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Machine Vision for Aesthetic Quality Control of
Reflective Surfaces

Anne Juhler Hansen, Mark P. Philipsen, Hendrik Knoche, and Thomas B. Moeslund

Aalborg University, Rendsburggade 14, 9000 Aalborg
{ajha, mpph, hk, tbm}@create.aau.dk

Abstract. Systems for automatic inspection of product quality are in high de-
mand. However, their prevalence is limited by complex development and great
expenses. Since inspection systems must be engineered to specific products and
environments, such systems are generally only viable with high volume prod-
uct series. Inspired by human visual inspection of highly reflective brushed alu-
minium objects we capture images across multiple viewpoints. We employ a
spatio-temporal weighting of defects, where defects that occur consistently across
viewpoints are considered more severe, and compare to the confidence scores
produced by an off-the-shelf object detector (YOLOv5). Our results show the
challenges with training object detectors on a realistic low-volume dataset of re-
flective brushed surfaces. Despite the poor detection performance and difficulty
in distinguishing between design and defects, our method proves to classify our
small test set with an area under the precision-recall curve of 66.5%.

Keywords: Aesthetics Quality Control, Image Acquisition, Defect Detection

1 Introduction

Quality control of the visual appearance of high quality products is resource inten-
sive but necessary since customers find surface defects on products aesthetically dis-
pleasing [1]. Currently, aesthetic quality control in industry is performed by human
assessors, resulting in additional labour costs and subjectivity inherent to human visual
assessment [2]. Rapid development in computer vision and machine learning may ben-
efit industrial applications of defect detection by embracing technology such as deep
learning [3], [4]. We investigate the feasibility of using deep learning (YOLOv5) [5]
on low-volume products to create an automated system for detecting visual defects that
can support assessors in their aesthetic quality evaluations. Some materials, such as
brushed aluminium, are highly reflective and anisotropic, meaning the material drasti-
cally change appearance depended on illumination and viewing angle (see Figure 1+2).
This variation in the appearance tremendously complicates the defect detection prob-
lem. When design features (such as polishing strokes) share visual similarities with de-
fects the problem of making a distinction between defects and surface texture becomes
even more challenging [6]. Since defects (scratches, dents, holes, etc.) have clear visi-
bility from some viewpoints while also being invisible from other angles, human quality
assessors compensate for this by rotating the objects during visual inspection [2]. With
inspiration from the human visual inspection process we propose a data acquisition



2 Anne Juhler Hansen et al.

Fig. 1: Defects are visible from certain angles (1A+1B) but as the surface is rotated
(2A+2B) the defect becomes less distinct (3A+3B). In 4A+4B the polishing is evident
while the defect is hard to detect.

setup using an robotic arm to rotate an object and capture a spatio-temporal image se-
quence. We use the information from the spatio-temporal image sequence to calculate
the angle of opportunity (AoO), i.e. the span of view angles from where a potential de-
fect is visible [6]. Combined with the confidence score produced by the YOLOv5 object
detector this results in a combined severity score where defects that occur consistently
across viewpoints are weighted as more severe compared to defects that only appear
from very specific and limited points of view.

1.1 Contribution

We investigate the feasibility of using a deep learning based spatio-temporal detection
system for item-level aesthetic quality inspection inspired by the current human quality
assessment process. The contributions can be summarized as follows:

– Defect detection with a low-volume products of samples does not work well with a
state-of-the-art off-the-self detector.
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– Data acquisition setup using a robotic arm to model the visual inspection process
of human quality assessors.

– Defect detection pipeline for aesthetic quality control of highly reflective brushed
aluminium surfaces.

– Spatio-temporal scoring system for defects based on a combination of the angle
of opportunity combined with the confidence score from an off-the-shelf object
detector improves performance.

Fig. 2: Brushed aluminium surfaces are reflective and drastically change appearance
depended on illumination and viewing angle. (A) OK surface with visible polishing,
(B) OK corner, (C+D) defects on the corner, (E+F) defects in low illumination.

