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An Enhanced Optimal PV and Battery Sizing Model
for Zero Energy Buildings Considering

Environmental Impacts
Mahdi Mehrtash , Florin Capitanescu , Per Kvols Heiselberg, Thomas Gibon , and Alexandre Bertrand

Abstract—The important focus of the energy strategy of the Eu-
ropean Union relies on the concept of zero energy building (ZEB),
which is, by definition, a building that roughly produces yearly as
much renewable energy as it consumes. This article proposes an
enhanced mixed-integer nonlinear programming model for opti-
mal sizing of photovoltaic (PV) and battery energy storage systems
to comply with the definition of a ZEB. A salient novel feature of
the proposed model is that it factors in the environmental impacts,
computed through rigorous life cycle assessment methodology, of
buying electricity from the grid and manufacturing battery and
PV systems. Furthermore, an adjustable parameter is introduced
to make the model adaptive from the perspective of the build-
ing owner’s willingness-to-pay for environmental impacts. The
proposed model is then rigorously reformulated, managing to ac-
cumulate its nonlinearity in only one constraint per time interval.
Eventually, the reformulated model is linearized to a mixed-integer
linear programming model using the McCormick relaxation tech-
nique. The case study conducted on archetypal buildings in Lux-
embourg reveals that the proposed McCormick-based linear model
is able to provide high accuracy results with reasonable computa-
tional effort.

Index Terms—Battery storage system, environmental impacts,
McCormick envelops, mixed-integer nonlinear programming,
optimal photovoltaic (PV) and battery sizing, zero energy building
(ZEB).
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NOMENCLATURE

Indices and Sets
t Index of time interval (e.g., 8760 h per

year).
e Index for environmental impact categories.

Parameters

I initialB Initial investment cost of the battery
[€/kW·h].

IOM
B Operation and maintenance cost of the bat-

tery [€/kW·h].
I initialPV Initial investment cost of the PV [€/kW·p].
IOM
PV Operation and maintenance cost of the PV

[€/kW·p].
CRF(i, n) Capital recovery factor.
CEI(e) Cost of environmental impact e at

interval t.
EIMmax Maximum limit for environmental impacts.
EP(t) Electricity price [€/kW·h].
FIT(t) Feed-in-tariff [€/kW·h].
i Interest rate of financial investment.
n Number of years of financial investment.
PPV(t) Active power generated by PV system at

time interval t [kW].
PL(t) Active demand at time interval t [kW].
SOCmin/SOCmax Minimum/maximum state of charge of the

battery [p.u.].
Δt Time interval duration (e.g., 1 h).
ηc, ηd Charging/discharging efficiency of the bat-

tery and converter system.
α(t) Per unit PV output at time interval t.

Variables

CB Battery capacity [kW·h].
CPV PV capacity [kW·p].
Imax(t)/Imin(t) Binary variables indicating that state of

charge of the battery is reaching to its max-
imum/minimum at time interval t.

I+(t) / I−(t) Binary variables indicating that PV produc-
tion is higher/lower than the active demand
at time interval t.

P+(t)/ P−(t) Excess/Deficit of active power at time in-
terval t [kW].
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Pb(t)/ Ps(t) Active power buy from/sell to grid at time
interval t [kW].

Pc(t)/ Pd(t) Charging/discharging power of the battery
at time interval t [kW].

SOC(t) State of charge of the battery at time interval
t [p.u.].

ω(t) Auxiliary variable for McCormick relax-
ation.

I. INTRODUCTION

THE emission of greenhouse gases (particularly CO2) is an
unavoidable consequence of using fossil fuels to produce

electricity. Buildings, as one of the key contributors to CO2

emissions, are in charge of 40% of the final energy consumption
and 36% of CO2 emission in the European Union (EU). As a
consequence, the idea of zero energy buildings (ZEBs) was pro-
moted in the statement of the Energy Performance of Building’s
Directive in 2010 [1]. As stated in the directive, buildings are
deemed part of the solution for both the emission of greenhouse
gases and the security of supply.

Several definitions have been proposed for ZEBs. According
to [1] and [2], we undertake that a ZEB is a building that produces
as much electricity from renewable sources as it consumes
yearly.

Building-integrated photovoltaic (PV) systems are the most
common form of electricity production units in buildings, which
are required to fulfill the definition of a ZEB. Albeit the yearly net
electricity balance of a ZEB is close to zero, it still exchanges a
significant bidirectional amount of electricity with the network
due to the mismatch in time between the generation and con-
sumption profiles. In this regard, the advantages of deploying
a building-integrated battery energy storage (BES) system is
widely studied in the literature [3]–[6].

