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Abstract

Parametric resonance is a non-linear phenomenon in which a system can oscillate at a fre-
quency different from its exciting frequency. Some wave energy converters are prone to
this phenomenon, which is usually detrimental to their performance. Here, a computation-
ally efficient way of simulating parametric resonance in point absorbers is presented. The
model is based on linear potential theory, so the wave forces are evaluated at the mean
position of the body. However, the first-order variation of the body’s centres of gravity
and buoyancy is taken into account. This gives essentially the same result as a more rigor-
ous approach of keeping terms in the equation of motion up to second order in the body
motions. The only difference from a linear model is the presence of non-zero off-diagonal
elements in the mass matrix. The model is benchmarked against state-of-the-art non-linear
Froude–Krylov and computational fluid dynamics models for free decay, regular wave, and
focused wave group cases. It is shown that the simplified model is able to simulate paramet-
ric resonance in pitch to a reasonable accuracy even though no non-linear wave forces are
included. The simulation speed on a standard computer is up to two orders of magnitude
faster than real time.

1 INTRODUCTION

Parametric resonance in an oscillating system is a resonance
which is excited parametrically, that is, by a time variation of
some parameter of the system, as opposed to some external
excitation. A much-studied example is the parametric rolling
of a ship moving in head or following seas. At certain wave
encounter periods, the ship can experience amplified rolling
motions with a period twice the encounter period. Because
in head or following seas no roll exciting moment should
be present due to the transverse symmetry of the ship, such
motions cannot be a direct consequence of wave excitation, but
are caused instead by periodic variations in the transverse sta-
bility of the ship [1]. As the ship moves through the waves, the
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submerged portion of the hull varies with time, and this results
in a periodic variation of the roll restoring stiffness.

The problem of parametric rolling in ships is essentially that
of a simple spring–mass system with a periodically varying
spring constant. The equation of motion can be expressed as
what is known as the Mathieu equation. This equation admits
stable, unstable, or periodic solutions depending on the period
and amplitude of the parametric excitation, that is, the varia-
tion of the spring constant (for the ship, this is the varying roll
restoring stiffness due to the variation of the submerged portion
of the hull). Given an initial disturbance, the response can be
either stable, where we have decaying oscillatory response from
the initial disturbance to rest; unstable, where we have oscilla-
tory response with exponentially growing amplitudes with time;
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or periodic, where the amplitude of the oscillatory solution nei-
ther grows nor decays with time. In the absence of damping,
solutions become unstable even with the slightest disturbance
when the period of the parametric excitation equals some critical
periods, the first of which is T = Tn∕2, that is, half the natural
period of the spring–mass system. Away from these critical peri-
ods or in the presence of damping, solutions can still be unsta-
ble if the amplitude of the parametric excitation is sufficiently
large. In a real physical system, however, the response will not
grow unbounded due to the presence of non-linearities, which
becomes non-negligible as the motions grow, and will limit the
response amplitudes.

Floating wave energy converters (WECs) are in some respects
similar to a ship without a forward speed, and we might expect
that WECs are also prone to parametric resonance. Indeed,
parametric resonance has been observed in model experi-
ments of a variety of WECs, including floating oscillating water
columns [2–5], self-reacting floating WECs of various configu-
rations [6–12], and WECs tethered to the sea bed, either surface
piercing [13] or completely submerged [14–16]. A reduction in
power capture usually accompanies the occurrence of paramet-
ric resonance, and thus the importance of avoiding it has been
recognised for some time [17].

Numerical simulations of parametric resonance in WECs
normally employ the so-called non-linear Froude–Krylov
model, which is implemented as an option in state-of-the-art
wave–body interaction software [18–20]. This evaluates the
hydrostatic and Froude–Krylov forces by integrating both the
hydrostatic pressure and the pressure due to the undisturbed
incident wave over the instantaneous wetted surface of the
body [9, 11, 21]. The other components of the hydrodynamic
forces due to radiated and scattered waves are assumed to
remain linear. Because the forces due to the radiated wave can
be of the same order of magnitude as the forces due to the
incident wave, especially when the body is in resonance, such
an approach is adopted not for the reason of consistency, but
rather for simplicity. It is difficult to judge the accuracy of such
an approach because comparisons with model test measure-
ments are relatively scarce. A rather poor agreement is reported
in [9], whereas a better agreement is reported in [11]. Going
further than the non-linear Froude–Krylov model by including
non-linear forces due to wave radiation would be a more con-
sistent approach, but this is expected to be more computation-
ally demanding.

