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Significance: This study is the first to demonstrate that the size of pain referral can be modulated 

by engaging endogenous pain inhibitory mechanisms. This method can be used as an 

approximation to test the sensitivity of central pain mechanisms.  
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ABSTRACT 

Background: Endogenous pain inhibitory mechanisms are known to reduce pain intensity, but 

whether they influence the size and distribution of pain referral is unclear. This study aimed to 

determine if referred pain is reduced by applying a remote, conditioning painful stimulus.  

Methods: Twenty-four healthy men participated in this randomized, crossover study with a 

control and conditioning session. Referred pain was induced from the infraspinatus muscle 

(dominant side) by a painful pressure for 60-s. When applying pressure, the intensity was 

adjusted to a local pain intensity of 7/10 on a numerical rating scale. In the conditioning session, 

tonic painful pressure was simultaneously applied to the non-dominant leg during induction of 

referred pain. The area of referred pain was drawn onto a digital body chart and size extracted for 

data analysis.  

Results: For the total group and in a subgroup with distinct patterns of referred pain (n=15/24), 

the pain area perceived in the back and front+back, was smaller during the conditioning 

compared with the control (P<0.05). No significant difference was found between sessions in a 

subgroup only demonstrating local pain (n=9/24).   

Conclusions: Engaging the descending noxious inhibitory control reduced the size of pain areas 

predominately when distinct pain referral was present. Assuming a conditioning effect due of 

descending inhibitory control acting on dorsal horn neurons, these findings may indicate that 

mechanisms underlying pain referral can be modulated by endogenous control.   The findings 

may indicate that referred pain may be a useful proxy to evaluate sensitivity of central pain 

mechanisms as previously suggested. 

Significance: The current results indicate a link between endogenous inhibition and pain 

referral. Descending inhibitory control effects on pain referral support a spinal mechanism 

involved in pain referral. Future studies should investigate whether the spatial characteristics of 

referred pain (e.g., size, frequency of affected body regions and distribution away from the 

primary nociceptive stimulus) can useful to evaluate the efficiency of endogenous pain 

modulation. 

 

INTRODUCTION A
cc

ep
te

d 
A

rt
ic

le



 

This article is protected by copyright. All rights reserved 

A common phenomenon in musculoskeletal pain is the spread of pain beyond the site of original 

complaint or injury also known as referred pain (Graven-Nielsen 2006). Referred pain can be 

experimentally provoked in subjects by applying a noxious stimulus to the somatic structures, 

such as muscle (Graven-Nielsen 2006), tendon (Drew et al., 2017; Gibson et al., 2006b), 

ligaments (Palsson et al., 2015; Tsao et al., 2010), joints (Khan et al., 2004; Murakami et al., 

2017), and bone (Bastianelli 1939). Any pain subsequently perceived beyond the site of the 

applied painful stimulus is considered referred pain and can vary in size and distribution. In some 

cases, healthy individuals only report local pain at the site of the applied stimulus while others 

report an extensive spread of referred pain (Domenech-Garcia et al., 2016; Doménech-García et 

al., 2018; Palsson et al., 2020).  

There exist a number of protocols for inducing referred pain, such as injection of 

hypertonic saline (Gibson et al., 2006b), intramuscular electrical stimulation (O'Neill et al., 

2009), and suprathreshold pressure stimulation on muscle (Domenech-Garcia et al., 2016; 

Domenech-Garcia et al., 2018; Gibson et al., 2006b). The size of experimentally-induced 

referred pain depends on the intensity of the nociceptive drive where the intensity of pain is 

associated with the size (both total size and distribution away from the primary nociceptive 

stimulus) of pain referral area in experimental (Domenech-Garcia et al., 2016; Palsson et al., 

2015) and clinical conditions (O'Neill et al., 2007; Slater et al., 2005).  

