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Abstract

In order to simplify the stability analysis of an AC/MTDC (multi-terminal direct current) power system, this paper presents
Multi-Layer Component Connection Method (MLCCM)-based small signal model for AC/MTDC hybrid power systems.
ased on ML-CCM, the system is partitioned as small individual system or components, including generator units, voltage

ource converter (VSC) units, time delay units, AC network and DC network. The modelling procedure can be 3 steps. First,
he individual components are independently modelled. Second, several small individual components are assembled together to
uild the AC system model based on component interconnection relationship. Third, all AC power systems and DC network
odel are assembled together to build the whole hybrid power based on the interconnection relationship. There are three

eatures for the MLCCM: (1) these component models can be built individually; (2) their interconnection relationship is a
inear algebra matrix; (3) subsystem model can be verified or debugged individually. Due to the three features, the whole
ybrid power can be built easily and it is convenient for finding modelling fault and debugging. An AC/DC hybrid system
odel in MATLAB/Simulink is also built to validate the effectiveness of the MLCCM-based small signal model.

c 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eer-review under responsibility of the scientific committee of the 7th International Conference on Power and Energy Systems Engineering, CPESE,
020.
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1. Introduction

Over the last decades, Voltage source converter (VSC) based multi-terminal direct current (MTDC) systems
ave become a hot topic [1]. It is one of the most promising methods to integrate non-synchronous AC grids into
ne AC/DC hybrid system. The first commercial operational high voltage direct current (HVDC) system, HVDC
taly-Corsica-Sardinia, was built in 1988 [2]. With the increasing of availability and cost-efficiency of VSCs, VSC-

TDC has become an available solution for renewable energy integration and power transmission [2]. In China,
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the operating MTDC projects are built for wind power powering islands and transmission, such as Zhoushan VSC-
MTDC project and Nanao VSC-MTDC project, In Europe, for off-shore wind power transmission, a pan-European
supergrid project is proposed [2].

With the increasing installations of VSC-HVDC in power grids, the investigation of stability and control method
f MTDC systems becomes more and more important for the existing power systems. Therefore, it is necessary
o build the mathematical model to evaluate the stability problems. Reasonable selection of control parameters

ay effectively improve system damping characteristics and reduce the risks of operational failure or oscillation.
ime-domain simulation may assist with parameters selection. However, Small signal stability analysis for power
ystem is usually carried out instead of time-domain simulation [3].

The conventional state–space small signal model of VSC-MTDC was used in [4–7]. The conventional state-space
pproach tends to formulate a very high order state matrix and result in a complicated modelling proce-
ure. The impedance-based method is another effective way to analyse small signal stability. Nevertheless, the
mpedance-based method is difficult to be extended to multi-inverter DC systems [8].

To overcome the above-mentioned limitations, this paper presents a Multi-Layer Component Connection Method-
ased (MLCCM) state-space small signal model, which combines the advantages of general state-space-based model
nd impedance-based method. The CCM is a simplified approach of state space modelling [9,10]. The CCM was
ver introduced to investigate the dynamic stability of inverter-fed AC power system [9]. In this work, the idea of
ulti-Layer is combined with CCM to build small signal model for AC/MTDC hybrid power system. Compared
ith the conventional state-space method, the advantages of MLCCM are: (1) the modelling procedure is simple; (2)

t is easy for a system to extend subsystems by modular modelling procedure; (3) It is convenient to find modelling
ault and debug. This method provides plug-and-play flexibility for state-space small signal model.

The rest of this paper is organized as follows. In Section 2, the principle of MLCCM is described. The detailed
LCCM-based modelling procedure is given in Section 3. The simulation results are presented to validate the
odelling method in Section 4. The conclusions are drawn in Section 5.

. System description and Multi-Layer Component Connection Method

This section describes the structure of an AC/MTDC hybrid power system and the Multi-Layer Component
onnection Method (MLCCM).

