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1. INTRODUCTION

Google's Director of Research, Peter Norvig said that “We don’t have better algorithms than 

anyone else, we just have more data”. This inspiring statement shows that having more data is 

directly related to better decision making and having the foresight about the future. With the 

development of the Internet of Things (IoT) technology, it is now much easier to gather data. 

Technological tools such as social media websites, smartphones, and security cameras can be 

considered as “data generators”. When the focus is shifted to the energy field, these generators 

are “Smart Meters”. 

Smart meter technology incorporates many intelligent functions and offers great 

opportunities for utility operators, prosumers, and consumers. Although smart meters are 

referred to as ‘smart’, they might not be intelligent enough depending on the final purpose. 

Meter data generally provide more benefits for the utility side than for the consumer side. 

However, with the smart meter data, customers can be offered great opportunities, where they 

may be able to make more conscious decisions. Previous studies have reported that if 

instantaneous energy consumption data are given to the consumers as feedback, approximately 

20% of energy savings can be achieved per household [1]. To achieve this target, more detailed 

data on the electricity consumed by each appliance are needed. Smart meters cannot meet this 
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need since they can only read the total electricity consumption. To overcome this issue, 

Appliance Load Monitoring (ALM) is frequently applied. ALM is used to monitor individual 

appliances in households by using sensors. Non-Intrusive Load Monitoring (NILM) is an ALM 

technique that analyzes the total household electricity consumption measured by the main meter 

and obtains appliance-level information by using various signal processing or pattern 

recognition techniques. Assuming that, there are at least 20 appliances in each household, it is 

clear that robust algorithms are needed to solve this problem. 

Nowadays, academia and industry show great interest in learning-based data analysis 

methods [2, 3]. Deep Learning (DL) is the most prominent and explosively growing artificial 

intelligence technique. Particularly, it has been gaining popularity in many different areas, such 

as image classification, speech recognition, and health management, due to its superior 

performance over other traditional methods [4, 5]. Considering that there are millions of smart 

meters installed, and these meters produce data every minute, it can easily be seen that DL is 

one of the most suitable methods to solve the NILM problem. 

This article introduces the NILM method, which can contribute to energy management and 

savings in residential, industrial, and naval uses. Up-to-date data-driven NILM solutions and 

advantages of DL-based analysis are explained in detail. Also, a multi-label DL approach, 

which can save training time and reduce the need for model storage, is presented and tested in 

real-time. Considering that the studies in the literature are carried out offline, the online analysis 

capacity of recent DL models has been tested in a laboratory environment. In this way, the 

accuracy difference between offline and online implementations has been revealed. 

2. NON-INTRUSIVE LOAD MONITORING 

Load monitoring is an important part of energy management in households, industry, and 

naval vessels [6]. There are two types of load monitoring methods: Intrusive Load Monitoring 
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(ILM) and NILM. ILM is an advanced, systematic, and high accuracy load monitoring 

technique, which is often applied for smart homes. One sensor, which can be a potentially smart 

plug, per appliance is used to remotely monitor and control the appliances. However, the main 

disadvantages are the need for a comprehensive installation, communication infrastructure, 

maintenance, and updating. All these features make the ILM a high-cost system, besides the 

data privacy breach. Users can be conservative in sharing the data, especially by installing 

sensors in the household. To eliminate these drawbacks, NILM is proposed as a cost-effective 

alternative solution [7]. In the NILM technique, also referred to as energy disaggregation, rather 

than using an individual sensor for each appliance, the energy consumed by the entire 

household, referred to as aggregated data, is monitored by using only one sensor, which can 

potentially be the main smart meter. Since no extra sensors are placed inside the household, it 

is called Non-Intrusive. Aggregated data is analyzed by various signal processing or pattern 

recognition methods to obtain the appliance-level disaggregated data. An example of data 

disaggregation is shown in Fig. 1. 