Findings from animal studies indicate that peripheral nociceptive drive evoked by the 

painful stimulus to deep tissue may lead to an unmasking of latent synaptic connections at dorsal 

horn neurons (Hoheisel et al., 1993). The unmasking of latent synaptic connections is considered 

a mechanism for enlarging receptive fields of dorsal horn neurons (Hoheisel et al., 1993) and 

may mediate the spreading of pain in humans (Graven-Nielsen 2006; Mense 1994). Assuming 

involvement of multi-segmental dorsal horn neurons in the mechanism of referred, it is possible 

that descending inhibitory control systems may reduce the referred pain distribution without 

affecting the original noxious stimulus. Descending pain control mechanisms are brainstem-

mediated (Bannister and Dickenson 2017; Stroman et al., 2018) and can modulate the sensitivity 

of postsynaptic wide dynamic range neurons transmitting nociceptive information (Bannister and 

Dickenson 2017; Ossipov et al., 2014; Villanueva et al., 1984). By applying a distant painful 

stimulus as conditioning, it is possible to engage a general descending pain inhibition which, in a 

healthy system, results in a reduction in pain sensitivity. The conditioning pain modulation A
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effects have been successfully assessed with e.g. the cold pressor (Skovjerg et al. 2017) and 

mechanical cuff (Graven-Nielsen et al. 2015) as conditioning stimulation.  

The purpose of this study was to investigate whether the size of pain referral areas can be 

modulated by engaging descending inhibitory control mechanisms through a tonic heterotopic 

pain conditioning stimulus. It was hypothesized that the size of pressure-induced referred pain, 

would be reduced by a remote painful conditioning stimulus.   

 

 

METHODS 

Participants  

Twenty-four male healthy volunteers participated in this study. Inclusion criteria was age 

between 18 – 40 years, free of pain specific to the shoulder and in general. Exclusion criteria 

were current or prior serious musculoskeletal injury to and/or surgical interventions, particularly 

to the shoulder, neck and thoracic spine, current or previous history of substance abuse. 

Recruitment occurred through advertisements at the university campus and social media 

platforms. All volunteers received detailed information about the protocol and gave informed 

consent prior to entering the study. The local Ethics Committee approved this study (N-

20150051) which was conducted in accordance with the Helsinki Declaration. 

  

Protocol  

This study consisted of two experimental sessions (Control and Conditioning) performed on two 

consecutive days, separated by at least 24 hours. The sessions were performed in a randomized, 

balanced cross-over design. Pressure pain sensitivity at the infraspinatus muscle on the dominant 

side was assessed and participants drew the area(s) of pain onto a digital body chart in response 

to the tonic painful pressure stimulation. The two sessions were identical with the exception that 

a secondary and remote painful stimulus was applied to the contralateral (non-dominant) lower 

leg during the conditioning session. All stimuli were applied by the same member of the research 

team who has a significant experience with using this stimulation method in research (VDG).   

 

Assessment of pressure pain sensitivity A
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In the beginning of both sessions, pressure pain thresholds (PPTs) were recorded at the 

infraspinatus muscle on the dominant side. All assessments and stimuli in both sessions were 

performed with the subject lying in prone position with the arms down the sides of the body. The 

assessment site was located by the cut-point of two lines; one coming perpendicular from the 

mid-part of medial margin of the scapula and the other from the midpoint of the spine of 

scapulae towards angulus inferior (Domenech-Garcia et al., 2016). The PPT was determined by 

taking the geometric mean of three PPTs using a handheld pressure algometer (SBMedic, 

Sweden) mounted with a circular probe (1cm
2  

contact area). The pressure was gradually 

increased at a constant rate of 30kPa/s until the stimulation became slightly painful. At this point, 

the subject pressed a button to indicate that the PPT was reached and the pressure was recorded. 

The PPT values were used to confirm that baseline tissue sensitivity was comparable between 

sessions.   

