

Aalborg Universitet

Graph based physical models for sound synthesis

Christensen, Pelle Juul; Serafin, Stefania

Published in:
Proceedings of the 16th Sound and Music Computing Conference, SMC 2019

Creative Commons License
CC BY 3.0

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Christensen, P. J., & Serafin, S. (2019). Graph based physical models for sound synthesis. In I. Barbancho, L. J.
Tardon, A. Peinado, & A. M. Barbancho (Eds.), Proceedings of the 16th Sound and Music Computing
Conference, SMC 2019 (pp. 234-240)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 10, 2024

https://vbn.aau.dk/en/publications/affdf254-b7d8-4013-9eca-981e30eb244c

Graph Based Physical Models for Sound Synthesis

Pelle Juul Christensen
Aalborg University

Copenhagen, Denmark
pelle.juul@tuta.io

Stefania Serafin
Multisensory Experience Lab

Aalborg University Copenhagen
Copenhagen, Denmark
sts@create.aau.dk

ABSTRACT

We focus on physical models in which multiple strings
are connected via junctions to form graphs. Starting with
the case of the 1D wave equation, we show how to ex-
tend it to a string branching into two other strings, and
from there how to build complex cyclic and acyclic graphs.
We introduce the concept of dense models and show that
a discretization of the 2D wave equation can be built us-
ing our methods, and that there are more efficient ways of
modelling 2D wave propagation than a rectangular grid.
We discuss how to apply Dirichlet and Neumann boundary
conditions to a graph model, and show how to compute the
frequency content of a graph using common methods. We
then prove general lower and upper bounds computational
complexity. Lastly, we show how to extend our results
to other kinds of acoustical objects, such as linear bars,
and how to add dampening to a graph model. A reference
implementation in MATLAB and an interactive JUCE/C++
application is available online.

1. INTRODUCTION

Recent research in physical models has been directed to-
wards simulating systems using finite difference schemes
[1], which can be used to model the intricacies of many
kinds of vibrating systems and exciters.

As many other physical modelling methods, finite dif-
ference schemes can be used to simulate systems which
are hard to construct in real life. For example, we can
tweak the parameters of models to make e.g., strings that
are extremely long or violin bows that move faster than the
human anatomy allows for. Some research has explored
this idea further by building abstract physical models that
do not have any direct relation to any real world instru-
ments. For example, the work of Stefan Bilbao includes
ways of constructing modular percussion instruments by
connecting vibrating bars and plates [2]. Similarly, the
CORDIS-ANIMA project of ACROE allows one to build
virtual instruments by combining masses, springs, friction
elements and non-linear links, to create novel composi-
tions and matching animations [3].

Copyright: c© 2019 Pelle Juul Christensen et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

This paper will further explore the notions of abstract
physical models by showing a way to build systems of
connected strings that would not necessarily be achievable
or practical in real life. The models described in this pa-
per could possiblly be constructed physically; the goal of
the current study is, however, to build synthesis algorithms
inspired by physical phenomena but without attention to
whether they are realisable in real life or not.

While we are looking at finite difference schemes we should
be aware that many methods of physical modelling for sound
synthesis exists and that they are largely equivalent with re-
gards to which sounds we can produce using them. Related
to the work at hand are waveguides, modal synthesis and
mass-spring systems [4] [5], [6]. For a nice description and
discussion of the various methods see [1, Chapter 1].

We start in Section and 2 by reviewing the one-dimensional
wave equation and how to make a finite-difference scheme
to simulate it. In Section 3 we take a derivation of the reg-
ular 1D wave equation, and show how to get similar results
for a branching topology. In Section 4 we see how to use
these results to build various kinds of models. In Section
5 we investigate the properties of dense models, and show
that a special case of these is equivalent to a discretization
the 2D wave equation. In section 6 we deal with the bound-
ary conditions of our models. Next, in Section 7 we dis-
cuss the computational complexity of various models, and
in Section 8 we give a method of computing natural mode
frequencies and shapes. Lastly in Sections 10, 11 and 12
we end with a description of the reference implementation,
suggestions for future work, and concluding remarks.