.1. System description

With a radial topology, a four-terminal DC system is shown in Fig. 1(a), which will be analysed as an example
n this work. In this hybrid system, four nonsynchronous AC grids are connected to the HVDC system by four VSC
tations, which is marked as Converter 1, 2, 3 and 4 respectively. In the DC system, the VSC stations are connected
o the centre node (Node 5) through four resistances: R1, R2, R3 and R4. In the AC side, four nonsynchronous AC
ystems 1, 2, 3, 4 are connected to DC grid via Converter 1, 2, 3, 4 respectively. Fig. 1(b) depicts the simplified
C power system topology.

Fig. 1. AC/MTDC hybrid power system. (a) MTDC power system; (b) AC grid.
1034
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2.2. Component Connection Method (CCM)

In CCM, each component is modelled independently. Consider the dynamical system of i th component with
state model [10].

·

x i = Ai xi + Bi ai

bi = Ci xi + Di ai
(1)

Then, all the models are assembled together to form a composite system model as given in (2)
·

x = AT xT + BT aT

bT = CT xT + DT aT
(2)

here AT, BT, CT, DT are system matrixes. They are diagonal matrixes.
AT = diag(A1, . . . , Ai , . . . , An), BT = diag(B1, . . . , Bi , . . . , Bn), CT = diag(C1, . . . , Ci , . . . , Cn), DT =

iag(D1, . . . , Di , . . . , Dn).
here xT = [x1, . . . , xi , . . . , xn]T , aT = [a1, . . . , ai , . . . , an]T , bT = [b1, . . . , bi , . . . , bn]T .
Generally, algebra equations can be used to describe the interconnection relationship of different components.

aT = L11bT + L12u
y = L21bT + L22u (3)

here aT and bT are component input and output vectors, u and y are inputs and output vectors of composite system.
L11, L12, L21, L22, are the algebra relationship matrixes. The desired state model of composite system can be

btained by combining equation (1)–(3).
·

xT = FxT + Gu
y = H xT + Ju

(4)

here F = AT + BT (I − L11 DT )−1L11CT , G = BT (I − L11 DT )−1L12, H = L21(I − DT L11)−1CT , J =

L21 DT (I − L11 DT )−1L12 + L22.
Then, the stability of the composite system can be investigated via Eq. (4).

.3. Multi-Layer Component Connection Method (MLCCM)

Fig. 2 shows the 4 layers of hybrid power system which is corresponding to Fig. 1. The whole system is
artitioned into generator, VSC controllers, delay units, AC networks and DC network components. The first layer
s the models of each independent components. The second layer is the model of voltage source converter (VSC)
hich will be built from combining some individual component models. The third layer is the AC grid model and

he fourth is the whole hybrid power system model. All the components can be modelled independently. Low layer
s subsystem of high layer. Low layer or subsystem model can be verified or debugged individually.

Fig. 2. Diagram of MLCCM-based method.

3. The proposed Multi-Layer Component Connection Method modelling procedure

The proposed MLCCM-based modelling procedure is demonstrated with reference to the exemplified hybrid
power system shown in Fig. 1. There are 4 layers for modelling the whole hybrid power system as described in
1035
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Fig. 2. The procedure starts from first layer and ends in fourth layer. The models of every layer can be debugged
independently. It is convenient for the entire hybrid system to be debugged.

In fact, a 120-order model consisting of 120 state variables will be built for the AC/MTDC power system. There
re numerous elements in the state matrix, input matrix, output matrix and feedthrough matrix. However, considering
he limit length of this article, these elements will not be demonstrated. The main purpose of this paper is to propose
modelling method. With the description of this paper, the reader can obtain the same state-space model with the
odel used by this paper.

.1. First layer: Modelling of each individual component

.1.1. Component of VSC controller
In order to realize nonsynchronous weak AC power system sharing their frequency assistant function, generally,

he AC frequency droop (f-P) control and DC voltage droop (Vdc-P) control will be adopted [11]. This paper adopt
he Vdc-f droop control as shown in Fig. 3. The reactive power (Q) filter in Fig. 3 is a first order low pass filter
ith the time constant KQs.