 

Experimentally-induced referred pain 

To induce experimental referred pain in the shoulder, tonic pressure was applied to the 

infraspinatus assessment site using the handheld pressure algometer (SBMedic, Sweden). As the 

spreading of pain referral is dependent on the intensity of the nociceptive stimulus (Graven-

Nielsen 2006), the stimulus intensity had to be kept constant and compensate for a potential 

effect of the conditioning and to ensure that all participants got stimulated at the same 

relative intensity. This way, all participants had the same, relative pain experience. This 

was achieved by applying a constant, nociceptive pressure stimulus which caused a local muscle 

pain rated as 7 out of ten on a numeric rating scale (NRS7). The pressure intensity was gradually 

increased (30 kPa/s) and when reaching NRS7, the pressure was held steady for 60 seconds. This 

stimulation intensity was chosen based on previous findings (Domenech-Garcia et al., 2016) 

where a stimulation intensity of 5.5-7.5 out of 10 resulted in an extensive pain referral 

pattern in the majority of subjects. The subject was instructed to lie still during the whole 60 

seconds and relax. The numeric rating scale was positioned on the floor in clear view of the 

subject during the stimulation. Approximately every 10 seconds, the assessor asked the subject 

whether the pain intensity had changed from 7/10 using the question “How bad is the pain you 

feel from the pressure on your shoulder? If any changes had occurred, the pressure was 

changed accordingly. The pressure intensity registered at the end of the 60 seconds was extracted A
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for data analysis. The pressure needed to evoke pain NRS7 was registered in both sessions. This 

value was expected to increase during the conditioning stimulus and thus reflect increased 

activity of endogenous pain inhibition (Kennedy et al., 2016). Immediately after releasing the 

pressure, the subject was asked to draw all the pain area (inside and outside the stimulation site 

on the front and back side) on a digital body chart (Navigate Pain, Aalborg University, 

Denmark)(Boudreau et al., 2014).  

Based on the pain drawing data, the total size of the referred pain area (expressed as pixels) 

was extracted for the total group. As referred pain is defined as pain occurring outside the 

stimulation site (Arendt-Nielsen and Svensson 2001), only pain external to the boundaries of the 

medial and lateral scapular borders, angulus inferior below, and the spine of the scapula above 

was considered to be referred pain. This process was done by visual inspection of the body charts 

in the post-processing phase. For the referred pain group, the area size and spread of the referred 

pain area was extracted.  

The distribution of referred pain on the digital body chart was post-processed to calculate 

the maximum length or radiating spread of pain from the ipsilateral earlobe to the most distally 

located pixel on the body chart. The purpose of calculating the radiating spread was to determine 

any change, proximal or distal, in pain distribution when inducing a remote, painful stimulus. 

The earlobe was chosen since it is an anatomical landmark clearly identifiable from both the 

front and back view on the body chart.  

 

Remote painful stimulation  

A cuff algometer (NociTech, Aalborg, Denmark and Aalborg University, Aalborg, Denmark) 

was used in the conditioning session to assess the cuff pressure pain and to induce a constant, 

painful pressure on the lower leg. The technique has previously been shown capable of activating 

endogenous pain inhibitory mechanisms in healthy individuals (Graven-Nielsen et al., 2017; 

Imai et al., 2016) and has been used to demonstrate reduced efficiency of endogenous inhibitory 

mechanisms in chronic pain patients compared with controls (Graven-Nielsen et al., 2015; Imai 

et al., 2016; McPhee and Graven-Nielsen 2019a; Petersen et al., 2019; Skou et al., 2013). A 

double-chamber cuff (VBM, Sulz, Germany) was placed on the lower leg on the non-dominant 

side, with the upper rim of the cuff being level with the head of fibula. For mechanosensitivity 

assessments, both chambers of the cuff were inflated gradually (1 kPa/s). The participant used an A
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electronic visual analogue scale (VAS) to rate the intensity of pressure pain. The VAS was 

anchored with 0 as ‘no pain’ and 10 cm as ‘worst pain imaginable’. The pressure pain detection 

threshold (PDT) was defined as the pressure where the VAS score exceeded 1 cm the first time. 

The subject was asked to continuously rate the pain intensity on the VAS as the cuff pressure 

increased. When the pressure reached the level where it became intolerable (VAS 10/10), the 

participant was instructed to press a button that stopped the cuff pressure stimulation and the cuff 

was deflated. The pressure where the stimulation was stopped defined the pain tolerance 

threshold (PTT). The PTT was recorded twice, and the average value used for further analysis. In 

case the PTT was not reached before reaching the safety limit (100 kPa) of the cuff algometer, 

the PTT was defined as 100 kPa. To induce a tonic painful conditioning stimulus, the pressure 

cuff was inflated rapidly (100 kPa/s) until it reached a pressure level equivalent to 80% of PTT. 