2 Related Work

Aesthetic quality is an important parameter within retail where customers demand qual-
ity, hence, companies spend plenty of resources searching for visual defects and trying
to optimize the defect detection process [1]. Visual appearance can be quantified by the
optical properties of materials such as color, gloss, translucency and texture [7], but due
to the wide variety in visual appearance of defects it is expensive for industrial appli-
cations to establish general and comprehensive databases of defects. Existing solutions
are commonly engineered to solve one distinct problem at a time i.e. limiting qual-
ity control based on material properties [3] or constrained to individual product types
in a controlled setup with fixed object placement and illumination [8]. This results in
automatic quality inspection often only being economical with long running and high
volume product series, thereupon lacking solutions for low volume high quality man-
ufacturing [9]. Many different defect types exists [10] and hence considerable amount
of data is required in order to adequately solve classification tasks within this domain.
Existing datasets for defect detection include large amounts of data. One example is
the Severstal: Steel Defect Detection data set containing a total of 12568 images and
among these 6666 of them include at least one defect [11]. This data set has experi-
enced large interest from researchers and has resulted in a Dice coefficient above 0.9.
Likewise the DAGM dataset for optical inspection on textured surfaces consists of 10
different defect classes with a minimum of 150 images of individual defects [12]. An-
other example is the MVTec AD dataset, which include a total of 5354 images and 70
different types of defects (such as scratches, dents, contamination, and various struc-
tural changes) [13]. This dataset is intended for unsupervised anomaly detection and
thus includes defect-free images. However, for detecting unique defects in the context
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of brushed aluminium products the defect types of the MVTec AD dataset (i.e. textured
surfaces of various materials as well as natural images) might not generalize well.

2.1 Defect Detection

Real-time defect detection have previously been performed on different reflective sur-
faces including highly reflective curved plastic surfaces in the automotive industry [14],
diagnosing the penetration state of laser welding of tailor-rolled blanks [15] or finding
defects on highly reflective ring components [16]. Tiny casting defects can be detected
with a convolutional neural network (CNN) trained from image-level labels with a novel
training strategy using an object-level attention mechanism [17], or the surface quality
of welds can be predicted using support vector machines for classifying features and
auto-encoders for reducing the dimensionality of images [18]. Fusing the results of dif-
ferent object detection principles can improve detection results and provide information
fusion [19]. This has been considered for automatic inspection of thermal fuses where
incorporating machine vision with artificial neural networks is used for detection of
four common defects [20]. In summary, it is common to narrow the scope of defect
types to a selected few (due to the access to and amount of training data) and use dif-
ferent inspection algorithms for different types of defect (due to the distinctive features
of the defects). Considering the computational expense involved in the construction of
deep neural networks, any simplification that can be achieved in the machine vision
pipelines is desirable. This has been considered for quality inspection of bottles using
image processing methods, region of interest detection in combination with a deep neu-
ral network [21]. This shows how integrating conventional image processing methods
and pre-processing can benefit computationally expensive methods.

2.2 Generic Object Detectors

Object detectors fall into two categories, single- and multi-stage. These methods differ
by the fact that single stage detectors predicts the object location and class simultane-
ously, while multi-stage detectors rely on a dynamic object proposal step which are then
classified. Over the years, several CNN-based object detector algorithms and designs
have been proposed [22]. The multi-stage R-CNN method [23], and its subsequent im-
provements [24, 25, 26] have lead to major improvements in the object detection field.
However, the dynamic object proposal step leads to longer processing times. Com-
paratively, the YOLO single-stage object detectors [5, 27, 28, 29, 30] are capable of
real-time object detection, at near comparable detection and classification performance
rates of the R-CNN based methods.

