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An improved anisotropic vector Preisach model is proposed in this paper to describe the hysteresis properties of nonoriented
(NO) electrical steel sheet (ESS) under 50Hz rotating magnetic fields. *e proposed model consists of three components, static
hysteresis component, eddy current component, and excess component, which is based on the iron loss separation theory. *e
static hysteresis component is constructed by the static vector Preisach model. *e proposed model is identified by the measured
hysteresis properties under 1Hz and 50Hz magnetic fields. Finally, the experimental results prove the effectiveness of the
proposed anisotropic vector hysteresis model.

1. Introduction

With the rapid development of the electrical motor drive
technology, different types of electrical motors are designed
to meet various needs. And, more and more attention has
been paid to the performance and efficiency of the motor.
However, to improve the performance and the efficiency of
the electrical motor in the simulation design stage, accurate
magnetic field distribution and iron loss analysis are ex-
tremely significant. Until now, finite element analyses (FEA)
is one of the most popular and accuracy numerical methods
to calculate the magnetic field distribution and the iron loss
of electrical motor. However, accuracy and speed describe
the hysteresis properties betweenmagnetic field strength (H)
and magnetic flux density (B) is quite essential to calculation
accuracy and speed of FEA.

On the one hand, the magnet filed in the teeth of the
motor is alternating field, and the magnet filed in the yoke is
rotating filed. According to the experimental experience, the
hysteresis properties under rotating field are quite different
from that under alternating fields. However, until now, most

of the commercial FEA software only can consider the al-
ternating fields. *us, the calculation accuracy is not sat-
isfied, and it cannot be used for motor design and
optimization directly. In additional, the nonoriented (NO)
electric steel sheet (ESS) also presents anisotropic properties
under both alternating and rotating magnetic fields in
practice. *erefore, an anisotropic vector hysteresis model
should be developed to describe the vector hysteresis
property of ESS and combined with FEA to analyse the
performance and efficiency of the motor.

Until now, to describe the vector hysteresis property of
ESS and improve the accuracy of FEA, many versions of
hysteresis models have been developed, such as vector
Preisach model, vector Jiles–Atherton (JA) model, vector
E&S model, and vector Play models [1–4]. *e Preisach
model has been widely concerned by many researchers
because of its perfect modelling results, and the Preisach
model is constructed from the physical point of view [5].*e
classical Preisach model is proposed by Preisach firstly [6],
and it is applied to describe the hysteresis property by many
researchers [5, 7–11]. *e original vector version of the
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Preisach model is developed by using the superposition of
the classical scalar Preisach models along different azimuthal
direction [12–14]. And, because the anisotropic properties
cannot consider in the original vector Preisachmodel, it is an
isotropic model. To apply the vector Preisach model to FEA
and analysis the iron loss, a few frequencies dependent
vector Preisach models have been developed based on the
iron loss separation theory [15–17]. However, the above
models are limited pay attention to the anisotropic property.
*erefore, some versions of the vector Preisach model which
can consider the anisotropic properties have been proposed
for NO ESS. However, the model results only can present
weakly anisotropic property, and they do not match the
experimentally measured data well.

In this paper, an improved anisotropic vector Preisach
model is proposed to describe hysteresis behaviour of NO
ESS, which has low anisotropic property. *e proposed
model consists of three components, static hysteresis
component, eddy current component, and excess com-
ponent, which is based on the iron loss separation. *e
static hysteresis component is developed by the vector
Preisach model which is identified by using the experi-
mental data from static magnetic field. *e average static
scalar property is measured from the ring-type core under
1Hz magnetic field. And, the parameter in the proposed
model is identified by using the purely rotating magnetic
fields under 50Hz magnetic fields whose magnitude is
limited to 1.6 T. *e identification and validation of the
model are performed by using measurement data of the NO
ESS, 35PN440, which is obtained from a two-dimensional
(2D) single sheet tester (SST).

2. Static Preisach Hysteresis Model

2.1. Measurement System for the Scalar Preisach Model.
*e vector static Preisach model consisted of the scalar static
Preisach model. *erefore, the scalar version should be
constructed firstly. To construct the scalar Preisachmodel, the
static scalar hysteresis behaviour should be measured.
However, the pure static hysteresis behaviour of ESS without
any eddy current and excess effects is quite difficult to
measure. *erefore, in this paper, the hysteresis behaviour
under 1Hz exciting current is considered as the static hys-
teresis behaviour, and the corresponding measurement sys-
tem is developed shown in Figure 1. In Figure 1, the exciting
coil and the B-coil are wound around the ring-type core. *e
exciting coil is used to generate the magnetic fields, and the
H-waveform can be obtained from the current of the exciting
coil. And, there are 40 and 600 turns of the exciting coil for
lower and higher H value measurement, respectively. *e
B-coil of 20 turns is used to measure the B-waveform. *e
ring-type core is the lamination core, which is made up of the
toroidal NO ESS,35PN440, and it is used to obtain the average
scalar B-H property of the specimen [18].*e inner and outer
diameters of the toroidal ESS are 40mm and 50mm, re-
spectively. *e hysteresis minor loops with different maxi-
mum value of B under 1Hz alternating magnetic fields can be
measured by this experimental device, and the measured
results can be used to identify the static Preisach model.