This pressure was maintained while referred pain assessment protocol was induced (see 

description above) and the cuff was deflated immediately after.  

 

Statistics 

Parametric distributed data are presented as mean and standard errors of the mean (SEM) and 

non-parametric data as median and interquartile range [IQR, 0.25 – 0.75]. Distribution 

characteristics of data was determined by the Shapiro-Wilk test. Considering that as subset of 

healthy individuals do not develop referred pain from a nociceptive stimulus (Graven-Nielsen 

2006), an analysis was done for the whole group but also separately based on the control session 

for those who developed referred pain and those who did not. Previous studies with group sizes 

of n=18 to n=20 have shown that a nociceptive stimulus to muscle tissue causes referred pain 

(symptoms outside the stimulation area) in approximately 60% of cases, which is further 

increased with tissue sensitization (Domenech-Garcia et al., 2016; Gibson et al., 2006a; Gibson 

et al., 2006b). Therefore, we expected that 15/24 subjects would demonstrate a reduction in pain 

referral during the conditioning session. A distinction was made between the groups based one 

whether pain was felt remote to the stimulation site (pain referral, according to the definition 

above) or not (no-pain referral).  

For the whole group analysis, between-session comparisons were based on a paired t-test 

or a Wilcoxon test. All pairwise comparisons were Bonferroni corrected to account for multiple 

comparisons. A significance level of 0.05 was accepted.  A
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RESULTS 

All participants completed all parts of the study. Therefore, a full dataset from 24 male subjects 

(27 years (range 18-37)) was available for data analysis with 15 subjects (27 years (range 18-37)) 

reporting referred pain in the control session.  

 

Baseline pressure-pain sensitivity at the infraspinatus muscle 

No differences were found in baseline PPTs at the infraspinatus muscle when comparing the 

control and conditioning sessions (Table 1, t(23) = 0.87, P = 0.391) or when comparing the 

referred pain group and non-referred pain groups within sessions and between groups (ANOVA: 

F(1,1) = 0.41, P = 0.534).  

The pressure needed to induce pain at NRS7 was comparable between the control and 

conditioning sessions in the whole group (t(23) = 0.484, P = 0.634).  

 

Cuff conditioning 

No difference was found in PDT between the referred pain (29.8 ± 12.0 kPa) and the non-

referred pain (31.0 ± 17.8 kPa) groups (t(22) = -0.22, P = 0.188). Likewise, no difference was 

found in PTT between the referred pain group (64.2 ± 18.6 kPa) and the non-referred pain (61.5 

± 20.2 kPa) groups (t(22)= 0.34, P = 0.747). Thus, the intensity of the painful remote stimulus 

was comparable between the two groups.  

 

Pressure-induced referred pain 

In general, pressure-induced pain was found at the stimulation site (local pain) and referred to the 

anterior and posterior shoulder/arm/hand (Fig. 1). Therefore the size of pain referral was 

extracted for both the front and back view drawings. In general, the referred pain area was 

larger in the back view compared with the front view at both time points (control and 

conditioning) and also when analysing the total group or the referred pain and non-

referred pain groups separately. For the total group, the pain drawings at the back revealed a 

smaller pain area in the conditioning compared with the control session (Wilcoxon: Z = 2.26, P = 

0.024), which was not significant for the front (Wilcoxon: Z = 51, P = 0.079). The sum of 

reported pain area from the front and back body charts was different between the control and A
cc

ep
te

d 
A

rt
ic

le



 

This article is protected by copyright. All rights reserved 

conditioning sessions with a smaller area in the conditioning session in the total group 

(Wilcoxon: Z = 3.17, P = 0.003, Table 2).  

