RL agent. Therefore, the
robustness and adaptability to unmolded system dynamics
can be enhanced, and the trainning time can be shorten in
complex scenarios.
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