Fig. 3. Diagram of VSC controller.

Based on the control loop and LC filter circuit topology, a twelve-order model consisting of twelve variables can
be obtained. The state-space model is built in the dq rotating reference frame.

·

xvsc−c = Avsc−cxvsc−c + Bvsc−cavsc−c

bvsc−c = Cvsc−cxvsc−c + Dvsc−cavsc−c
(5)

where xvsc−c =
[
∆ivd ,∆ivq ,∆vod ,∆voq ,∆iod ,∆ioq ,∆Q,∆ω,∆γvd ,∆γvq ,∆γcd ,∆γcq ,

]T , avsc−c =[
∆vvd ,∆vvq ,∆vsd ,∆vsq ,∆Vdc,∆vre f ,∆Qre f ,∆v∗

vd ,∆v∗
vq

]T bvsc−c =
[
∆ivd ,∆ivq ,∆iod ,∆ioq ,∆v∗

vd ,∆v∗
vq ,∆ω,

∆vvd i ,∆vvq
]T . ∆γvd, ∆γvq, ∆γcd, ∆γcd represent the integral variable in the voltage control loop and current

control loop respectively.

3.1.2. Component of generator
In consideration of the tandem-compound reheat turbine and power system stabilizer (PSS) [12], each syn-

chronous generator can be modelled with a nine-order model consisting of nine state variables as follows. The
block diagram is shown in Fig. 4.

Then the state–space model of generator can be obtained.
·

xg = Agxg + Bgag

bg = Cgxg + Dgag
(6)

here xg =
[
△ωg,∆Pm,∆Pp,∆Y,∆θg,∆igd ,∆igq ,∆vh,∆vg

]T , ag = [∆ωi ,∆vsd ,∆vsq ,∆Pre f ]T , bg =

[∆igd ,∆igq ]T . In turbine equation, second order derivative of ∆Pm exists. In order to solve this problem, ∆Pp
is introduced as the first derivative of ∆Pm. ∆ω is the frequency deviation of the VSC, which is in the common

AC grid.
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Fig. 4. Diagram of generator model.

3.1.3. Component of time delay unit
According to the third-order Pade approximation, the transfer function of control system delay may be represented

by

e−τ ·s
≈

1 − 1/2τ s + 1/10τ 2s2
− 1/120τ 3s3

1 + 1/2τ s + 1/10τ 2s2 + 1/120τ 3s3 (7)

which can be described as
·

xdel = Adel xdel + Bdeladel

bdel = Cdel xdel + Ddeladel
(8)

where xdel = [∆xdel1d ,∆xdel2d ,∆xdel3d ,∆xdel1q ,∆xdel2q ,∆xdel3q ]T , adel = [v∗

vd , v
∗
vq ]T , bdel = [vvd , vvq ]T .

assuming time delay occurs on v∗

vd and v∗
vq respectively)

.1.4. Component of AC network
It is assumed that the load is active power load. Base on the ac grid topology shown in Fig. 1(b), a two-order

odel is built.
·

x AC−net = AAC−net xAC−net + BAC−net aAC−net

bAC−net = CAC−net xAC−net + DAC−net aAC−net
(9)

here, xAC−net = [∆ilined ,∆ilineq ]T , aAC−net = [∆vgsd ,∆vgsq ,∆vloadd ,∆vloadq ,∆ω]T , bAC−net = [∆ilined ,

ilineq ]T .

.1.5. Component of DC network
Base on the DC grid topology shown in Fig. 1(a) and Fig. 5, a four-order model is built.

·

xdc = Adcxdc + Bdcadc

bdc = Cdcxdc + Ddcadc
(10)

here xdc = [∆Vdc 1,∆Vdc 2,∆Vdc 3,∆Vdc 4]T , adc = [i1, i2, i3, i4, ]T , xdc = [∆Vdc 1,∆Vdc 2,∆Vdc 3,∆Vdc 4]T .