2. THE 1D WAVE EQUATION

Before building complex abstract models, we will review
the 1D wave equation, which will be used as the starting
point for further exploration, since it is thoroughly stud-
ied and perhaps the simplest spatial model of musical util-
ity. This section, provided for completeness, is completely
textbook and based on [2], [1], [7], [8], and [9].

The 1D wave equation is defined by the second-order par-
tial differential equation

utt = c2uxx, (1)

where u = u(x, t) is a variable describing the deformation
of the medium at position x ∈ [0, 1] and time t ∈ [0,∞].
The constant c is the normalized wave speed which is de-
termined by the medium under consideration. When dis-

mailto:pelle.juul@tuta.io
mailto:sts@create.aau.dk
http://creativecommons.org/licenses/by/3.0/

cretized, Equation (1) looks like

δttu
n
l = c2δxxu

n
l , (2)

where the finite difference operators δtt and δxx are defined
as

δttu
n
l =

1

k2
(un+1

l − 2unl + un−1
l) ≈ d2u

dt2
, (3)

δxxu
n
l =

1

h2
(unl+1 − 2unl + unl+1) ≈ d2u

dt2
. (4)

To implement this model, we expand the temporal opera-
tor in Equation (2) and isolate un+1

l to get

un+1
l = k2c2δxxu

n
l + 2unl − un−1

l , (5)

3. TWO-BRANCH AND N-BRANCH
TOPOLOGIES

The 1D wave equation can be considered an idealization
of a real physical string (e.g. a guitar string) under low
amplitude conditions. We can represent this using a graph
with two nodes and one edge, as seen in Figure. 1. a).

a)

b)

b b

b b

b

b

Figure 1. a) A line topology model — a string viewed
as a graph with two nodes and one edge. b) A branching
topology model — one string branching out into two other
strings.

Once we look at our system as a graph, a new perspective
arises: if we can build this kind of graph, what other graphs
can we create? In this section we will look at the case of
a branching topology — one string segment connected to
two other string segments through one node, as visualized
in Figure 1. b). We will investigate how to model wave
propagation on such a graph.

ul−1 ul ul+1

h

b b b b b

Figure 2. A section of a line topology string view as a
lumped mass-spring network.

To understand the branching topology we must first look
at the line topology more in-depth. We will be using a
derivation found in [1, Chapter 6] and similarly in [8]. In
Figure 2. we see a section of a string viewed as a net-
work of masses connected via springs. The dynamics of
the mass ul will be defined by the ordinary differential
equation

m
d2ul
dt2

= fl+1,l − fl,l−1, (6)

where m is the mass of the node and e.g. fl+1,l is defined
by

fl+1,l = κ(ul+1 − ul), (7)

which is the force caused by the spring between ul+1 and
ul, where κ is the spring constant.

Combining Equations (6) and (7) we get

m
d2ul
dt2

= κ(ul+1 − 2ul + ul−1). (8)

Defining m = ρAh where ρ is density, A the cross-
sectional area of the string, and h is the distance between
the node. Then setting κ = EA/h, whereE is the Young’s
modulus of the material, we get

d2ul
dt2

=
E

ρ

(
ul+1 − 2ul + ul−1

h2

)
. (9)

Notice that the right-hand side of this equation is equiva-
lent to cδxxu when c =

√
E/ρ.

Now we perform the same derivation, but for the branch-
ing topology. A mass-spring network of the branching
point is shown in Figure 3. For simplicity and for the re-
mainder of this paper we will assume that all connected
strings has the same parameters (h, k and c).

uL−1 uL

1
u1

2
u1

h

b b b

b

b

b

b

Figure 3. The branching point of a branching topology
viewed as a mass-spring network.