3 Data Acquisition

In collaboration with a premium manufacturing company images have been captured of
50 brushed aluminium items. Each item consist of two flat surfaces (front; 173mm×57mm,
side; 133mm×70mm) and a convex 90◦corner. The ground truth of aesthetic defects in
the 50 items has been validated by the manufacturer’s expert assessors. Data acquisition
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Fig. 3: A robotic data acquisition setup is used to capture image sequences covering
a range of viewpoints for each item, an object detector locates individual defects, and
item-level defect classification is made based on detection confidence scores and spatio-
temporal consistency scores.

consist of a camera, a light source, and a robotic arm for rotating brushed aluminium
items in front of the camera and light. RGB images are captured using a Canon 5D
(JPEG format with an image resolution of 6050×3300px). The light is a Elinchrom
100W Modeling Lamp with a color temperature of 3200K and a luminous flux of 2700
lumen. It is placed at a 45◦angle from the line between the item and camera (see Figure
3). Polishing patterns and defects are most visible when the light rays originate from a
single point (versus e.g. diffuse light) hence we select a narrow spot light to best resem-
ble a point light source. The items are fixed upright to a robotic arm (Universal Robots
UR10e) that is rotating the items (see Figure 3). Empirical findings exposed that human
visual assessment is performed by rotating the items along the direction of the polish-
ing, thus our data collection process includes rotation along the yaw-axis (see Figure
1). The robotic arm is rotated 1 degree between images for front and side and in steps of
5 degrees along the corner. The step size is larger around the corner since these images
tend to be overexposed due to the curvature and the highly reflective surface. Since the
reflected light is dependent on the rotation of the surface, some images have low illu-
mination and others are overexposed due to the reflective surface (see Figure 2). This
complicates the data capturing process but also signifies the importance of capturing a
spatio-temporal image series.

3.1 Dataset

The defects are manually labeled using bounding boxes, which differ substantially in
size (see Figure 4(a) where the distribution of ground truth bounding box measures are
plotted). The majority of defects are relatively small, however our dataset does contain
defects up to 1000 pixel high. Larger defects that can span the entire height of the item
are rare but exists. In this work these defects are left out since we later sub-sample the
images as a pre-processing step. Images from a total of 50 items have been collected.
These items along with their respective frame sequences are divided into a training,
validation, and test set. The test set consist of 10 items, while the training and validation
sets consist of 33 and 7 items, respectively. The number of images and images with
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(a) (b)

Fig. 4: (a) Distribution of defect sizes in terms of their bounding box measures. (b)
Defect positions across a normalized image coordinate system.

defects in each part is listed in Table 1. It should be noted that the amount of images
with defects is substantially larger than the amount of individual defects as the defects
are captured in several images through the image sequence. In Figure 4(b) the location
of defects is plotted in a normalized image coordinate system. This show how defects,
according to the ground truth bounding boxes, can be observed moving across the image
as the product is rotated. The long tracks indicate a wide angle of opportunity. Notice
also that many defects does not seem to produce long tracks due to their visibility being
greatly depended on illumination and view angle.

Table 1: Dataset specifications: Some images have been removed from the training set
because they contain defects that are larger than 1000 pixel wide or tall. The size of the
complete dataset including these images are (enclosed).

Dataset Training Validation Test
# Items 33 7 10
# Images 2381 (2425) 415 942
# Images with defects 1879 (1948) 563 486
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Fig. 5: (Left) Systematic data acquisition resulting in image sequences covering dif-
ferent viewpoints. (Middle) Object detection for frame-wise defect detection. (Right)
Item-level defect analysis based on detections and a spatio-temporal consistency score.

4 Method

Here we describe how an off-the-shelf object detector, specifically YOLOv5, can be ap-
plied to a severely imbalanced defect detection problem. The proposed method mimics
human aesthetic quality assessors by making use of a spatio-temporal (i.e. AoO) data
collection and analysis scheme. Figure 5 shows an overview of the components that are
involved in our proposed aesthetic quality control system. First data is acquired by a
robot that gradually rotates the products in front of a camera and light source. The re-
sult is a sequence of frames that cover multiple different viewpoints. For pre-processing
prior to defect detection, the high resolution frames are tiled in order to produce image
sizes appropriate for a standard object detector. The detector identifies defects across
tiles before they are combined and mapped back to the original high resolution frame.
In order to produce an item-level decision, the detected defects across frame sequences
are collected in tracks. This is done by estimating the translation of the product surface
due to the rotation using optical flow. As mentioned earlier the AoO is correlated with
the severity of a defect here represented by track length. This results in a combined
confidence score based on detector confidence and track length.