Pain areas were extracted where the changes between sessions represent differences in 

number of pixels drawn regardless of whether these were outside (referred-pain) or only within 

(non-referred pain) the stimulation area  (table 2).  Within the referred pain group, a reduction in 

size of the painful area in the back-view found in the conditioning session compared with the 

control session (Wilcoxon: Z = 2.7, P = 0.009), but not in the front-view of the body chart 

(Wilcoxon: Z = 0.94, P = 0.683). In the referred pain group, the total pain area (front + back) was 

smaller in the conditioning session, compared with the control session (Wilcoxon: Z = 3.01, P = 

0.005, Table 2). None of the subjects in the referred pain group drew a pain area only within the 

stimulation area in the conditioning session. For the non-referred pain group, no significant 

difference was found between the two sessions in the front-view of the body chart (Wilcoxon: Z 

= 1.37, P = 0.341), at the back-view (Wilcoxon: Z = 0.18, P = 0.852), or in both (Wilcoxon: Z = 

1.13, P = 0.524). Two subjects from the non-referred pain group drew areas of pain outside the 

stimulation area in the conditioning session.  

 

Distribution of pressure-induced pain 

No significant difference was found in the length of pain distribution between the control and 

conditioning sessions for the total group (n = 24) in the front or back view (Wilcoxon: Z = -0.36: 

P = 0.361). The referred pain group showed no significant difference between the control and 

conditioning sessions for the length of pain spread in the front-view of the body chart (Wilcoxon: 

Z = -1.78: P = 0.152) or the back (Wilcoxon: Z = -2.04: P = 0.082).  

 

 

DISCUSSION 

This is the first study to show a painful and remote conditioning stimulus reduces the area of 

referred pain originating from the location of the primary pain-evoking stimulus. These results 

provides further support for the mechanisms involved in referred pain and indicate that the 

distribution can be modulated by descending control systems.  

 

Modifying the mechanisms of referred pain A
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In this study, referred pain was induced in the infraspinatus muscle as it is known that a painful 

stimulation of the shoulder blade muscles causes a large pain referral in healthy individuals 

(Domenech-Garcia et al., 2016; Leffler et al., 2000) as also confirmed by the present findings. 

However, stimulating other body areas may not result in a similarly extensive pain referral 

(Graven-Nielsen 2006), indicating that the current findings might be non-replicable in muscles 

predominately evoking local pain (e.g. biceps and triceps brachii muscles) in contract to other 

muscles with prominent pain referral (tibialis anterior and brachioradialis muscles)(Graven-

Nielsen 2006).   

Patients suffering from chronic musculoskeletal pain demonstrate expanded patterns of 

referred pain, as evoked from a standardized nociceptive stimulus and this is considered to be a 

result of facilitated central mechanisms (Graven-Nielsen and Arendt-Nielsen 2010; Kosek and 

Januszewska 2008; O'Neill et al., 2007). More recently, it has been shown that individuals who 

have recovered from a shoulder fracture or an ankle injury, demonstrate a facilitated pain referral 

(Domenech-Garcia et al., 2018; Palsson et al., 2018) which also underscores that central 

sensitization can persist in asymptomatic (pain-free) cases. This current study indicates that such 

a distribution can be reversed in healthy individuals. Reduced efficacy of endogenous pain 

inhibition, as observed in patients with chronic musculoskeletal pain (Christensen et al., 2020; 

Gerhardt et al., 2017; McPhee and Graven-Nielsen 2019b), are referenced as mechanisms 

contributing to widespread/multisite pain but not local pain (Gerhardt et al., 2017). However, 

administering ketamine, an NMDA antagonist, it is possible to reduce the area of pain referral in 

fibromyalgia patients (Graven-Nielsen et al., 2000) and healthy controls (Schulte et al., 2003), 

revealing the central nature of mechanisms underlying pain referral. Referred pain is likely a 

result of an enlargement in the receptive fields with an engagement of both nociceptive-specific 

and wide dynamic range neurons in laminae I-VI (Hoheisel et al., 1993). Moreover, mechanisms 

of descending modulation also terminate on laminae I/III, II and V/V1 (Patel and Dickenson 