 

Fig. 1. An example of disaggregated data of residential appliances 
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With a successful NILM analysis, real-time and statistical information about the appliances, 

their daily usage rate, and users’ daily consumption behavior can be easily obtained. Using the 

obtained data, many different actions such as home energy management, appliance-based load 

forecasting, and demand response can be taken by the utility and consumption side. The general 

NILM structure and some of its benefits are depicted in Fig. 2. 

 

Fig. 2. General NILM structure of a household case 

The NILM is of great interest in the private sector and academia. Today, there are more than 

40 companies offering energy disaggregation products. Each company provides solutions with 

its hardware/software and they do not share detailed information about their methods. 

Academic studies began in 1992 with a study by George W. Hart [7] and although many years 

have passed since the first study, the desired level of success has not been achieved yet. For this 

reason, it attracts great interest in academia. In recent years, studies have gained momentum 

with the sharing of public datasets and the increase of data obtained from smart meters. 

3. METHODOLOGY 

NILM can be considered as a signal separation, which is the process of recovering source 

signals by separating a mixed-signal measured from a single sensor. For the NILM problem, 
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the mixed signal is aggregated data, and the source signals are power consumption of each 

appliance. The NILM problem can be formulated in simple form as follows: 

( ) ( ) ( )( ) .n n
n N

agg t t tt s p ep
∈

+=      (1) 

where, ( )
agg

p t  is the aggregated active power for sample t, n
s  and n

p  are the status (on-1/off-

0) and the instantaneous active power consumption of the appliance n for sample t, respectively. 

N is the number of appliances and e is the measurement error or noise. Although (1) is a simple 

equation, the fact that there are many appliances with different working principles makes it 

difficult. Each appliance has its load pattern, which is called “Appliance Signature”. To 

systematically address the NILM problem, appliances need to be classified. Hart [7] categorized 

appliances and divided them into 3 types according to their signatures. The types of appliances 

and their general signatures are shown in Fig. 3. Type-I appliances have only on/off states (e.g., 

toasters, kettles). On the contrary, Type-II appliances are those who have multi-states (e.g., 

washing machine, tumble dryer). Type-III appliances consume variable power and do not have 

a specific state or periodic operation. 

 

Fig. 3. Types of appliances 

The most important factor directly affecting NILM success is the characteristics of the data. 

Active power is the most commonly used data type. However, analyzing the appliances 

consuming similar active power or activated simultaneously is a non-trivial task. Therefore, the 

use of additional features such as reactive power can facilitate the analysis. The second 

important characteristic is the resolution which can be divided into two: Low (1Hz and lower) 
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and High resolution (higher than 1Hz). There is a trade-off between them. High-resolution data 

provide more detailed information, but at high hardware cost. Low-resolution data provide 

limited information, but it is cost-effective. It is more realistic to perform NILM analysis using 

low-resolution active power data since it’s already available from the smart meters. Detailed 

information on NILM analysis using high-resolution data can be found in [8, 9]. 

The ultimate goal of NILM studies can be classified under two main titles: Load 

identification and Energy disaggregation. Load identification is the instant detection and 

recognition of the appliances that are turned on or off. Energy disaggregation is the process of 

estimating the energy consumption of the appliances individually. A high accuracy energy 

disaggregation might also provide information about the load identification. 

4. DATA-DRIVEN LOAD MONITORING STUDIES 

Optimization or pattern recognition-based approaches are frequently preferred in the field 

of NILM. Given the optimization-based approach, a minimization problem can be written by 

re-formulating (1) as follows: 

( ) arg min ( ) ( ).
S n N

agg n nS t t tp s p
∈

= −ɶ        (2) 

A status vector, 1 2{ , ,..., }NS s s s=ɶ , is created that estimates whether appliances are operating 

or not for sample t. To minimize the difference between the aggregated power and sum of 

appliance-level consumption, the best possible appliance combination is tried to be found by 

using different status vectors, which are obtained combinatorially. The average energy 

consumption, np , can be obtained by analyzing the sub-metering data or using the appliance 

manual. However, this method is not practical. Because either the power consumption of all 

appliances must be known in advance, which might not be possible in practice, or the power 

consumption of the appliances that will not be analyzed should be defined as "base-load" and it 
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should be estimated by a prediction method or a statistical approach. Secondly, as the number 

of appliances increases, the length of the vector increases, and the solution space grows 

exponentially. Besides, appliances consuming similar power cannot be distinguished [10, 11]. 