4.1 Pre- and Post-processing

The dynamic nature of our dataset (including large image resolution, class imbalance,
and creating reliable annotations) is challenging since CNNs are not typically well
suited for high resolution images or extremely imbalanced datasets [31]. Tiling high res-
olution images to produce smaller more manageable image patches is standard practice
when applying object detectors to high resolution images. The reasons for doing this
are keeping the size of the detection networks manageable and avoiding extreme imbal-
ance between background and foreground. Tiling can be done by extracting patches in
non-overlapping or overlapping patterns [32], where the overlapping patterns attempt to
preserve objects on the boundaries between tiles. We employ a non-overlapping tiling
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(a) (b) (c)

Fig. 6: The graphs in the top row show the magnitude of the optical flow along the x-
axis. (a) The image intensity indicate the flow direction, with blue and red indicating
leftward or rightward motion, respectively. (b)+(c) The noisy flow estimates are filtered
along the x-axis for all items. The smoothed flow function is used to propagate the flow
vector across the x-axis and estimating the translation due to the rotation of items. All
images are cropped on the y-axis for visualisation.

scheme with tile sizes of 1024×1024 pixels and to ensure that the entire image is be-
ing covered, the right and bottom edges are padded with black pixels. Post-processing
consists of two operations; first any conflicts between overlapping bounding box predic-
tions are resolved by applying non-maximum suppression. Non-maximum suppression
ensures that defects are associated with only a single bounding box based on the bound-
ing box overlap quantified using the Intersection over Union (IoU). The confidence
score of the detector is used to choose which box to discard. Secondly, the predictions
are mapped from the tile coordinate system to the original image coordinate system.

4.2 Spatio-Temporal Compensation

In order to assign detections to tracks it is necessary to compensate for the translation
that occurs to the defects on the item surface as the item is rotated. Alternatively, con-
secutive detections could be matched using similarity or multi-order filters, but since the
rotation of items is well defined and consistent it is an option to use flow vectors from
optical flow to predict the expected future position of defects and create tracks. Matches
are made based on the vicinity of new detections to these predictions. Optical flow is
primarily measurable along the edges and very noisy (see Figure 6(a)). To counteract
this a smoothed flow map is created using the median values across all images from
the observed angle for all available items in the training set. Thereafter, a polynomial
function is fitted to the flow values across image columns i.e. the x-axis. The smoothed
flow offset along the x-axis can be seen on Figure 6(b) and Figure 6(c) together with
the trajectory of selected pixels after the items have been rotated.

5 Results

We present our defect scoring based on three different scores for performing both frame-
level and item-level defect detection. (1) The mean detector confidence score across all
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(a) (b)

Fig. 7: (a) The main features associated with tracks, specifically AoO and confidence.
(b) A summary of the most extreme features from the tracks belonging to each item in
the test set. Red and green points represent defective and OK items, respectively.