2020; Suzuki et al., 2002; Todd 2010), where wide dynamic range neurons are specifically 

modulated by endogenous pain inhibitory mechanisms (Guan et al., 2006). This overlap in 

mechanisms terminating on and thus potentially affecting the same wide dynamic range neurons 

therefore provides a potential neuroanatomical link that may explain the modulatory effects of 

pain referral in the present study.  A
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The nervous system undergoes several changes following a nociceptive insult, both at 

cortical (De Martino et al., 2017; Schabrun et al., 2016), spinal (Gong et al., 2019; Kuner and 

Flor 2016) and peripheral level (Schaible et al., 2011). Previously, it has been suggested that the 

size of pain referral patterns could be a useful proxy for evaluating the sensitivity of central pain 

mechanisms (Domenech-Garcia et al., 2016; Graven-Nielsen and Arendt-Nielsen 2010). There 

are a number of limitations to this premise: the stimulation intensity is difficult to standardize 

with manual palpation but the size of referred pain areas is related with stimulation intensity 

(Arroyo-Fernandez et al., 2020; Palsson et al., 2020). Therefore, even though referred pain can 

be induced by manual stimulation (Schiffman et al., 2014), it would be unrealistic to believe that 

manual stimulation can be standardized across individuals and clinicians making the 

quantification of day-to-day differences unreliable. Another factor to consider is the variance in 

pain referral patterns between individuals as observed in this study and others (Boudreau et al., 

2017; Boudreau et al., 2018; Domenech-Garcia et al., 2016; Gibson et al., 2006b; Palsson et al., 

2018). Recently, it was demonstrated that variability in pain referral is greater with lower 

stimulation intensities (Palsson et al., 2020) where the optimal stimulation intensity, based on 

variability of pain referral, is above 30% of the PPT as also used in the present study (table 1). In 

the Palsson et al study, higher intensities did not reduce the coefficient of variance for pain 

referral additionally. This variability in a healthy system makes it difficult to determine the level 

of pain sensitivity on an individual patient level. Moreover, it is important to consider the 

spectrum of responses to a nociceptive conditioning stimulus where both healthy individuals 

(Firouzian et al., 2020) and people with chronic pain (Rabey et al., 2015; Vaegter and Graven-

Nielsen 2016) can demonstrate either pro- and/or anti-nociceptive response to a standardized 

nociceptive stimulus even though they belong to the same group. Here, it is essential to consider 

that a range of cognitive and emotional factors can, via the endogenous inhibitory mechanisms, 

modulate the excitability of post-synaptic neurons (Bushnell et al., 2013).  

 

 

Factors affecting referred pain  

In this study, participants were asked to focus on the area of referred pain caused by a minute-

long pressure stimulus. This was done with and without a competing nociceptive stimulus from 

the lower leg. In this case, it can be relevant to consider that acute pain negatively affects the A
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ability to perform tasks that require cognitive resources (Moore et al., 2019). It could therefore 

be argued that the reduction in pain area due to the painful conditioning stimulus (table 2) merely 

reflects a cognitive disturbance. The influence of attention on endogenous pain inhibition has 

however previously been questioned (Lautenbacher et al., 2007; Moont et al., 2010). 

Interestingly, recent evidence suggests that persons with a less efficient conditioned pain 

modulation response get an analgesic response from diverting the attention whereas this does not 

affect those with a better functioning system (Hoegh et al., 2019). This underlines that in a 

healthy system, individual differences, including general sensitivity of the pain system, can 

potentially explain why only 15 out 24 subjects experienced referred pain in this study. Such 

individual characteristics may likewise explain that two subjects from the non-referred pain 

group indicated referred pain in the conditioning session. The proportion of subjects developing 

referred pain is similar to what has previously been demonstrated in healthy subjects 

(Domenech-Garcia et al., 2018; Gibson et al., 2006a; Graven-Nielsen and Arendt-Nielsen 2010; 

Lei and You 2012).  