Therefore, pattern recognition-based approaches such as Hidden Markov Model (HMM) and 

Machine Learning (ML) are preferred. A traditional HMM [12] and its variants [13-15] are 

implemented to improve the analysis accuracy. Despite achieving reasonable results, the 

biggest disadvantage is that the complexity increases exponentially as the number of appliances 

increases. Various ML algorithms such as support vector machine, k-nearest neighbor, and 

decision trees are performed in the NILM field due to its robust analysis capability  [16, 17]. 

The performance of ML methods depends on manually extracted features. However, it is often 

not possible to predict which features are more effective. Especially in complex systems, where 

feature extraction means a long time and huge human effort. DL models, if provided enough 

data, achieves results similar or even (often) better than what would have been achieved when 

hand-engineered features are used. Since DL model training scales well with the amount of 

data, DL models can usually utilize much more data than traditional non-DL models. This 

enables the models to utilize these large quantities of data and ultimately achieve state of the 

art performance [18, 19]. Illustrative comparison of ML and DL for the NILM application is 

shown in Fig. 4. 
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Fig. 4. Illustrative comparison of ML and DL 

DL can be adapted to NILM since they can easily learn from the smart meter data. When 

the literature is investigated, it can be seen that 3 different DL models are frequently used. These 

are Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Auto 

Encoder (AE). 

CNN stands out especially for its high performance in image classification [18]. When 

analyzing a large image, it uses a large number of small convolution kernels to produce simple 

concepts. By combining them, more complex concepts are obtained and the hierarchical 

features representing data are extracted. In the literature, two different approaches are used for 

CNN-based NILM analysis, sequence-to-point (S2P) [20], and sequence-to-sequence (S2S) 

[21]. Both of these methods use the same input data. However, it is called S2S if a sequence is 

estimated at the output, or S2P if a single point is estimated. Another CNN-based model, 

Wavenet, which is originally developed for raw audio generation, is implemented in [22]. The 

advantage of this model is that it can analyze longer input sequences with less parameters. It 

can be suitable for long-term operating appliances such as a dishwasher. In [23, 24], energy 

disaggregation is performed by using AlexNet and VGG-16 models, which are originally 

developed for image classification. These models are adapted for NILM with some 
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modifications and promising results are obtained. While all of these methods have advantages 

over each other, CNN is not capable of detecting time-dependent changes since it cannot make 

a connection between the past and the future data. 

RNN can analyze sequence models or time-series. For the image processing field, all inputs 

and outputs are independent of each other. But in the case of time-series, the future data is 

mostly linked to the past data. The reason it is called recurrent is that it performs the same task 

for each element of an array based on the previous outputs. The RNN can evaluate the current 

input based on past data thanks to its memory. However, long sequence analysis weakens the 

learning capacity of RNN. Two RNN-based methods, Long Short Term Memory (LSTM) and 

Gated Recurrent Unit (GRU) have been developed to mitigate this problem. Although LSTM 

and GRU are two similar models, the number of total training parameters of GRU is less since 

it does not have a separate memory cell. So it can be trained faster than LSTM. If a model can 

be trained faster, experiments can be conducted faster and ultimately the chance of finding good 

hyperparameters increases, which usually leads to better performance. In [25, 26], an LSTM 

model is implemented and promising results are obtained. An energy disaggregation model 

combination of CNN and GRU is proposed in [27]. The authors aimed to improve the energy 

consumption estimation results using GRU's time analysis capability. 

The third method, AE consists of an encoder and a decoder. The encoder expresses the input 

data as a concentrated vector representation, which contains the distinctive features of the input. 