The problem of finding the minimum investment cost of the
PV and BES systems complying with the definition of a ZEB
can be mathematically modeled as an optimization problem.

The problem of optimal BES sizing in residential ZEBs is
analyzed in [3] relying on real-life data of a household in Por-
tugal. It concludes that the designed BES system can diminish
the energy export/import to/from the network by 76% and 78%,
respectively, improving also the energy autarchy of the building.
Studying a residential ZEB in Arizona, reference [7] presents a
parametric approach to find the best capacity of the BES system
in which the maximum net present value is achieved. It concludes
that due to the unconformity between solar generations and peak
demands, the studied ZEB is only able to reduce 37%–44% of
the peak electricity purchases.

Reference [4] analyzes an optimal PV and BES sizing problem
for commercial buildings, assuming that the electricity price
is equal to the feed-in-tariff. However, this is not a sound
hypothesis according to the price policy of most countries.
The compensation of the mismatch between the generation and
consumption patterns of ZEBs is addressed in [8]. Multiple
modeling schemes for PV and BES systems, each of which
focuses on a specific aspect of the model, are presented in
works [5], [9]. Using dynamic simulation for electricity usage of

ZEB houses in southern Kentucky, an optimal sizing of hybrid
electric and thermal storage devices is presented in [10]. A
BES sizing problem for residential ZEBs is proposed in [11].
The model prioritized storing the excess electric power in the
battery rather than selling it to the grid. This is a suitable strategy
because the electricity price is typically fixed, and it is higher
than the feed-in-tariff for residential buildings. However, the
mathematical model suffers from intractability to guarantee the
prescribed optimality gap.

Using different optimization techniques, the number of works
focused on the optimal sizing of ZEBs and smart homes has
intensified recently. Considering only economical aspects, an
optimal planning model for sizing PV and BES of smart homes
is proposed in [12] based on particle swarm optimization (PSO)
algorithm. Moreover, reference [13] proposed optimal sizing
of energy storage devices to enhance the productivity of resi-
dential building-integrated PV systems. Ignoring environmental
impacts, a PSO algorithm is applied to optimize the overall cost
of the smart building. Similar to other heuristic algorithms, PSO
can find a feasible solution in a short runtime but cannot guar-
antee the optimality or gauge the optimality gap of the obtained
feasible solution. A dynamic programming-based optimal sizing
of PV and BES capacity for residential homes is proposed in
[14]. It is illustrated that the proposed dynamic programming
approach outperforms heuristic methods considerably. However,
the approach ignores the possibility of selling electricity to the
grid and environmental impacts, and is not scalable.

The literature survey indicates that the most important re-
search gap is to develop a rigorous yet scalable problem formu-
lation for optimally sizing of PV and BES in ZEBs.

An aspect neglected in the literature is that both BES and
PV systems generate environmental impacts, mostly during
their manufacturing. Furthermore, the grid electricity is also
a source of environmental impacts, which depend on the mix
of technologies used to the power supply (e.g., nuclear, coal,
gas, hydro, solar, wind, etc.) [15]. As climate change mitigation
strategies are on top of the EU’s environmental agenda, CO2 and
other greenhouse gas emissions are the most often inventoried
lifecycle indicator. However, decarbonizing the power sector
might require tradeoffs especially with land occupation or ma-
terial requirements [16], [17]. How to factor in environmental
impacts in the problem is another research gap.

To address the two knowledge gaps, this article significantly
extends the previous authors’ work [18], which only focused
on profit-based optimal sizing of BES, in two respects: 1) joint
optimal sizing of PV and BES systems and 2) consideration of
environmental impacts. Accordingly, the key new contribution
of this article is an enhanced (but scalable to large-scale planning
problems) mathematical model for the optimal PV and BES
sizing problem fulfilling the definition of ZEBs. A proposed
enhancement, with respect to the existing models, is to enforce
the priority to store the excess electric power in the battery
instead of selling it to the grid. In addition, a new contribution
is that the environmental impacts of buying electricity from
the grid and manufacturing PV and BES systems are factored
in through an adjustable parameter, which considers quantita-
tively the building owner’s willingness-to-pay for environmental
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Fig. 1. Directions of power flows for zero energy building.

impacts. The efficacy of the model is demonstrated numerically
using residential and commercial buildings from Luxembourg.