 In this study we set out to draw parallels between endogenous pain inhibition and the size 

of somatic referred pain. It is however important to acknowledge the potential role of segmental 

inhibition on the findings, especially considering that 40% of the participants did not experience 

referred pain. The mechanism is considered to involve activation of segmental wide-dynamic 

range dorsal horn neurons that, depending on their sensitivity may facilitate or attenuate afferent 

signals from the periphery (Hao et al., 1992; Yang et al., 2014). For clinical pain management, 

this mechanism is actively employed in spinal cord stimulation (Taylor et al., 2014). Although 

speculative, it is possible that the combined effect of descending endogenous and segmental 

inhibition is necessary to gain sufficient pain relief. An investigation hereof is warranted.   

Nociceptive afferent input can be suppressed by cognitive and emotional processes; 

processes, that also involve endogenous pain modulating circuits (Bannister and Dickenson 

2017; Bee and Dickenson 2009; Doan et al., 2015). Interestingly, a strong association seems to 

exist between pain referral and negative emotionality where an experimentally-induced referred 

pain area is larger in pain-free individuals with negative emotions (Lee et al., 2013). It is 

however unclear whether relationship exists between psychological factors and pain drawings 

reported by people living with chronic musculoskeletal pain (Reis et al., 2019). When evaluating 

the size and distribution of pain areas, it is therefore important to account for the complicated A
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interactions between nociceptive processes, cognitive and emotional factors and the endogenous 

inhibitory circuits.  

 

Limitations and future steps for methodological refinement  

When designing the study, the stimulation intensity required to induce NRS7 was expected to 

increase during the conditioning nociceptive stimulus applied the lower leg, similar to what has 

been demonstrated in other experimental pain studies (Graven-Nielsen et al., 2017; Imai et al., 

2016). This did however, not occur most likely because the high stimulation intensity (NRS7) 

resulted in a ceiling effect with little or no space for an additional increase during the 

conditioning state. Adding a distant PPT site would allow an evaluation of the effectiveness of 

endogenous pain inhibition. Also, this would allow for an evaluation of a potential relationship 

between the effectiveness of endogenous pain inhibition and changes in the pain referral area and 

should therefore be recommended in future studies with a similar aim. The pressure applied to 

induce NRS7 was adjusted approximately every 10 seconds if needed to ensure the relative 

pain intensity was similar for all participants throughout the sixty seconds. The pressure 

level after 60 seconds was extracted for data analysis but we did not record if/how often the 

pressure was adjusted during the stimulation.  Although it is unclear whether this would 

have changed the outcome, it could have enhanced the accuracy if we could have used e.g. 

the average pressure stimulation value instead of the final one.  

The effect of the conditioning is related to the conditioning intensity, where a more intense 

conditioning stimulus results in a greater descending inhibitory response (Arendt-Nielsen et al., 

2015; Graven-Nielsen et al., 2017; Kennedy et al., 2016). In this study, the two stimuli were 

relatively comparable, i.e. 80% of PTT for the pressure cuff and NRS7 for the handheld 

algometer and applied simultaneously in the conditioning session. However, it must be 

acknowledged that continuous monitoring of the stimulation was only possible with the handheld 

pressure algometer. Therefore, we cannot fully know if the PTT (and thereby also 80%PTT) 

changed during the 60 seconds. Once engaged, the activity of endogenous pain inhibitory 

mechanisms can remain in a facilitated state 3-5 minutes (Graven-Nielsen et al., 1998; Lewis et 

al., 2012), gradually fading over time (Pud et al., 2009). Therefore, to circumvent the bi-

directional nature of the two stimuli used here, assessing the pain referral immediately after the 

cuff pressure was relieved could have been possible. A
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The inclusion of only male participants in this study may underrepresent the occurrence of 

referred pain in the general population as females show a higher frequency of experimentally 

evoked referred pain (Frey Law et al., 2008; Graven-Nielsen 2006). Generalizing the study 

findings should be done with care, considering the small sample size and large variability in 

pain referral. A similar study with a larger sample, including males and females is 

warranted.   

The influence of cognitive and emotional factors as well as sleep on these results were not 

assessed. Indeed, it is known these factors can influence pain referral patterns and the efficiency 

of endogenous inhibition in healthy subjects (Lee et al., 2013; Smith et al., 2007; Weissman-

Fogel et al., 2008). Controlling for these factors could be relevant in a study like this to better 

understand individual responses to the test protocol.  