The dynamics of uL is described by

m
d2u

dt2
=

1

f1,L +
2

f1,L − fL,L−1. (10)

Notice that we are using L instead of l since we are at the
end of string segment u and that we are using 1 instead of
l for

1
u and

2
u since we are at the beginning of those string

segments.
The spring forces of the branching node is

1

f1,L = κ(
1
u1 − uL), (11)

2

f1,L = κ(
2
u1 − uL). (12)

Taking the same steps as we did to reach Equation (9) but
using Equations (10) through (12) we get

d2uL
dt2

=
E

ρ

(
1
u1 +

2
u1 + uL−1 − 3uL

h2

)
. (13)

By analogy to Equation (9) we then have a definition for
δxxuL in the case of the branching topology, which is

δxxuL =
1

h2
(

1
u1 +

2
u1 + uL−1 − 3uL). (14)

Of course we are not limited to just two branches. We
can create a N-branch topology as in Figure 4.

...

b b

b

b

b

Figure 4. A model with an N -branch topology.

Using a derivation similar to that of the two-branch model,
we get a definition of δxxuL which looks like

δxxuL =
1

h2

∑
∗
u∈UL

∗
u− |UL|uL

 , (15)

where UL is the set of all the end nodes of the string seg-
ments connected to the branching node u including uL−1.

For now we have only considered a branch at the end of
a string. We could just as well have considered a branch
at the beginning and arrived at a result similar to Equation
(15). We can generalize our rule such that we can apply
that rule to any point in our graph, even the internal nodes:

δ∆Uul =
1

h2

∑
∗
u∈Ul

∗
u− |Ul|ul

 . (16)

Notice that we have changed our notation to δ∆U instead
of δxx. This is to avoid confusion with the one-dimensional
δxx and the |Ul| dimensional δ∆U.

Note that the angle between the strings in a junction are
not considered since the nodes have no freedom of move-
ment in the 2D plane in which we are building our graphs.
Also, when drawing a graph we will usually not care about
getting the distances and angles right, what’s important is
how the strings connect and how many internal nodes they
have.

The notion of a acoustic junctions is not a new concept in
physical modelling. 2D and 3D finite difference schemes
already contains scattering junctions arranged as grid [1,
Chapter 6] [10], however the author has not seen the con-
cept presented as in the current paper where the junctions
do not need to be distributed homogeneously throughout
the model. Likewise, the physical modeling method of
digital waveguides, which has been proved equivalent to
finite difference schemes [11], use scattering junctions to
great extend in order to model room and instrument acous-
tics [12] [13].

4. BUILDING MODELS

Using Equation (16) we are able to connect any number
of strings together. For example we could take a topology

b b

b
b

b

b

b

b

Figure 5. A model with a binary tree-like topology.

like Figure 1. b) and connect another layer to the rightmost
nodes to get a topology like Figure 5.

In graph theory, we would call such a graph a tree. More
generally we can call it an acyclic graph. Any graph we
can build by only adding strings to the end of other strings
will be a tree. So far all models we have looked have been
trees.

We can build more exciting graphs by connecting the
ends of two strings using another string. For example, we
can take the graph in Figure 5 and connect the top right
node to the leftmost node, resulting in the graph in Figure
6, which is a cyclic graph.

b b

b

b
b

b

b

b

Figure 6. A graph with a single cycle

We may also take a string and connect its two ends, thus
creating a loop as seen in Figure 7. This is a compelling
case because it is a model that does not need any boundary
conditions. In general, any graph without pendant nodes
can be evaluated without boundary conditions. Physical
models with looping topology has previously been studied
in the case of Tibetan singing bowls and glass harmonicas
[14].

b

Figure 7. A string with its two ends joined, forming a graph
with a single cycle

5. DENSE TOPOLOGIES

A point that has been implicit so far is that each string in a
given model must be assigned a number of internal nodes,
just like we assign the ordinary 1D wave equation number
of nodes when we discretize it.

If we construct a model in which there are no strings
longer than one between each branching node, we say that
the model is dense 1 .

1 Note that some dense models may have string segments longer than
one at the edges, we will ignore this fact for now since the internal struc-
ture of such a model will be dense

2,2

u

b b b b

b b b b

b b b b

b b b b

Figure 8. A dense rectangular grid. The zigzag lines, sym-
bolising springs, are drawn to show that the model has no
internal strings.