The remaining of this article is structured as follows. Section
II describes the formulation of the proposed optimal PV and
BES sizing problem. Section III presents a numerical case study.
Section IV concludes this article.

II. PROBLEM FORMULATION

For the sake of problem formulation clarity, Fig. 1 shows the
power flow directions of the proposed optimal PV and BES siz-
ing model. In terms of formulation, first, the optimal PV and BES
sizing is modeled as a mixed-integer nonlinear programming
(MINLP) problem. Next, the MINLP model is reformulated in
a smart and rigorous way to accumulate all nonlinear terms
in a single bilinear constraint per time interval. Finally, the
bilinear constraint is linearized using the McCormick relaxation
technique allowing us to obtain a scalable mixed-integer linear
programming (MILP) model.

A. MINLP Model

The objective function of the optimal PV and BES sizing
problem is expressed by (1). It contains four terms: invest-
ment/operation and maintenance cost of the battery storage,
investment/operation and maintenance cost of the PV system,
cost of buying electricity from the grid, and revenue of selling
electricity to the grid.

min
(CB ,CPV)

{
CRF(i, n).(I initialB + IO&M

B ).CB

+CRF(i, n).(I initialPV + IO&M
PV ).CPV

+ Δt.

(∑
∀t

Pb(t).EP(t)−
∑
∀t

Ps(t).FIT(t)

)}
(1)

Decision variables of the optimization model are the size of
the battery storage CB (in kW·h) and the size of the PV system
CPV (in kW·p). Parameters I initialB in €/kW·h and I initialPV in
€/kW·p represent initial investment costs of the battery storage
and the PV system, while IOM

B and IOM
PV are the corresponding

operation and maintenance costs. Variables Pb(t) and Ps(t),

which are in kW, represent the amount of electricity bought
from the grid and electricity sold to the grid at time interval t,
respectively. The assumed duration of time intervals (e.g., 1 h)
is expressed by Δt. Parameters EP(t) and FIT(t) in €/kW·h
are the electricity price and the feed-in-tariff at time interval
t, respectively. Note that the proposed objective function (1)
is also valid in the case of time-varying electricity price and
feed-in-tariff (i.e.,EP(t) andFIT(t) can be different for diverse
intervals).

Due to irreversible electrochemical changes, long-term usage
of the battery results in performance degradation, e.g., incre-
ment of internal resistance, capacity reduction, and efficiency
deterioration. Here, we consider the performance degradations
of PV and BES systems as operation and maintenance costs,
which are linearly dependent on the optimal sizes. Depending
on the application, more sophisticated modeling of performance
degradations might be desired, such as the physics-based model
proposed by [19] for model predictive control of Lithium-Ion
batteries.

The initial investment costs of the PV and BES systems
(including the associated converter if required [20]) are assumed
to be financed with an interest rate of i for a period of n years
(similar to the warranty period of the PV and BES systems).
Therefore, the capital recovery factorCRF can be obtained from
(2) [21].

CRF (i, n) =
i(1 + i)n

(1 + i)n − 1
. (2)

The excess and deficit of active power at time interval t are
modeled as (3) and (4), respectively, which requires introduc-
ing binary variables. Parameters α(t) and PL(t) represent per
unit PV output and electric power demand at time interval t,
respectively. Binary variable I+(t) is equal to one if there is the
excess of active power at time interval t, and it is equal to zero
otherwise. Likewise, the binary variable I−(t) is equal to one if
there is a deficit of active power at time interval t, and it is equal
to zero otherwise. Constraints (5) and (6) model the positivity
of the continuous variables P+(t) and P−(t), and constraint (7)
expresses that both excess and deficit of active power cannot
coexist at each time interval t

P+ (t) = (α (t) .CPV − PL (t)) .I+ (t) ; ∀t (3)

P− (t) = (PL (t)− α (t) .CPV ) .I
− (t) ; ∀t (4)

P+ (t) ≥ 0; ∀t (5)

P− (t) ≥ 0; ∀t (6)

I+ (t) + I− (t) = 1; ∀t. (7)

The amount of active power that can be sold to the grid at
time interval t is modeled as (8). Variable Pc(t) is the charging
power of the battery at time interval t; it can be obtained from
(9). Similarly, the amount of active power that can be bought
from the grid and the discharging power of the battery at time
interval t are modeled as (10) and (11), respectively. Here, state
of charge (SOC)(t) in per unit represents the SOC of the battery
at time interval t, and it is bounded by the minimum value
SOCmin and the maximum value SOCmax as expressed in (12).
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TABLE I
MEANING OF THE FOUR POSSIBLE STATUSES FOR EACH TIME INTERVAL

Parameters ηc and ηd are the charging efficiency and discharging
efficiency of the battery, respectively. Binary variable Imax(t) is
equal to zero if the battery has enough capacity to store the
excess power completely without attaining its maximum SOC
at time interval t, and it is equal to one otherwise. Similarly,
the binary variable Imin(t) is equal to zero if the battery has
enough energy to provide the deficit power completely without
attaining its minimum SOC at time interval t, and it is equal to
one otherwise.