2.2. Scalar Preisach Model and Its Identification. In FEA
method, the B-waveform is required to calculate the H-
waveform. *erefore, an inverse version of the scalar Pre-
isach model, which outputs H-waveform, can be calculated
from the input B-swaveform by a double integral defined
over the Preisach triangle [4] as follows:

H � Γ(B) � B
α≥β

μ(α, β)cαβ(B(t))dα dβ, (1)

where cαβ is a hysteresis operator [4], which is similar with a
relay as shown in Figure 2 and given as (2), controlled by the
increasing α and decreasing β values of the input B and can
only have +1 and − 1 values, μ is the distribution function of
the hysteresis operators, and it should be identified by the
experimental data:

cαβ B tk( 􏼁( 􏼁 �

+1, if B tk( 􏼁> α,

− 1, if B tk( 􏼁< β,

cαβ B tk− 1( 􏼁( 􏼁, if β≤B tk( 􏼁≤ α.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

*e double integral operation in (1) will consume a lot of
time when the model is applied to FEM. To improve the
identification accuracy and the calculation efficiency of the
Preisach model, an Everett function is defined as follows:

E α0, β0( 􏼁 � B
α0<Bm,β0>− Bm

μ(α, β)dα dβ, (3)

where (α0, β0) is the coordinate of a point within the integral
zone and Bm is the maximum value of B.

*erefore, equation (1) can be instead by addition and
subtraction of the Everett function as follows:

H(t) �

sign B2 − B1( 􏼁 · E B2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, − B2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑

+2 􏽘
N

k�3

E Bk, Bk− 1( 􏼁 Bk − Bk− 1( 􏼁> 0,

− E Bk− 1, Bk( 􏼁 Bk − Bk− 1( 􏼁< 0,
􏼨 k> 1,

0, k � 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

where Bk are the extreme points of the input B-waveform,
and they are stored in the extreme point memory as shown
in Figure 3 [7].

In the traditional identification method, the distribution
function μ or the Everett function should be identified by
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Power
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B-coil
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Signal amplifier

Figure 1: Ring-type hysteresis measurement system.
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using the first-order reverse curve (FORC) [7]. However, the
FORC is quite difficult to measure, and the accuracy of the
measurement results is not satisfied. And, negative values
will appear in the distribution function because of the
measurement errors.

In this paper, the Everett function is defined from exper-
imentally measured symmetric minor B-H loops as follows:

E(α, β) �
h

−
(α, α) − h

−
(α, β), (α + β≥ 0),

h
+
(|β|, α) − h

+
(|β|, β), (α + β≤ 0),

􏼨 (5)

where h+(Ba, B) and h− (Ba, B) are, respectively, the ascending
and descending branches of the symmetric B-H loop with
maximum amplitude Ba.

In this paper, totally 16 symmetric minor B-H loops are
measured from the measurement system in Figure 1, and the
range of Ba is from 0.1 T to 1.6 T; the step is 0.1 T. And, then
the Everett function is identified by the measurement data
and (5). *e result of the Everett function which is identified
by (5) is shown in Figure 4(a), and Figure 4(b) shows the
comparison results between the modelling and measure-
ment results under alternating 1Hz magnet fields with
different values of Ba. From the results, the modelling results
can match well with the measured ones.

2.3. Vector Preisach Model. *e traditional vector Preisach
model consists of the superposition of classical scalar Pre-
isach models along different azimuthal directions as follows:

H � 􏽚
(π/2)

− (π/2)
eϕi

Hφi
Bφi

􏼐 􏼑dφ, (6a)

Hφi
Bφi

􏼐 􏼑 � B
α≥β

η α′, β′( 􏼁􏽢c Bφi
􏼐 􏼑dα′dβ′, (6b)

where Hφi is the output H-waveform of the classical scalar
Preisach model along the direction of φi, having the input B-
waveform along the direction of Bφi as input, and η is the
vector distribution function corresponding to the vector
Preisach model.