Fig. 5. Diagram of DC circuit.

3.2. Second layer: modelling of VSC

VSC controller models and delay unit models are written together as follow
·

xvsc = AT −vscxvsc + BT−vscavsc (11)

bvsc = DT −vscxvsc + DT−vscavsc
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where AT −vsc = diag(Avsc−c, Adel), BT −vsc = diag(Bvsc−c, Bdel), CT −vsc = diag(Cvsc−c, Cdel), DT −vsc =

diag(Dvsc−c, Ddel), xvsc = [xvsc c, xdel]T , avsc = [avsc c, adel]T , bvsc = [bvsc c, bdel]T . Though the equations of
wo individual components are written together, there is lack a connection between the two model variables.

Considering, uvsc =
[
∆vsd ,∆vsq ,∆Vdc i ,∆vre f ,∆Qre f

]T , yvsc =
[
∆iod ,∆ioq ,∆ω,∆ivd ,∆ivq ,∆vvd ,∆vvq

]T

based on the algebra relationship of variables in the avsc, bvsc, yvsc, it is easy to obtain

avsc = L11−vscbvsc + L12−vscuvsc

yvsc = L21−vscbvsc + L22−vscuvsc
(12)

Eq. (12) is algebra equation.
Based on CCM, the VSC model can be obtained as

·

xvsc = Fvscxvsc + Gvscuvsc

yvsc = Hvscxvsc + Jvscuvsc
(13)

where Fvsc = AT −vsc + BT −vsc(I − L11−vsc DT −vsc)−1L11−vscCT −vsc, Gvsc = BT −vsc(I − L11−vsc DT −vsc)−1L12−vsc,
Hvsc = L21−vsc(I − DT −vsc L11−vsc)−1CT −vsc, Jvsc = L21−vsc DT −vsc(I − L11−vsc DT −vsc)−1L12−vsc + L22−vsc.

.3. Third layer: modelling of AC grid

As shown in Fig. 1(b), AC grid model is constituted by generator model, AC network model and VSC model.
ased on the same idea and method in part 3.2, the new model can be obtained.

·

xac = Facxac + Gacuac

yac = Hacxac + Jacuac
(14)

here, xac = [xg, xvsc, xAC−net ]T , uac =
[
∆Pre f ,∆Vdc,∆vre f ,∆Qre f

]T , yac =
[
∆ivd ,∆ivq i ,∆vvd ,∆vvq ,∆ω

]T .

3.4. Fourth layer: modelling of AC/MTDC hybrid power system

From Fig. 1(a), the entire hybrid power system model is made up of four AC grid models and DC network model.
With the same idea and method in part 3.2, the new model can be built. However, the power balance equation (15)
must be used to form the algebraic relationship matrix.

Vdc0 i∆Idc i + Idc0 i∆Vdc i + ivd0 i∆vd i + vd0 i∆ivd i + ivq0 i∆vq i + vq0 i∆ivq i = 0 (15)

where subscript i denotes variable in i th AC grid or variable connected with i th AC grid. The subscript 0 denotes
the initial value of variable.

The state-space model of the entire hybrid power system is shown as follow
·

x entire = Fentirexentire + Gentireuentire

yentire = Hentirexentire + Jentireuentire
(16)

where xentire = [xac 1, xac 2, xac 3, xac 4]T , uentire =
[
∆Pre f 1,∆vre f 1,∆Qre f 1, . . . ,∆Pre f i ,∆vre f i ,∆Qre f i , . . . ,

∆Pre f 4,∆vre f 4,∆Qre f 4,
]T , yentire = [∆ω1,∆ω2,∆ω3,∆ω4,∆Vdc 1,∆Vdc 2,∆Vdc 3,∆Vdc 4, ]T .

4. The simulation results

In order to validate the MLCCM-based small signal model, a time-domain simulation model is built in
MATLAB/Simulink. The test system parameters are listed in Table 1.