Ps (t) =
(
P+ (t)− Pc (t)

)
.Imax (t) ; ∀t (8)

Pc (t) = (SOCmax − SOC (t− 1)) × CB

ηc.Δt
; ∀t (9)

Pb (t) =
(
P− (t)− Pd (t)

)
.Imin (t) ; ∀t (10)

Pd (t) = (SOC (t− 1)− SOCmin) × ηd.CB

Δt
; ∀t (11)

SOCmin ≤ SOC (t) ≤ SOCmax; ∀t. (12)

Four possible statuses exist for each time interval as detailed
in Table I. Generally, having four binary variables results in
24 = 16 possibilities. However, constraint (7) prunes eight
infeasible possibilities. Constraints (13) and (14) prune the
other four infeasible possibilities and set the feasibility region
according to the desired status of Table I.

Imax (t) ≤ 2 × I+ (t) ; ∀t (13)

Imin (t) ≤ 2 × I− (t) ; ∀t. (14)

Based on the set of feasible statuses shown in Table I,
constraint (15) is proposed to model the SOC of the battery.
According to (15), the value of SOC(t) is fixed to SOCmax

and SOCmin for status 1 and status 3, respectively [see Table I
and constraints (3)–(4)]. In addition, in status 2, the value of
SOC(t) is equal to SOC(t− 1) plus the excess power stored in
the battery. Similarly, in status 4, the value of SOC(t) is equal
to SOC(t− 1) minus the deficit power provided by the battery.
The energy preservation constraint (16) imposes that the SOC of

the battery in the last interval is equal to the initial battery SOC.

SOC (t) = SOC (t− 1) . (1 − Imax (t)− Imin (t))

+
P+ (t) .Δt.ηc

CB
(1 − Imax (t))− P− (t) .Δt

ηd.CB
(1 − Imin (t))

+ SOCmax.Imax + SOCmin.Imin; ∀t (15)

SOC (t = 0) = SOC (t = last) . (16)

The zero energy constraint and limitation of environmental
impacts are modeled by linear constraints (17) and (18), respec-
tively. According to (17), the annual electricity bought from the
grid must be less or equal than the annual electricity sold to the
grid. Constraint (18) limits the total environmental impacts of
buying electricity from the grid and manufacturing BES and
PV systems, where parameter CEI(e) represents the cost of
environmental impact e in Pt/kW·h. As it will be illustrated by
numerical case studies, EIMmax is an adjustable parameter en-
abling to tradeoff the environmental impacts and the economical
objective. It should be selected according to the building owner’s
willingness-to-pay for environmental impacts.

Note that the environmental constraint (18) aggregates the so-
called “midpoint” lifecycle indicators, such as “climate change,”
“human toxicity,” “particulate matter emissions,” “eutrophica-
tion,” or “land use.” Recent initiatives to incorporate environ-
mental indicators in system optimization problems include [22],
which used a single-score indicator to convey the environmental
pressure of the various power generation technologies∑

∀t
Δt.Ps (t) ≥

∑
∀t

Δt.Pb (t) (17)

∑
∀t

∑
∀e

Δt.Pb (t) .CEIb (e) +
∑
∀e

CB .CEIB (e)

+
∑
∀e

CPV.CEIPV (e) ≤ EIMmax. (18)

To sum up, the proposed MINLP model for the optimal PV
and BES sizing problem consists in minimizing the objective
function (1) subject to (3)–(18). The decision variables of the
model include the size of the battery CB , size of the PV CPV,
the amount of electricity bought from the grid Pb(t) and the
amount of electricity sold to the grid Ps(t).

Note that the nonlinear terms of the model are propagated in
constraints (3), (4), (8)–(11), and (15). Therefore, reformulating
the model in an equivalent way to reduce the number of nonlinear
terms is desirable.