One well known dense model is the rectangular grid, as
seen in Figure 8. When we wish to update one of the inner
nodes

x,y

u we use Equation (16), which in this case takes
the form

δxx
x,y
u =

1

h2

(
x,y−1

u +
x−1,y

u +
x+1,y

u +
x,y+1

u − 4
x,y

u
)
.

(17)
The two-dimensional version of the wave equation, which
models wave propagation on a non-stiff membrane is de-
fined by [1, Chapter 5]

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
. (18)

A finite difference scheme for this could look like

δtt
x,y

u = c2
(
δxx

x,y

u + δyy
x,y

u
)
. (19)

If we expand the spatial difference operators we get

δxx
x,y

u+δyy
x,y

u =
1

h2

(
x,y−1

u +
x−1,y

u +
x+1,y

u +
x,y+1

u − 4
x,y

u
)
,

(20)
which is equivalent to Equation (17). Therefore, the model
in Figure 8. is equivalent to the discretized 2D wave equa-
tion.

However, since we are building grids using nodes and
not from the definition of the 2D partial derivative, we can
build grids which are not rectangular. For example, Figure
9. shows a hexagonal grid.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b b

b
b

b

b

b

b

b

b

b

b

b

b

b

Figure 9. A dense hexagon grid.

Grid configurations are common throughout physical mod-
eling literature. Especially the method of using digital waveg-

uides has investigated various grid configurations and pro-
vide tools for building arbitrary typologies. Since Digital
waveguides has as been proved equal to finite-difference
schemes the result of those studies should be applicable to
graph physical models as well [15] [5] [11].

Say we wanted to model the wave propagation on a 2D
membrane, which kind of grid would be more efficient
with respect to area covered? If we first look at the rectan-
gular grid we see that we cover

R4 =
A

N
=

1

4
(21)

unit area per node. Where A is the area of a grid unit, and
N is the number of nodes in each unit, considering only
inner grid units.

If we do the same for the hexagonal grid we get

R6 =
A

N
=

3
√

3(12)/2

6
=

√
3

4
. (22)

Since we have that √
3

4
>

1

4
, (23)

we can cover more area using the same amount of nodes
when arranging them in a hexagonal grid, compared to a
rectangular grid, giving us a more efficient model.

Furthermore, each node of an inner grid unit in the rectan-
gular grid has connectivity 4 (each node connects to four
other nodes), while the hexagon grid has connectivity 3.
One can infer from the results of Section 7. that if we have
the same amount of nodes, this causes the hexagon grid to
have a lower computational complexity than the rectangu-
lar grid.

The differences between rectangular and hexagonal grids
have been investigated before by Bilbao and Hamilton in
[10], where they arrive at a conclusion similar the one pre-
sented here with the addition of also analysing the disper-
sion of each configuration.

Much is still left to be said about dense configurations.
One does not have limit oneself to regular grids or grids at
all. However, the nuances of various dense configurations
are beyond the scope of the current project and could be
enough work for a separate paper.

6. BOUNDARY CONDITIONS

To evaluate most models we need to decide on which bound-
ary conditions to use for at least the pendant nodes.

When considering a string topology model we need only
apply boundary conditions at the two ends. However, since
graph models can have multiple pendant nodes, we might
need to decide on more than two boundary conditions. In
the case of models with no pendant nodes, we do not nec-
essarily need any boundary conditions.

A non-pendant node may have multiple boundary con-
ditions. Take the example of a rectangular plate which is
clamped at the left and right edges and free to move at the
top and bottom edges. In this case the corners of the plate
will have a ”free” boundary condition in the top-bottom
direction and a ”clamped” boundary condition in the left-
right direction. For our graph models we will similarly

have to decide on a boundary condition for each direction,
however, our models may have more than two directions.
If a node in our model has boundary conditions we call it
an edge node.

The number of boundary conditions to be decided for an
edge node will be the same as its connectivity. For exam-
ple, if we consider the middle node in Figure 1. b) to be an
edge node, we need to implement boundary conditions for
the directions of each of the three connected strings.

Two commonly used boundary conditions are [1]

u = 0 (Dirichlet), (24)
ux = 0 (Neumann). (25)

For simplicity we will assume for a given node, all direc-
tions will have the same boundary condition.