Fig. 6 shows the simulation results. The results of small signal models are plotted in Fig. 6(a). While, Fig. 6(b)
describes the results of time-domain simulation model. At the beginning, the AC/DC hybrid system operates at the
steady state and the frequencies of AC grid is 50 Hz. Then, at t = 0 s, a small signal is disturbed in ∆Pref 1, which
is equivalent to a small disturbance on the active power load. The lines show the frequency fluctuations in AC grid
1. Obviously, the two line have the similar variation tendency. The response times and amplitudes are almost the
same. The results demonstrate that the small signal model can reflect the dynamic response of the hybrid power
system, which means the effectiveness of the proposed MLCCM modelling method.
1038
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Fig. 6. Simulation results. (a) state-space model result; (b) Time-domain simulation model result.

Table 1. Parameters of test system.

Variable Value Variable Value Variable Value Variable Value

S_base(MVA) 600 Kg 0.05 Ts2 0.03 Kci 100
U_base(kV) 110 TG 0.2 Tw 10 mq 0.1
Vdc_base(kV) 400 FHp 0.3 KST ABL E 60 Kd_v f 0.0796
Cd(pu) 0.5333 TRH 7 Rgr (pu) 0.0496 K j_v f 10.9013
L_line(pu) 5.1*10−4 TC H 0.3 Lgr (pu) 4.735*10−4 K f i 0
R_line (pu) 0.04 FL P 0.7 R f (pu) 1.438*10−4 K f v 0
R_high(pu) 5*10−12 M 1 L f (pu) 1.4876*10−4 KQ f 62.8
R_load_1(pu) 0.7692 D 10 C f (pu) 2.0167*10−5 Rdc_1(pu) 0.0075
R_load_2(pu) 1.667 Rg(pu) 0.0025 Kvp 0.1 Rdc_2(pu) 0.006
R_load_3(pu) 1.667 Lg(pu) 0.0057 Kvi 10 Rdc_3(pu) 0.003
R_load_4(pu) 1.4286 Ts1 0.01 Kcp 1 Rdc_4(pu) 0.006

The eigenvalues of state matrix can be used to analyse the stability. In this paper, the eigenvalue trajectory is
alculated to investigate the influence of VSC DC side capacitor (Cdc) on the system stability. In order to obtain a
lear image, only dominant poles are shown, because 120 eigenvalue traces are too much to be shown in a clear
mage. Fig. 7 shows the eigenvalue traces of the state-space model (16), when the capacitance of DC capacitor
ecreases from 890 µF to 800 µF. It is well-known that two complex-conjugate pairs dominate the eigenvalues
f oscillation frequency(2.49 rad/s). These eigenvalues are highly sensitive to the capacitance of DC capacitor.
igenvalue analysis illustrates that the dominant poles move towards the right-half plane (unstable region) as
apacitance decreases.

Fig. 7. Root locus with capacitance decreasing.

Fig. 8 illustrates the simulation results when the DC capacitors adopt 3 kinds of capacitance. Fig. 8 shows
the frequency fluctuations of AC grid 1 in the case of a small disturbance in ∆Pref 1. Low frequency oscillation

henomenon occurs when the capacitance decreases to 840 µF. The simulation results demonstrate the stability
nalysis based on eigenvalue trajectory in Fig. 7. In other words, it validates the effectiveness of the small signal

odel.
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Fig. 8. Simulation results with three cases. (a) Cdc = 890 µF; (b) Cdc = 840 µF; (c) Cdc = 800 µF.

5. Conclusion

In this paper, a MLCCM is proposed for building the high order state-space model. With 120 orders, the
AC/MTDC hybrid power system modelling is an example. With the help of this method, a big system can be
separated into several layer subsystems or components, even though the total order is quite high. Subsystem models
can be built independent, and several subsystem models are combined together by algebraic equations to build a
big system model. Thus, it simplifies the modelling procedure. The compared results demonstrate the effectiveness
of the method.
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