B. Reformulation of MINLP Model

Auxiliary variable ω(t) is defined in (19) to enable nonlin-
earity accumulation of the MINLP model. As it can be noticed
from (19), the physical interpretation of the auxiliary variable
ω(t) is the amount of energy that is stored in the battery at time
interval t

ω (t) = CB .SOC (t) ; ∀t. (19)

A disjunctive technique is applied to linearize (3) as (20) and
(21), whereM is a sufficiently large constant (big-M technique).
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When I+ = 0, constraint (21) is nonbinding, and constraint (20)
forces P+ to be equal to zero. On the other hand, when I+ = 1,
constraint (20) enforces thatP+ (t) = α(t).CPV − PL(t)while
(20) is nonbinding. Similarly, constraint (4) can be replaced by
linear constraints (22) and (23)

0 ≤ P+ (t) ≤ M.I+ (t) ; ∀t (20)

−M.
(
1 − I+ (t)

)
+ α (t) .CPV − PL (t) ≤

P+ (t) ≤ α (t) .CPV − PL (t) +M.
(
1 − I+ (t)

)
; ∀t (21)

0 ≤ P− (t) ≤ M.I− (t) ; ∀t (22)

−M.
(
1 − I− (t)

)
+ PL (t)− α (t) .CPV ≤ P− (t) ≤

PL (t)− α (t) .CPV +M.
(
1 − I− (t)

)
; ∀t. (23)

Applying the same technique and including the auxiliary
variable ω(t), (8) and (9) are linearized as (24)–(26). Similarly,
(10) and (11) are rewritten as linear constraints (27)–(29).

0 ≤ Ps (t) ≤ Pmax
s .Imax (t) ; ∀t (24)

−M (1 − Imax (t)) +
(
P+ (t)− Pc (t)

) ≤ Ps (t) ≤(
P+ (t)− Pc (t)

)
+M (1 − Imax (t)) ; ∀t (25)

Pc (t) = [CB .SOCmax − ω (t− 1)] × 1
ηc.Δt

; ∀t (26)

0 ≤ Pb (t) ≤ Pmax
b .Imin (t) ; ∀t (27)

−M (1 − Imin (t)) +
(
P− (t)− Pd (t)

) ≤ Pb (t) ≤
+
(
P− (t)− Pd (t)

)
+M (1 − Imin (t)) ; ∀t (28)

Pd (t) = [ω (t− 1)− CB .SOCmin] × ηd
Δt

; ∀t (29)

Last, constraint (15) is replaced by linear constraints (30)–(32)
to model the four statuses enumerated in Table I. In status 1,
when I+ = Imax = 1 and I− = Imin = 0, constraints (30) and
(32) are inactive while (31) imposes that SOC (t) = SOCmax.
The same conclusion can be obtained from (15). Considering
other status, it can be concluded that (30)–(32) are perfectly
equivalent to (15).

−M (1 − Imax (t)) + SOCmax.Imax (t) ≤ SOC (t) ≤
SOCmax.Imax (t) +M (1 − Imax (t)) ; ∀t (30)

−M (1 − Imin (t)) + SOCmin.Imin (t) ≤ SOC (t) ≤
SOCmin.Imin (t) +M (1 − Imin (t)) ; ∀t (31)

−M. (Imax (t) + Imin (t)) + ω (t− 1)

+ Δt.(P+ (t) .ηc − P− (t)

ηd
) ≤ ω (t) ≤ ω (t− 1)

+ Δt.(P+ (t) .ηc − P− (t)

ηd
) +M. (Imax (t) + Imin (t)) ; ∀t.

(32)

To sum up, the reformulated MINLP model for optimal PV
and BES sizing problem comprises the objective function (1)

subject to (7), (12)–(14), and (16)–(32). Concretely, the pro-
posed reformulation reduces the number of nonlinear constraints
and the bilinear term of (19) is the only nonlinearity of the model.

The fact that current off-the-shelf versions of state-of-the-art
solvers (e.g., CPLEX and Gurobi) can solve MILP problems
efficiently motivates us to further propose an MILP model for
the optimal PV and BES sizing problem.

C. Relaxed MILP Model

A McCormick relaxation technique is applied to develop the
MILP model of the optimal PV and BES sizing problem [23].
Accordingly, the bilinear constraint of (19) can be replaced by
four McCormick envelops modeled by (33)–(36).

ω (t) ≥ CB .SOCmin; ∀t (33)

ω (t) ≥ Cmax
B .SOC (t) + CB .SOCmax − Cmax

B .SOCmax; ∀t
(34)

ω (t) ≤ Cmax
B .SOC (t) + CB .SOCmin − Cmax

B .SOCmin; ∀t
(35)

ω (t) ≤ CB .SOCmax; ∀t. (36)

Inequality constraints (33) and (34) are called McCormick
underestimators, while (35) and (36) are called McCormick
overestimators.