To implement the Dirichlet condition we introduce a vir-
tual node with a constant value 0 for each direction. This
gives us the update rule

δ∆Uu
n
l =

1

h2

∑
∗
u∈Ul

∗
u− 2 (|Ul|)ul

 . (26)

Implementation of the Neumann condition involves set-
ting δt· = 1

2h

(
unl+1 − unl−1

)
= 0 for each direction, which

amounts to creating a virtual node with the same value as
the real node of that direction, see [1, chapter 5.2.8] for fur-
ther details. Doing this we get an update rule which looks
like

δ∆Uu
n
l =

1

h2

2
∑
∗
u∈Ul

∗
u− 2|Ul|ul

 . (27)

There are lots of other options for boundary conditions
apart from Neumann and Dirichlet, see e.g. [9, chapter 19]
for some choices.

7. COMPUTATIONAL COMPLEXITY

Knowing the computational complexity of a given model
is critical if one wishes to run large models or run mod-
els in real time. Since graph theory is a well studied area
of computer science a lot of existing material will cover
complexity analysis similar to the one of this section (see
e.g. [16]). Despite this we will still go through a basic
complexity analysis specific to the topic at hand.

The complexity of a node will depend on the amount of
connections to it. Evaluating Equation (16) for a pendant
node will take just one operation when disregarding the di-
vision by h2. Connected notes will take |U|+1 operations:
|U − 1| operations for the summation and two for the last
addition and multiplication.

If we disallow cycles, the worst case model is then the
string topology model because it has the lowest amount
of pendant nodes. The complexity of the string model is
3(n− 2) + 2 = O(n). The acyclic model with the highest
amount of pendant nodes has one node connected to every
other node in the model, this has complexity n+(n−1) =
O(n). Thus any acyclic will have complexity O(n).

If we allow cycles we may increase the complexity of our
model. The most complex model is the one where every

node connects to every other node, giving us a complexity
of n(n + 1) = O(n2), which is thus the upper bound of
any model we can build.

8. HARMONIC CONTENT

Finding the harmonic content of a given model can be done
using common methods for computing the natural modes
of a mass-spring system [1, chapter 3]. This method is
completely standard and should be found in any good text-
book on the subject, but is presented here specific to the
topic at hand.

A given mass spring system can be described using the
equation

Mü + Ku = 0, (28)

where M encodes the masses, K the spring constants and
u the displacements of the masses.

We then assume that Equation (28) has a solution of the
form

u = Ueiωt, (29)

which we plug back into Equation (28) to get(
K− ω2M

)
Ueiωt = 0 (30)

and since eiωt 6= 0 we have that(
K− ω2M

)
U = 0. (31)

Multiplying through by M−1 we get(
M−1K− ω2I

)
U = 0, (32)

which is analogous to the canonical form of the eigenvalue
problem

(A− λI)v = 0 (33)

when setting A = M−1K and λ = ω2.
Therefore finding the eigenvalues of M−1K will give us

the frequencies of the natural modes of the system, the cor-
responding eigenvectors v will be the shape of the given
mode.

Since our models are characterized by the wave speed c2

and the topology of the graph, we need a way deriving M
and K from these.

Using the definitions from Section 3. and selectingA = 1
and ρ = 1 we get

κ =
c2

h
and m = h. (34)

Since all nodes in our system have the same mass we have

M = hI. (35)

The shape of K will depend on the topology of the graph.
For example, considering only the center node uL of Fig-
ure 3. we get matrices which look like

Ku =

. . .

κ −3κ κ κ
. . .
. . .

uL−1

uL
û1

ǔ1

 . (36)

This process of building the K matrix can and should be
done using software for models of large sizes.

9. EXTENSIONS

So far we have looked only at the case of building models
from the 1D wave equation. It is, however, possible to use
the same principles for other acoustic objects.

For example, we can take a linear bar model [1]

d2

dt2
u = −κ2 d

4

dx4
u, (37)

which can be discretized as

δttu
n
l = −κ2δxxδxxu

n
l , (38)

after which we apply Equation (10) instead of δxx to get

δttu
n
l = −κ2δ∆Uδ∆Uu

n
l , (39)

from which we can isolate un+1
l to get our update rule.