The decoder reconstructs this vector representation to the desired format. Considering the 

NILM, the aggregated data can be considered as noisy input (the noise here is the energy 

consumption of appliances other than the target appliance). The energy consumption of the 

target appliance is the decoded output. In [25], the authors proposed a denoising autoencoder 

(dAE) in order to filter noises. Although successful results were obtained for Type-I appliances, 



10 

 

they were insufficient for Type-II. A new AE model combined with CNN is proposed in [28]. 

The obtained results show that AE can be considered in the solution of the NILM problem. 

a. Multi-label Convolutional GRU Architecture 

When the studies mentioned above are examined, it is seen that each DL method has its 

advantages and disadvantages against each other and somehow they yield similar results. 

However, all of these studies are done offline and it is uncertain how these methods will behave 

in online applications. In this paper, a real-time load identification is performed using a 

convolutional GRU (C-GRU) model. The model architecture is shown in Fig. 5. 

The input data are the active power values read from the smart meter. Since there is a large 

amount of data (over the months), the input and output should be split using the sliding 

windows. Assuming that the selected window size is w, the input data is split as (t:t+w-1) from 

the starting of sample t by shifting with a certain step for each time. When sliding windows are 

set, they are evaluated by 1D convolutional layers to obtain high-level features, which are given 

as an input to the GRU. Afterward, GRU layers evaluate the data as dependent on historical 

data and identify the actively operating appliances. In order to improve the performance, they 

can be used with bidirectional layers, which make it possible to analyze the time-series forward 

and backward. Ultimately a larger model is obtained with access to more context.  The designed 

model consists of one input, one convolutional, two bidirectional GRUs, and two fully 

connected layers. For the convolutional layer, filter size and number of filters are selected 3 and 

64, respectively. The GRU layers have 256 nodes, while the first fully connected layer has 128 

nodes. Hyperbolic tangent is used in all hidden layers as the activation function.  
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Fig. 5. Model architecture for real-time load identification 

When studies in the literature are examined, it is seen that an individual DL model is trained 

for each appliance. Considering that DL models are trained with a large amount of data, it is 

clear that the training period may be very long. In this paper, multi-label appliance 

classification, which is capable of analyzing multiple appliances with a single DL model, has 

been proposed to reduce training time. Considering that there are more than 20 appliances in a 

household, it is obvious that this approach will significantly save time. For multi-label 

classification, the number of nodes and activation function of the output layer are selected as 

the number of appliances and sigmoid, respectively. Binary cross-entropy and Adam are used 

as loss function and optimizer, respectively. This architecture is designed for supervised 

learning in which input is aggregated data read from the smart meter and output is the status 

(on/off) information of target appliances which we want to analyze. The on/off status is 

determined according to a predetermined threshold. If the energy consumption of an appliance 

is higher than the threshold, it’s assumed that the appliance is on. 
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5. REAL-TIME EVALUATION OF DIFFERENT DL MODELS 

The studies in the literature are conducted offline using publicly available datasets. During 

offline analysis, NILM is performed more easily, since the whole energy consumption period 

(past, current, and future) is available. But in the online analysis, the appliances need to be 

detected instantly with only current and past data. Therefore, how big the gap will be between 

the accuracy rates of online and offline applications has not been addressed yet. 

The most important factor affecting the real-time analysis is undoubtedly the selected 

window size w. In the literature, it is recommended to determine the window size according to 

the operation cycle of the analyzed appliance [25]. For example, the window size should be 

selected relatively long for appliances with long operating time such as dishwashers to analyze 

its entire cycle. However, this is not possible during the online analysis. Unlike the offline, the 

online analysis should be performed without waiting for the appliance to complete its cycle. 

For this reason, an analysis interval is defined as shown in Fig. 6. 