The advantage of McCormick relaxation over other approxi-
mation techniques is that the relaxed MILP model fully contains
the feasibility region of the original MINLP model. Ideally, the
McCormick envelops represent a convex hull for the MINLP
feasibility region [23].

To summarize, Fig. 2 shows the procedure of three proposed
models in a single flowchart. After obtaining the optimal sizes for
battery and PV systems as continuous values, they are rounded
up to the closest available standard discrete sizes.

III. CASE STUDY

A. Building Description and Simulation Setup

Unless stated otherwise, an archetypal residential building sit-
uated in Luxembourg is chosen to demonstrate the effectiveness
of the proposed models. The annual per unit output of the PV in
Luxembourg is obtained from [24]. Fig. 3 plots per unit power
production of PV with a resolution of 1 h. Fig. 4 shows the
electricty consumption of the building. The hourly data were
collected form CREOS (main distribution electricity utility in
Luxembourg) database [25]. It can be easily observed that, in
colder seasons, the electricity consumption is larger while the
PV production is lower than in warmer seasons. The yearly
electricity consumption of the building is 4738 kW·h.

The environmental impacts have been calculated using the
life cycle assessment methodology, and aggregated into a single
score, characterizing the overall impact, as follows. Lifecycle
inventory data has been extracted from the Ecoinvent (v3.5)
database. In particular, the following inventories were used:
“Market for electricity, low voltage, (Luxembourg),” “Photo-
voltaic slanted-roof installation, multi-Si (Global),” and “Battery
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Fig. 2. Flowchart of the proposed models.

Fig. 3. Yearly per unit power production of PV.

Fig. 4. Yearly electricity consumption of the residential building.

cell, Li-ion (Global)” [26]. The environmental scores are calcu-
lated in a sequence of distinct steps. First, the lifecycle invento-
ries, which contain thousands of environmental flows (emissions
to air, water, soil, or raw material extraction), are characterized
into a series of so-called “midpoint” indicators, which convey
the environmental stress generated indirectly and directly by

TABLE II
COST OF ENVIRONMENTAL IMPACTS

each system via various impact mechanisms. For example, the
“climate change” impact is accounted in kg CO2 equivalents (a
reference unit to convert the set of greenhouse gas emissions
into one single indicator) using their global warming potentials
over a 100-year horizon as the characterization factors. The
characterization method chosen is the one recommended by the
EU’s Joint Research Centre in the context of the environmental
footprint methodology [27]. A normalization step is necessary
to aggregate these various scores into a single indicator. Each
midpoint indicator is expressed in “points” (Pt), where one point
represents the global impact of that category divided by the
world population (yielding the global per-capita average for
that category). Once expressed in the same unit, results can be
aggregated into a single score, as shown in Table II.

The following assumptions are made to solve the optimization
models:

1) PV and BES initial costs are set to I initialPV = 1500€/kW·p
and I initialB = 50 €/kW·h, which can be financed at an
interest rate of i = 5% [11]. The annual operation and
maintenance costs of PV and BES systems are assumed
to be 1% and 2% of their investment costs, respectively
[28].

2) The warranty period (or the life cycle) of the PV and
BES systems are greater than the payback period of the
loan. Therefore, the building owner will not pay any
replacement cost over the life span of the systems. This is
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Fig. 5. Clustered data of per unit power production of PV using K-means++.

a sound hypothesis because, for instance, the life cycle of
a typical Lithium-Ion battery can be more than 15 years
[5], [29].

3) Capacity to power ratio of the battery is small enough
to completely charge/discharge the battery between two
successive intervals.

4) To reflect the Luxembourg reality, the electricity price, and
feed-in-tariff are set to 0.17 €/kW·h and 0.121 €/kW·h,
respectively.

To solve MILP and MINLP models, ILOG CPLEX 12.9
and Baron 19 are, respectively, used. All solver options are
set to defaults except CPLEX parallel computing options
“cpx_param_parallelmode” and “cpx_param_threads,” which
are, respectively, set to 1 and 48. We used a full node of a
high-performance computer (up to 187-GB-RAM) with 48 Intel
Skylake @ 2.1GHz cores per node.