For clarity, the operator δ∆Uδ∆U is evaluated as

δ∆Uδ∆Uu
n
l =

1

h2

∑
∗
u∈Ul

δ∆U
∗
u− |Ul|δ∆Uu

n
l

 . (40)

One can also extend models by adding dampening. For
example we can build 1D wave equation based model with
dampening by starting with the equation

utt = c2uxx − 2σ0ut + 2σ1utxx, (41)

where σ0 is a constant controlling frequency independent
loss and σ1 controlling frequency dependent loss [2], and
discretizing it like

δttu
n
l = c2δ∆U − σ0δtu

n
l + 2σ1δtδ∆Uu

n
l . (42)

10. IMPLEMENTATION

A reference implementation in MATLAB is available on-
line 2 , providing a class for building models by creating
strings, connecting them, and adding boundary conditions,
after which one can compute the δ∆U and δ∆Uδ∆U opera-
tors.

Using the main class, an implementation of a 1D wave
equation based model is provided, with and without damp-
ening. An implementation of the linear bar model is also
provided, again with and without dampening, showcasing
the use of the δ∆Uδ∆U operator.

The repository also contains a work in progress — though
usable — interactive GUI application written in C++ / JUCE,
which will serve as a test bed for various model topologies,
extensions and exiters.

11. FUTURE WORK

The most pressing issue for the practical utility of the cur-
rent research is to show stability conditions for a given
graph. This could likely be done using the energy method.
Tree-like graphs seem to have excellent stability conditions

2 https://github.com/PelleJuul/
graph-physical-models

comparable to the 1D wave equation, which is stable when-
ever ck/h ≤ 1 [1, Chapter 6]. However, since we can build
meshes equal to the 2D wave equation, there must also be
a case where the stability condition is ck/h ≤ 1/

√
2 [1,

Chapter 11].
Some feature of the topology of a model must be the

determining factor for the stability condition. Finding a
condition such that the stability of a given graph can be
known before evaluating it is of vital importance if algo-
rithms such as these should ever be used by non-experts.

Like other finite difference models, we need a way of ex-
citing the system. Many choices are available ranging from
simple initial conditions, to advanced bow, hammer or reed
excitation (see e.g. [17]). Any exciter applicable to the 1D
wave equation should be applicable to graph based models.

More work can be done investigating the frequency con-
tent of graphs. For example, how does the relationship be-
tween the lengths of the string in the branching topology
affect the modal frequencies? and what happens when we
introduce cycles into our model? How do models behave
when built using stiff strings or bar models?

Throughout this paper we have considered junctions be-
tween strings of equal stiffness. One could derive rules
similar to the ones in this paper, but for strings with dif-
fering stiffness, which would lead to even more ways of
building graphs.

Lastly, there is of course a lot of time to be spent ex-
ploring the various timbres and artistic uses of graph based
physical models, and related to that, new interfaces for
controlling and performing with such models.

12. CONCLUSION

In this paper we have explored some of the fundamental
concepts of constructing and analysing graph based physi-
cal models for sound synthesis.

Starting with a review of the 1D wave equation and one
of its derivations using mass-spring networks, we showed
how to build a second order difference operator applica-
ble to the end of a string which branches out into N other
strings. Using this we are able to construct any kind of
cyclic and acyclic graph.

When a model is built without string segments longer
than one, we call it dense. We showed that using our new
difference operator, we can build a model which is equiv-
alent to a discretization of the 2D wave equation. We then
created a grid using hexagons and found that it was su-
perior to the rectangular grid with regards to stability and
computational complexity.

Like other finite-difference schemes we needed to decide
on some boundary conditions for the edge nodes in our
models. We reviewed the Neumann and Dirichlet bound-
ary conditions and showed how to implement them for
graph models.

By reasoning about the number of pendant nodes in a
graph, we demonstrated that acyclic models have a compu-
tational complexity of O(N), and that cyclic graphs have
a worst case complexity of O(N2).