As shown in Fig. 6, a certain number of samples is read from the smart meter depending on 

the window size and it is evaluated using the DL model for each iteration. The next iteration 

should be analyzed after a certain interval, which should be chosen as short as possible to 

instantly detect the appliance operation. In this paper, the iterations are progressed with 60-

second intervals. Another important parameter, window size, should be chosen wisely. Since 

the proposed model has a multi-label classification structure, only one window size should be 

selected for both appliances with long and short operating time.  Considering that short-term 

appliances such as microwaves and toasters operate for an average of 5-10 minutes, and long-

term appliances such as dishwashers operate for an average of 1 hour, an average window size 

of 256 samples (approx. 20 minutes) that can be suitable for both types of appliances is 

determined for analysis. 
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Fig. 6. Online analysis process 

Domestic appliances are basically divided into two groups controllable and non-

controllable. Analysis of controllable appliances, which can be classified as thermostatically 

controlled and deferrable loads, is more important to support both energy-saving and demand-

side management applications. In this paper, two thermostatically controlled loads, which are 

fridge (FR) and heater (HE), and seven deferrable loads, which are microwave (MW), kettle 

(KT), coffeemaker (CM), dishwasher (DW), tumble dryer (TD), washing machine (WM) and 

toaster (TO), are taken into consideration for real-time identification. Besides, appliances such 

as WM, DW, TD (around 1.8kW), and HE, MW, KT (around  1kW) have similar power 

consumptions or peak points. Thus, it will make possible to observe the effect of the presence 

of appliances in the same range on NILM analysis. Signatures of the target appliances are shown 

in Fig. 7. 
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Fig. 7. Signatures of the target appliances 

Appliance-level data and aggregated data are obtained with the help of the prosumer meter 

and smart plugs. If a successful analysis is desired, it should be ensured that the dataset contains 

good quality observations and is large enough to extract the necessary features. However, real-

world data may not always be sufficient. Therefore, the data should be examined first, and 

missing values should be corrected with filling forward, which fills the gaps based on the 

corresponding value in the previous sample, for both training and testing data. However, if the 

training data is modified to include missing data, the model can also handle missing points that 

will occur during online analysis. Secondly, the usage frequency of the target appliance should 

be analyzed. For example, if a household’s aggregated data covers 1 month, and the target 

appliance was used only once during that period, sufficient information cannot be extracted 

[29]. To mitigate this problem, synthetic data generation, which is a method to augment the 

data by using the existing dataset, is used. For an image classification problem, original images 

are modified using different techniques such as rotation, scaling, and cropping the picture. The 

modified images are added to the dataset as new data. In this paper, signatures of different 

appliances are randomly combined to create a new synthetic consumption profile. In this way, 
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the number of load patterns that belongs to the target appliance is increased in the dataset. In 

the final step, the sampling frequency of target appliances and aggregated power consumption 

should be adjusted for a proper supervised learning. The frequency of the data read from the 

sensors is not regular and changes between 5-10 seconds. First, an upsampling with filling 

forward was applied to convert these data to 1 Hz so that all data are simultaneous. Then the 

data were resampled to 5 seconds since the data with 1-second resolution require extra hardware 

to store and extra time for training. The data are standardized by subtracting the mean and 

dividing it by the standard deviation to increase the learning capacity of the model. 

 

Fig. 8. IoT-MGLab general overview 
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The developed DL model has been tested at the IoT-Microgrid Living Laboratory (IoT-MGLab) 

at the Department of Energy Technology, Aalborg University. An overview of the laboratory 

is shown in Fig. 8. 

A Dell Workstation with a 6-core Intel Xeon CPU at 3.60 GHz, 32 GB of RAM and a 

dedicated GPU NVIDIA Quadro P600 running on CentOS was used for the training and initial 

tests. In addition, the final trained networks were deployed on a Windows 10 laptop with a i5 

(2nd Generation) CPU at 2.4 GHz and 6 GB of RAM for the online evaluation. This laptop was 

connected to the central data collection system of the IoT-MGLab from which it obtained the 

real-time measurements used in the identification of the appliances. The DL models are 

implemented in Python using Keras library. 