B. Numerical Results Without Environmental Impacts

A K-means++ algorithm is first used to reduce the size of
the PV production and electricity consumption datasets, and to
verify the scalability of the proposed models [30]. Initial hourly
data of PV production and electricity consumption, which are
shown in Figs. 3 and 4, are squeezed into monthly (with 12
clusters) and daily (with 365 clusters) datasets. The occurrence
time of the data is taken into account during the clustering pro-
cess. That is, the time-dependent behavior is preserved in final
clusters. The reduced datasets of PV production and electricity
consumption are depicted in Figs. 5 and 6, respectively.

We first run a profit-driven optimization, which ignores the
environmental impacts limit (18). The so-obtained simulation
results for the reformulated MINLP model and the McCormick-
based MILP model are provided in Table III. It can be observed
that the optimal size of the PV and BES systems depend to
a certain extent on the number of intervals. Intuitively, one
can expect that the larger the dataset is, the more accurate the
decisions will be. It also can be noticed that the solution time of
the MILP model is expectedly smaller than that of the MINLP
model. As a matter of fact, for the case of 8760 intervals, the
MINLP model is unable to find any feasible solution even after
1 00 000 s.

Fig. 6. Clustered data of electricity consumption using K-means++.

TABLE III
RESULTS FOR DIFFERENT INTERVALS IGNORING ENVIRONMENTAL IMPACTS

Furthermore, it is important to remark that the optimal size of
the PV does not depend on the number of intervals. This is due to
the fact that, in this case study, the net zero energy constraint (17),
which is independent from the number of intervals, is binding.

Considering the reformulated MINLP solution as the accurate
reference, the McCormick-based MILP model provides similar
solutions for the case of 12 and 365 intervals. This proves
empirically that the McCormick relaxation is tight enough to
provide the global optimal solution for the size of the PV and
BES systems.

Fig. 7 shows a 3-D visualization of the McCormick relaxation
for the bilinear term of (19). The shape of the latter term is
depicted in Fig. 7(a) and allows us to observe that the non-
linearity is mild. Fig. 7(b) and 7(c) visualizes the McCormick
overestimators and underestimators, respectively. To make the
maximum deviation observable, a side view from the angle of an
observer situated on the intersection line of the underestimator
planes is depicted in Fig. 7(d). As revealed by the case study
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Fig. 7. 3-D visualization of McCormick envelops: (a) bilinear term, (b)
overestimators, (c) underestimators, and (d) side view of the envelopes.

and visualized by these 3-D figures, the McCormick relaxation
is sufficiently tight to converge in practice to the global optimum
of the PV/BES sizing problem.

The SOC of the battery for the case of 365 intervals is shown
in Fig. 8. Comparing Fig. 8 with Figs. 3 and 4, one can conclude

Fig. 8. SOC of the battery for the case of 365 intervals.

Fig. 9. Sensitivity analysis of the proposed model to the environmental impact
constraint for the case of 365 intervals.

that in the warmer seasons, when the electricity consumption
is low, the battery stays fully charged more often. However, in
the colder seasons when the electricity consumption is high,
the battery stays fully discharged as it primarily supplies the
demand.

C. Numerical Results Including Environmental Impacts

1) Residential Building: Now the two models are solved
including the environmental constraint (18). To analyze the
effect of this constraint, a sensitivity analysis is performed as
shown in Fig. 9. This figure displays the objective function of the
problem with respect to different values of EIMmax for the case
of 365 intervals. Interestingly, if EIMmax < 1.706, the problem
becomes infeasible due to incompatibility between the net zero
energy constraint (17) and the environmental constraint (18).
For the values of EIMmax larger than 1.711, constraint (18) is
inactive and the objective function does not change. For the case
of 1.706 ≤ EIMmax ≤ 1.711, constraint (18) is binding and the
optimal solution depends on the value of EIMmax (see Fig. 9).
In other words, EIMmax is an adjustable parameter enabling to
tradeoff the environmental impacts and the economical objec-
tive. It can be concluded that the desired value ofEIMmax should
be selected according to the building owner’s willingness-to-pay
for environmental impacts.

2) Commercial Building: To further demonstrate the effec-
tiveness of the proposed model, a small commercial building
with variable electricity price is considered. The assumed daily
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Fig. 10. Daily electricity price of the commercial building.

Fig. 11. Hourly electricity consumption of the commercial building.