detections in the highest scoring track. (2) Angle of Opportunity (AoO) based on the
length of the highest scoring track. (3) The combined score based on both detector con-
fidence and AoO. The captured tracks can be summarized as seen in Figure 7(a), where
all of the tracks found during analysis of item07 are plotted according to the length
and mean confidence associated with each track. As mentioned before the length of the
tracks is considered equal to AoO. Considering that the number of true defects on a typ-
ical item is around 1-5 it is clear from Figure 7(a) that the number of false detections,
and thus tracks, are high. For an item-level assessment we represent an item by the
highest scoring track, corresponding to a point in the upper right corner of Figure 7(a).
Figure 7(b) shows each of the items in the test set represented by their highest scor-
ing track. Defective items are colored red and items without serious defects are green.
Table 2 presents the defect detection results from the frame-level detection subsystem.
With the small defect size it proves difficult to satisfy the standard IoU criteria, for this
reason we also show precision and recall with a modest IoU of 0.1. As evident from the
extremely low precision, the detector also proves to have difficulties in distinguishing
between desired design features (e.g. the polishing texture) and defects. With item-level
defect detections from the detector and our proposed method for temporal consistency
scoring (AoO), defective items can at best be detected such that we get an area under
the precision-recall curve of 66.5% as seen in Table 3.

6 Discussion

Unlike the previous datasets discussed in Section 2 who worked on large datasets we
investigated a use-case with low-volume products and reflective surfaces with varying
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Table 2: Frame level defect detection per-
formance on test and (validation) set us-
ing the YOLOv5 detector at different IoU.

Threshold Precision [%] Recall [%]
IoU = 0.5 0.29 (0.180) 10.91 (16.70)
IoU = 0.1 1.49 (0.407) 56.79 (37.83)

Table 3: Defect detection performance on
test and (validation) set using detector
confidence, AoO, and a combination.

Method AUC [%]
Confidence 53.9 (83.1)
AoO 66.5 (87.5)
Combined 60.7 (84.4)

visual appearance. Therefore, it is expected that the data intensive deep learning method
cannot achieve similar performance to previous defect detection tasks e.g. within bottle
defect classification (accuracy of 99.60%) or thermal fuse bur defect detection (ac-
curacy of 98.43%). Our detector produces a large number of false positive with high
confidence (see Figure 7). This is likely caused by the ambiguity in the visual appear-
ance of defects and the limited size of the training set. The number of long tracks on
the other hand lies in a more reasonable range. The main weakness in our pipeline is
the poor performance of the detector in terms of accurately localizing defects, coping
with very large objects and distinguishing between the intended surface texture and un-
wanted defects. However, we find that the AoO is a powerful indicator of the presence
of a defect. This suggests that if a detector can be designed to work within the require-
ments of a low-volume data regime, and thereby lower the amount of false positive,
the performance of the system will improve further. An indication of this is shown in
Table 3, where the AUC performance of the combined score (detector confidence and
AoO) is 6.8 percentage points larger than only using the detector confidence scores,
while still being 5.8 percentage points behind only using AoO. The localization of de-
fects and the problems with handling large objects may be addressed by transitioning
from a bounding box detector to a CNN for pixel-level segmentation. Limitations of
the data capturing system include overexposure in images due to the highly reflective
surfaces being captured. Future work could include the use of multiple exposure values
when capturing images in order to make sure all areas of the images are visible. Also,
future work should include improving the performance of the system and making it
applicable in industrial contexts. Performance could be improved using data augmenta-
tion and loss weighting schemes to better cope with the imbalanced data issues and the
problems of the current detector producing a large number of false positives.

7 CONCLUSIONS

We investigate the feasibility of a deep learning-based defect detection framework, for
low-volume highly reflective brushed aluminum products. Inspired by the human visual
assessment workflow a data acquisition framework is developed using a robotic arm to
capture images across multiple views. A spatio-temporal detection system is proposed
using a state-of-the-art object detector, YOLOv5, combined with an optical flow-based
tracking to determine the angle of opportunity per defect.
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In our evaluation we find that the object detector produces a large amount of false
positive detections due to the difficult task of detecting defects in our low sample and
imbalanced setting. This results in an area under the precision-recall curve of 53.9%
for the detector, and 60.7% for the full spatio-temporal detection framework. However,
we find that by using just the AoO an AUC of 66.5% is obtained. Furthermore, our re-
sults indicate that if an object detector can be designed to produce fewer false positives
the performance of our full spatio-temporal defect detection framework for low-volume
products will improve.
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