According to the scalar Everett function E(α, β), the
vector Everett function F(α′, β′) is proposed to implement
the vector Preisach model, and it can be calculated from the
classical scalar Everett function as follows:

F(α, β) � 􏽚
(π/2)

− (π/2)
cosφE(α cosφ, β cosφ)dφ. (7)

To implement the improved anisotropic vector Preisach
model, equation (5) should be rewritten to its discrete format as

H � 􏽘
n

i�1
eφi

Hφi
Bφi

􏼐 􏼑ωi, (8)

where ωi is the Gauss integral weight, and (6a) and (6b) can
be solved by using the method which is explained in [7].

To consider the anisotropic property, the input B-wave-
form along the azimuthal direction φi can be calculated as

Bφi
� |B|δ cos θB − φi + ψ( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1/ω

, (9)

where δ � sign(cos(θB − φi+ψ)), ω is a parameter to consider
the anisotropic property, and ψ is a parameter which is used to
control the initial phase of the H-waveform. If the parameter
ω� 1, the output of H-waveform is purely circle under the
circle rotating magnetic field. And, when ω> 1, the result is
flower shape and it can simulate weakly anisotropic behavior.

3. Proposed Preisach Hysteresis Model

3.1. Measurement System. In this paper, a round-type two-
directional single sheet tester (R-2D-SST), as shown in
Figure 5 is developed to measure the vector hysteresis
properties for NO ESS under both alternating and rotating
50Hz magnetic field conditions [19–21]. Its specifications
are shown in Table 1.

3.2. Traditional Vector Preisach Model. Based on the theory
of iron loss separation, Dlala [10] proposed a simple hys-
teresis model. And, the model assumes that the total H is
composed of three components as follows:

Htotal � 􏽘
n

i�1
Hφi

(t)eφi
Δφi, (10a)

Hφi
� Hhys Bφi

(t)􏼐 􏼑 +
σd

2

12
dBφi

(t)

dt
+ δe

1
r

dBφi
(t)

dt
􏼠 􏼡

(1/p)

,

(10b)

where hysteresis is calculated from scalar Preisach model,
Bφi is calculated by (9), d is the thickness of ESS, σ is the
conductivity, and the parameters r, p, ψ, and ω can be fitted

B (t)

γαβ [B(t)]

αβ

+1

–1

Figure 2: A hysteresis operator with the increasing value α and
decreasing value β.

B1 B3 B2k–1

B2

B0 = 0
B4 B2k = Bt

Figure 3: Extreme point memory of the input B-waveform.
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by experiential data. However, the model only can describe
the weakly anisotropic behavior.

3.3. Improved Model. *e shape of the H-waveforms under
the circle rotating magnetic fields with the different

maximum values of |B| Bmax is quite different. *erefore,
only one set of parameters in the original model cannot
match most of the rotating magnet fields. *erefore, an
improved model is proposed as follows:

Htotal � 􏽘
n

i�1
Hφi

(t)eφi
ωi, (11a)

Hφi
� Hhys Bφi

(t)􏼐 􏼑zi |B|,φi( 􏼁 +
σd

2

12
dBφi

(t)

dt

+ δe

1
r(B)

dBφi
(t)

dt
􏼠 􏼡

(1/p(B))

,

(11b)

Bφi
� |B|δ cos θB − φi + ψ(B)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (11c)
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Figure 4: Modeling results of the scalar Preisachmodel. (a) Everett function. (b) Comparison of the measured (dot line) andmodeledminor
B-H (solid line) loops under alternating 1Hz magnetic fields.
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Figure 5: R-2D-SST for vector hysteresis measurement. (a) Overall configuration. (b) Detailed positions of the B-coil and H-coil.

Table 1: Specifications of the R-2D-SST system.

Item Detail
Type Round
Specimen Diameter d� 162.5mm
B-coil width 40mm
H-coil region 40× 40mm2

Shield Upper and lower
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where zi is used to describe the anisotropic properties of ESS.
In the model, the parameters r, p, and ψ are assumed as
piecewise linear shape functions as

r Bj􏼐 􏼑 � r Bj− 1􏼐 􏼑 +
μr,j

ΔB
, (12a)

p Bj􏼐 􏼑 � p Bj− 1􏼐 􏼑 +
μp,j

ΔB
, (12b)

ψ Bj􏼐 􏼑 � ψ Bj− 1􏼐 􏼑 +
μψ,j

ΔB
. (12c)

And, the parameter z is assumed as a 2-D piecewise
linear shape functions as

z φi, Bj􏼐 􏼑 � z φi− 1, Bj􏼐 􏼑 +
λz,i

Δφ
, (12d)

where ΔB� 0.1 T and Bj � jΔB, j� 4, 5, . . ., 16. Δφ� 20° and
φi � i Δφ, i� 0, 1, . . ., 8. And, μψ,j, μr,j, μp,j, and λz,i can be
identified from the measured vector B-H locus under circle
rotating fields whose magnitude is Bj by using the particle
swarm optimization (PSO) method.