TABLE IV
RESULTS OF MILP MODEL FOR COMMERCIAL BUILDING WITH HOURLY DATA

electricity prices are shown in Fig. 10. Fig. 11 shows the hourly
electricity consumption data for the commercial building, which
is collected form CREOS database [25]. In comparison to the
electricity consumption of the residential building (see Fig. 4),
a weekly pattern of consumption is obvious in the consumption
profile of commercial building (see Fig. 11). Since the com-
mercial building is also located in Luxembourg, the same solar
radiation (PV output) and cost of environmental impacts are
considered.

The simulation results for the case of hourly data (8760 in-
tervals) are shown in Table IV. For 1.870 ≤ EIMmax ≤ 1.876,
constraint (18) is binding and the optimal solution depends on
the value of EIMmax. It can be concluded that consideration of

Fig. 12. Sensitivity analysis with respect to±30% deviation in different inputs
for the case of 365 intervals: (a) PV production, (b) electricity demand, (c)
electricity price, and (d) feed-in-tariff.
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environmental impact constraint (E IMmax = 1.870) results in
a larger objective value. However, it reduces the amount of elec-
tricity bought from the grid by investing in larger PV and BES
systems, and consequently, it reduces the overall environmental
impacts.

D. Sensitivity Analysis

For the case of the residential building with 365 intervals and
E IMmax = 1.711, a complete sensitivity analysis is performed.
Sensitivity of outputs with respect to ±30% deviation in PV
production, electricity consumption, electricity price, and feed-
in-tariff, are shown in Fig. 12(a)-(d), respectively. As illustrates
in Fig. 12(a), by increasing the PV production from −30% to
+30%, the objective value and the optimal size of PV panel are
decreased, while the optimal size of the BES system is constant.
That is due to the fact that a smaller PV panel is sufficient to fulfill
the definition of ZEB (constraint (17)) when the solar radiation
(PV output) is higher. As shown in Fig. 12(b), by increasing the
electricity demand from −30% to +30%, the objective value
and the optimal size of PV panel are considerably increased
(to meet ZEB constraint), while the optimal size of the BES
system is slightly incremental. It is illustrated in Fig. 12(c) that
increasing the electricity price results in a nonlinear increment in
the optimal size of the BES system while the PV size is constant.
Reducing the electricity price by 30% results in zero investment
in the BES system. Finally, by increasing the feed-in-tariff from
−30% to +20%, the optimal size of the PV system is fixed
while a smaller BES system is desired. Increasing the electricity
price by 30% results in investment in a larger PV panel, yet no
BES system is desired [see Fig. 12(d)]. These figures show in
general smooth variations (and sometimes rather steady values)
of optimal PV/BES sizes as parameters change.

IV. CONCLUSION

This article has proposed an enhanced and rigorous mathemat-
ical model of the optimal PV and BES sizing problem in a nearly
ZEB. A key original feature of the model is the inclusion of the
environmental impacts of buying electricity from the grid and
manufacturing PV and BES systems. In addition, an adjustable
parameter has been proposed to quantitatively consider the
building owner’s willingness-to-pay for environmental impacts.

The initial MINLP model has been reformulated in an inno-
vative manner so as to accumulate its nonlinearity in a single
constraint per time interval. Afterward, the reformulated model
has been linearized to an MILP problem exploiting McCormick
relaxation techniques.

The numerical results using archetypal residential and com-
mercial buildings in Luxembourg show that the MINLP model
does not scale well to high time interval resolution, even for
a problem that pertains to the planning stage. More impor-
tantly, extensive simulation results reveal that the proposed
McCormick-based MILP problem formulation yields high ac-
curacy results with light computing effort, scaling well to prac-
tical, high time resolution modeling. The paper has presented
graphical insights underpinning the high accuracy of the MILP
problem.

The outcomes of a sensitivity analysis have indicated a
rather smooth and little dependence of optimal PV and BES
sizes on changes of key parameters. Accordingly, the pro-
posed approach appears as sufficiently mature to inform on PV
and BES decisions for the construction of new fully electric-
consumption ZEBs. The proposed approach is generic and can
be easily adapted to the planning of microgrids operating in
grid-connected mode.

The extent of benefits of the proposed approach is obviously
location-dependent; however, substantially higher financial and
environmental gains are expected in sunnier places than Luxem-
bourg, where solar radiation is slightly below the world average.

Further extensions of this approach regard nonfully electric-
consumption buildings, where thermal loads and thermal pro-
duction/storage elements are present and have to be jointly
optimized with PV and BES. In locations with less favorable
climatic conditions, achieving the ZEB requirement, may entail
cooptimizing the above decisions and energy efficiency mea-
sures (e.g., insulation).
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