To obtain more realistic results, the experiment is repeated 10 times. The results are 

averaged and evaluated using 4 different metrics as shown below:  

,

1 2 ,

TP TP
recall precision

TP FN TP FP

precision recall TP TN
F accuracy

precision recall TP TN FP FN

= =
+ +

× += × =
+ + + +

                 (3) 

where, TP (true positive) and TN (true negative) indicate that the model correctly predicts the 

appliance is on and off, respectively. FP (false positive) and FN (false negative) are outputs 

where the model incorrectly predicts the appliance is on and off, respectively. Considering the 

metrics, the accuracy score can be a misleading indicator in cases of unbalanced appliance 

signatures. For example, a toaster is used only once or twice a day. The DL model will achieve 

an accuracy of over 99%, even if it predicts that the toaster is off all day. However, precision 

and recall can give more realistic results because they mostly analyze the periods during which 

the appliance is on. In the literature, the F-1 score is generally preferred metric because it is 

interpreted as a weighted average of precision and recall. The F-1 score comparison of online 
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and offline analyzing results for different types of DL models are shown in Table I. To analyze 

the problem from a wider perspective, CNN-based S2S [20], dAE, LSTM [25], RNN, and C-

GRU models were compared. RNN, LSTM and C-GRU models have the same configuration 

except for recurrent layers. During each experiment, at least 4 appliances were operated 

simultaneously with different combinations. 

Table I. F-1 score comparison of online and offline analysis results 

Appliances 

and Types 

Offline Analysis Online Analysis 

CNN dAE RNN LSTM C-GRU CNN dAE RNN LSTM C-GRU 

Type I 

KT 0.714 0.116 0.694 0.738 0.822 0.620 0.000 0.597 0.701 0.755 

CM 0.678 0.084 0.508 0.665 0.732 0.522 0.000 0.358 0.592 0.678 

TO 0.549 0.161 0.351 0.682 0.651 0.395 0.000 0.219 0.651 0.661 

Type II 

WM 0.938 0.954 0.893 0.940 0.962 0.924 0.897 0.914 0.952 0.939 

DW 0.662 0.720 0.695 0.794 0.773 0.677 0.638 0.748 0.755 0.703 

DR 0.509 0.735 0.681 0.846 0.831 0.498 0.716 0.586 0.759 0.761 

Type III 

FR 0.679 0.661 0.675 0.764 0.777 0.688 0.653 0.690 0.733 0.698 

HE 0.878 0.624 0.899 0.933 0.935 0.821 0.426 0.719 0.868 0.825 

MW 0.931 0.526 0.942 0.933 0.943 0.908 0.392 0.921 0.907 0.892 

The results can be evaluated from 3 different aspects. Considering the DL models, 

recurrent-based models outperformed CNN and dAE models. The secret behind this success is 

the memory capability of recurrent-based models. On the other hand, the CNN model gives 

better results than the dAE model since it has a deeper structure than dAE. It shows that if CNN-

based load identification analysis is desired, deeper CNN models should be designed. If we 

compare recurrent-based models, the success rate of RNN is lower due to the limited capacity 

to analyze long sequences. However, LSTM and GRU give comparable results for long 

sequences. Slightly better results were obtained with the C-GRU model. The second aspect is 

the appliance types and signatures. Type-I appliances used in this experiment have short 

operating times around 2-4 minutes. Since the window size is determined around 20 minutes, 

their consumption may be perceived as small spikes in this window. For this reason, the success 

of the analysis is between 65-82%. Type-II appliances are long-running and multi-state 

appliances, which makes their signature distinctive. Analysis success is higher than Type-I as 

more precise connections can be established between the past, current, and future. The energy 
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consumption of Type-III appliances is not constant since their set points can vary according to 

the user's knob setting. Thanks to the generalization capacity of DL models, the analysis success 

is high despite the use of different set points.  

The third aspect is the comparison of online and offline analysis. For almost every 

appliance, online analysis success was observed to be lower. The most obvious reason for this 

is that analysis is requested before the operation cycle of the appliances is completed. Therefore, 

they are not sufficiently detected or wrong appliances were considered active. But as new data 

are read, the success rate has increased. An average of 5% accuracy loss can be reported 

between online and offline analysis. Besides, the analysis success of WM and MW are higher 

than other appliances. The main reason behind this is their distinctive signatures. As seen in 

Fig. 7, most appliances somehow have a rectangular energy consumption profile. However, 

since WM and MW have a constantly changing and dynamic load profile, they can be analyzed 

by the models with higher accuracy. 