Pain area was expressed in pixels where two individuals could report e.g. local pain around 

the stimulation site or pain in the arm or forearm. In these two examples, the number of pixels 

could be similar despite clear distinction between the pain distributions where the first one would 

not fulfil the criteria for referred pain used in this study. We defined referred pain as all pain 

reported outside the boundaries of the scapula. We considered this approach to be more 

conservative than considering local pain in the scapular area to be referred pain. By using the 

borders of the scapula as a reference point, we likewise consider that an element of subjectivity 

was reduced in the interpretation of what constitutes referred pain.   

 

Conclusion  

Engaging the descending noxious inhibitory control reduced the size of pain areas evoked by 

mechanical stimulus, predominately when distinct pain referral was present. Assuming a 

conditioning effect due to descending inhibitory control acting on dorsal horn neurons, these 

findings suggest that mechanisms underlying pain referral can be modulated by endogenous 

control. Future investigations on relationships between the effectiveness of endogenous 

inhibition and pain referral patterns in humans are warranted.   
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Figure legend 

Figure 1 (A) Pain referral patterns during the control session (left side) and the conditioning 

session (right side). Going from dark to light, the colour codes indicate the proportion of subjects 

(n =24) who experienced pain or referred pain in the area. (B) Example of pain distribution in 

two subjects from the referred pain group (above) and two subjects from the non-referred pain 

group (below). 
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Pressure thresholds (kPa) 

 

 

Stimulation intensity (kPa)  

 

Group Control session Conditioning session Control session Conditioning session 

 PPT PPT PTT NRS7 NRS7 80%PTT 

Total (n=24) 402.4 ± 183.9 385.6 ± 160.3 63.2 ± 3.8 
689.5 ± 255.6 

(39.9% over PPT) 

673.5 ± 291.2 

(40.5% over PPT) 
50.5 ± 3.1 

Referred pain (n=15) 374.1 ± 172.6 347.7 ± 134.5 64.2 ± 19.0 
686.8 ± 254.8 

(44.2% over PPT) 

652.3 ± 294.9 

(43.6% over PPT) 
51.3 ± 15.2 

Non-referred pain (n=9) 449.5 ± 182.2 448.7 ± 170.8 61.5 ± 19.1 
693.9 ± 242.5 

(33.0% over PPT ) 

708.9 ± 264.1 

(35.2% over PPT) 
49.2 ± 15.2 

 

Table 1. Mean (± SD) baseline pressure intensity needed for the pressure pain threshold (PPT), pain tolerance threshold (PTT), pressure pain 

intensity equivalent to 7 out of 10 on the numeric rating scale (NRS7) and the conditioning stimulation intensity (80%PTT) for the total, referred 

pain and non-referred pain groups.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Median [IQR] size of pain area in pixels following a painful stimulus to the infraspinatus muscle in the control and conditioning sessions. 

Pain areas are shown for the front and back as well as the sum of back and front for the total, referred pain, and non-referred pain groups. 

Significant difference compared with the control session (*, P = 0.045; #, P = 0.011; **, P = 0.003; ##, P = 0.005).  

 

 

 

 Front view Back view Sum of front and back view 

Group Control Conditioning Control Conditioning Control Conditioning 

Total (n=24) 
5882 

[0 - 19199] 

3840 

[416-11643] 

14133  

[5202 - 26577] 

8119* 

[3335 - 17497] 

23398 

[10631 - 47796] 

15865** 

[7044 - 26115] 

Referred 

pain (n=15) 

8400 

[3033 - 19984] 

6144 

[2490 -12690] 

23379 

[14733-41567] 

9825# 

[4623-18295]  

34124 

[19034 - 59049] 

21255## 

[13253- 31079] 

Non-referred 

pain (n=9) 

0 

[0 - 0] 

1774 

[0 - 3634] 

5160 

[3493 - 7277] 

3296 

[2659 - 9119] 

 5160 

[3493 - 7277]  

7118 

[4983 -16287] 
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