Using common methods for analyzing vibrating systems,
we showed how to use the parameters of our model to set

https://github.com/PelleJuul/graph-physical-models
https://github.com/PelleJuul/graph-physical-models

up a linear system in canonical eigenvalue problem form,
from which we can compute the modal frequencies and
shapes.

Some extensions to our models were examined, including
how to apply our results to a linear bar models and how to
add dampening to a system.

Lastly we discussed topics for future research including
a call for a more rigid mathematical analysis of the mod-
els, experiments with various excitation mechanisms, in-
vestigations of non-homogeneous models, and a wish for
future artistic and interaction related endeavors related to
graph based physical modeling.

Acknowledgments

The authors would like to express sincere gratitude to Sil-
vin Willemsen and Nikolaj Andersson for their feedback,
ideas and enthusiasm for this project, as well as a general
thanks to all of the staff and students at the SMC master’s
programme at Aalborg University Copenhagen, for build-
ing a great environment for learning and experimentation.
This work is partially supported by NordForsk’s Nordic
University Hub Nordic Sound and Music Computing Net-
work NordicSMC, project number 86892.

13. REFERENCES

[1] S. Bilbao, Numerical Sound Synthesis: Finite Differ-
ence Schemes and Simulation in Musical Acoustics.
John Wiley and Sons, 2009.

[2] ——, “A modular percussion synthesis environment,”
in Proc. Int. Conf. Digital Audio Effects (DAFx-09),
Como, Italy, 2009.

[3] A. L. Claude Cadoz and J. L. Florens, “Cordis-anima:
A modeling and simulation system for sound and im-
age synthesis: The general formalism,” in Computer
Music Journal Vol. 17, No. 1, 1993, pp. 19–29.

[4] G. Eckel, F. Iovino, and R. Causs, “Sound synthesis by
physical modelling with modalys,” in Proceedings of
the International Symposium of Music Acoustics, 1995.

[5] D. Murphy, A. Kelloniemi, J. Mullen, and S. Shelley,
“Acoustic modeling using the digital waveguide mesh,”
2007.

[6] D. Rocchesso and F. Fontana, “The sounding object,”
2003.

[7] J. C. Strikwerda, Finite Difference Schemes and Partial
Differential Equations, Second Editon. Society for
Industrial and Applied Mathematics, 2004.

[8] R. R. Rosales, “Force-directed drawing algorithms,”
2001.

[9] S. Bilbao, B. Hamilton, R. Harrison, and A. Torin,
“Finite-difference schemes in musical acoustics: A tu-
torial,” in Springer Handbook of Musical Acoustics,
2018, pp. 249–384.

[10] B. Hamilton and S. Bilbao, “Hexagonal vs. rectilin-
ear grids for explicit finite difference schemes for the
two-dimensional wave equation,” in 21st International
Congress on Acoustics, 2013.

[11] J. O. Smith III, “On the equivalence of the digital
waveguide and finite difference time domain schemes,”
2004.

[12] M. Karjalainen, P. Huang, and J. O. S. III, “Digital
waveguide networks for room response modeling and
synthesis,” in Proc. of the 118th AES conference, 2005.

[13] J. O. Smith III, “Aspects of digital waveguide networks
for acoustic modeling applications,” 1997.

[14] G. Essel and P. R. Cook, “Banded waveguides on cir-
cular topologies and of beating modes: Tibetan singing
bowls and glass harmonicas,” 2002.

[15] D. T. Murphy, “Digital waveguide mesh topologies in
room acoustics modelling,” 2001.

[16] S. G. Kobourov, “Force-directed drawing algorithms,”
2004.

[17] F. Avanzini, M. Rath, D. Rocchesso, and L. Otta-
viani, “The sounding object,” D. Rocchesso and e. Fed-
erico Fontana, Eds., 2003, ch. 8.

	 1. Introduction
	 2. The 1D Wave Equation
	 3. Two-branch and N-branch Topologies
	 4. Building Models
	 5. Dense Topologies
	 6. Boundary Conditions
	 7. Computational Complexity
	 8. Harmonic Content
	 9. Extensions
	 10. Implementation
	 11. Future Work
	 12. Conclusion
	 13. References