The effect of window size selection and comparison of the training times of the models can 

be seen in Fig. 9.  

 

Fig. 9. The effect of window size selection, and comparison of the training times 
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As can be seen from Fig. 9 (a), using different window sizes affects the F-1 score. Since 

GRU and LSTM have long-term memory, accuracy increases with increasing the window size. 

However, analysis success may decrease, as very long window sizes can make it difficult to 

remember historical data. Since RNN cannot analyze long sequences, its performance decreases 

rapidly and the model gets worse results than C-GRU and LSTM. The obtained results from 

CNN and dAE models are not good enough for real-time analysis. More accurate results can be 

obtained if an individual model is trained for each appliance, which is called appliance-specific 

model. In this case, nine different models need to be trained for nine different appliances, the 

total training time of which takes about 13 hours. As seen in Fig. 9 (a), the F-1 score difference 

between the multi-label C-GRU and appliance-specific approach is very small. However, there 

is a big difference between training time. Other disadvantages of the appliance-specific model 

are that each trained model takes up extra space on the hard drive and must be run separately, 

which requires extra hardware. This can be a significant constraint since NILM algorithms will 

potentially be deployed at household or building level. This implies the use of embedded edge-

computing systems or even existing home or building energy management systems (HEMS, 

BEMS) with limited computational resources. 

 Considering the training times of other models, it is seen that CNN and dAE are trained 

faster since their trainings are done based on matrix multiplication. Because GRU, LSTM and 

RNN are memory-based models, their training period is longer. Although RNN is trained in a 

shorter time compare to GRU and LSTM, its analysis success remains insufficient. GRU can 

be trained faster and slightly better results can be achieved than LSTM. 

Also, the same C-GRU model can be used for energy disaggregation. Only the activation 

function of the output layer should be changed to linear, and the training loss function to mean 

squared error. The obtained results for MW, DW, and CM for simple aggregated data examples 

are shown in Fig. 10.  
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Fig. 10. Results of energy disaggregation and load identification 

6. CONCLUSION 

In this article, the NILM technique is introduced and applications of the recent DL methods 

in the NILM field are explained. In addition, a multi-label C-GRU model is proposed, which 

makes it possible to train and test multiple appliances with a single DL model. In this way, both 

significant time saving is achieved and the need for data storage can be reduced, which are 

critical factors for the integration of such algorithms at household or building level. The 

proposed model is tested in real-time and the results are compared with up-to-date DL models. 

Recurrent-based models LSTM and GRU outperformed CNN and dAE models. Therefore, it is 

recommended to compare the new DL models to be developed with recurrent-based models. 

Regarding to them, C-GRU is trained faster than LSTM and slightly better results are obtained 

compare to RNN and LSTM.  

The majority of appliances used in the experiment somehow have a rectangular energy 

consumption profile and are similar to each other. However, WM and MW have a more 

distinctive and dynamic load profile. For this reason, they have been identified with higher 

accuracy. According to our perception, since DL models analyze consumption profile rather 
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than the state of appliances, appliance types should be redefined in more detail, considering the 

similarity and difference of the consumption profiles rather than the state transitions of the 

appliances. 

Finally, it has been observed that there is an average 5% difference between the online-

offline analysis success of DL models. This difference should be considered for real-time load 

identification required for demand response applications. In addition, the difference may 

increase with increasing number of analyzing appliances. This increase can be mitigated using 

either more robust DL models or post-processing. Post-processing is the approach of refining 

the results with the help of various optimization algorithms. Accuracy rates can be increased 

by re-analyzing the outputs of DL models. In the upcoming years, great advances can be made 

in the energy sector by combining load monitoring algorithms with security and energy 

management, especially in residential, industrial, and naval uses. 
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