*e objective function is defined as the root-mean-
squared error between the measured values and the calcu-
lated values of one B-H loop under circle rotating fields
whose magnitude is Bj, as follows:

errorH �
1
T

􏽚
T

Hexper − Hmodel􏼐 􏼑
2
dt

≈

�������������������

1
n

􏽘

n

1
Hexper − Hmodel􏼐 􏼑

2

􏽶
􏽴

,

(13)

where n is the number of sampling points of the vector
hysteresis locus, Hexper is the measure magnetic field strength
values on the sampling points, and Hmodel is the modelling
magnetic field strength values on the sampling points.

In addition, the effective applied range of the proposed
model depends on the maximum B value of the measure-
ment B-H locus which is used to identify the model.

3.4.ModelingResults. In this paper, a set of vector B-H locus
of NO ESS 35PN440 under 50Hz is measured by using
R-2D-SST. And, the B-H locus under the pure rotating
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Figure 6: Identification results of parameters (a) z, (b) r, (c) p, and (d) ψ.
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magnet field for the range of 0.4≤Bmax≤ 1.6 (T), which step
is 0.1 T, is used to identify the parameters in the proposed
vector Preisach model by using PSO method. *e identifi-
cation results of parameter z, r, p, and ψ are shown in
Figure 6.

*emeasured, original, and proposed modellingH locus
under circular rotating magnetic field conditions when
Bmax � 1.6 T and Bmax � 1.48 T are compared and shown in
Figure 7. From the figure, the accuracy of the proposed
model is much higher than the original model under the
both rotating magnetic fields. In addition, the measured H
locus when Bmax � 1.6 T is used to identify the parameter in
the proposed model, while when Bmax � 1.48 T it is not used.

*e measured and improved modelling H locus under
circular rotating magnetic field conditions with different
Bmax value is compared and shown in Figure 8. In the figure,
the H locus for Bmax � 1.3 T, 1.4 T, and 1.5 T is used in the

identification of parameters z, r, p, and ψ. While those for
Bmax � 1.25 T, 1.35 T, 1.45 T, and 1.48 T, it is not used. From
the figure, the proposed vector hysteresis model can predict
the vector hysteresis properties very accurately under var-
ious rotating magnetic fields. However, the accuracy when
Bmax is 1.45 T and 1.48 T is lower than others because of the
interpretation method is used to obtain the parameter in the
model.

*e H locus predicted by the proposed model for al-
ternating magnetic fields of Bm � 1.6 T along rolling and
transverse direction is shown in Figure 9 together with that
from measured data. From the figure, the proposed model
also can simulate the hysteresis properties for unidirectional
scalar hysteresis properties. And, the deviation dH between
the measured and modelling results along rolling and
transverse direction is 3.47% and 4.51%, respectively. And,
the deviation, dH, is defined as
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Figure 7: Comparison of the measured, original, and proposed results under circle magnetic fields. (a) Bmax � 1.6 T. (b) Bmax � 1.48 T.
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dH �

������������������������

􏽐
N
i�1 Hmea τi( 􏼁 − Hmod τi( 􏼁( 􏼁

2
􏽱

N max Hmea( 􏼁 − min Hmea( 􏼁􏼈 􏼉
× 100[%], (14)

where N is the number of sampling points of the B-H loop, τ
stands for ωt ∈ [0, 2π] with as the angular frequency of a B-
waveform, and Hmea and Hmod are the measured and
modelling H-waveforms, respectively.

Figure 10 shows the modelling performance of the
proposed vector hysteresis model when it is applied to
elliptically rotating magnetic field conditions. *e pre-
dicted and measured results match well each other, and it is
shown that the proposed vector hysteresis model can be
successfully applied to various rotating magnetic field
conditions.

4. Conclusion

In this paper, an improved anisotropic vector Preisach
hysteresis model is proposed to describe the vector and
weakly anisotropic hysteresis behavior for NO ESS under
50Hz rotating magnetic fields. *e proposed model consists
of three components, static hysteresis component, eddy
current component, and excess component, and coefficients
z, r, p, and ψ are introduced to increase the anisotropic
property and the accuracy. *e proposed model is identified
by the measured hysteresis properties under 1Hz and 50Hz
alternating and rotating magnetic fields. And, because
maximum B value of the measured data for identification is
1.6 T, the limitation of the model is only up to the magnetic
field whose Bmax � 1.6 T. *rough applications to NO ESS,

0 3500
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Figure 9: Result comparison of proposed model (solid line) and measured data (mark) under alternating magnetic fields along rolling and
transverse directions.
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the proposed vector hysteresis model is proven to describe
the anisotropic properties under various rotating magnetic
fields.
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