The question is then whether a simpler approach is possible.
For freely floating WECs, the mechanism that triggers paramet-
ric resonance is usually thought to be a time-varying metacen-
tric height due to the heaving motion of the body relative to
the free surface. This would modulate the roll or pitch restoring
stiffness and excite the roll or pitch resonance. The variation of
the metacentric height can be brought about by other modes of
motion besides heave. In the SEAREV device [6, 9], for exam-
ple, the internal pendulum motion, which is induced by pitch of
the body, results in a variation of the metacentric height of the
body. This, in turn, induces parametric motion in roll. For teth-
ered WECs, which are like inverted pendulums, it is the time-
varying tether length due to the heaving motion of the body

that is responsible for the occurrence of parametric resonance
in roll or pitch. A model that includes these effects without con-
sidering any non-linear wave forces might be sufficiently accu-
rate to simulate parametric resonance in WECs. Such a model
would run much faster than real time and would be potentially
useful for applications requiring real-time execution, such as
control.

In the following, such a simplified approach is presented
and illustrated by modelling a single freely floating axisymmet-
ric body. The simplified model is based on the familiar linear
model, but we consider the instantaneous, instead of the mean,
positions of the centres of buoyancy and gravity up to the first
order. This intuitive but less rigorous approach is shown to lead
to essentially the same result as a more rigorous approach of
keeping terms up to the second order in body motions in the
non-linear equations of motion of the body. The final result
is the presence of non-zero off-diagonal elements in the mass
matrix such that heave and pitch are coupled. This is the only
difference between the simplified model and a linear model. All
wave forces are otherwise linear. Similar simplified approaches
(i.e. without the use of non-linear wave forces) exist in the lit-
erature and have been used to model parametric resonances of
ships [1], spars [22], and WECs [12, 23, 24], although we note
that there are differences in these models.

Although hardly resembling a WEC, a freely floating axisym-
metric body is chosen because of its simplicity to illustrate
the method. The implication for practical WECs, such as self-
reacting WECs consisting of two bodies moving in relative
heave, is obvious. For such WECs, large pitch/roll angles will
increase the friction between the two bodies, with a negative
impact on power production [12]. The present model can be
easily adapted to model such WECs.

The accuracy of the model is assessed by comparing predic-
tions of the body’s response with those from state-of-the-art
non-linear Froude–Krylov and computational fluid dynamics
(CFD) models, for some selected cases, including free decay and
excitation by regular wave trains and focused wave groups. Para-
metric resonance in moored floating buoys has been recently
captured by CFD simulations [25, 26].

We begin by outlining the properties of the floating body
to be modeled. A detailed description of the simplified model
is then given, followed by descriptions of the non-linear
Froude–Krylov model and the CFD model used for com-
parison. The three simulation cases are then described and
discussed in turn, including remarks on typical computation
times.

2 PROPERTIES OF THE FLOATING
BODY

The method is illustrated by considering the motions of a float-
ing body which has the shape of an upright circular cylinder with
a hemispherical bottom, as sketched in Figure 1. A right-handed
coordinate system is used with the origin on the mean free sur-
face, the x-axis aligned with the incident wave direction, and
the z-axis pointing vertically upwards. The body is constrained
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FIGURE 1 Sketch of the floating body

TABLE 1 Dimensions and properties of the floating body

Symbol Quantity Value

a Cylinder (and hemisphere) radius [m] 5.0

d Cylinder height [m] 10.0

(xB0, yB0, zB0 ) Centre of buoyancy [m] (0, 0, −6.719)

(xG0, yG0, zG0 ) Centre of gravity [m] (0, 0, −7.0)

m Mass [kg] 1.073 × 106

r Radius of gyration about x-axis [m] 10.5

𝜌 Seawater density [kg/m3] 1025

h Water depth [m] Infinite

ks Linear mooring stiffness [N/m] 105

Bd ,1 Drag coefficient in surge [kg/m] 7 × 104

Bd ,3 Drag coefficient in heave [kg/m] 4 × 104

Bd ,5 Drag coefficient in pitch [kg m2] 4.9 × 105

to move in three degrees of freedom (surge, heave, and pitch),
which are denoted by the index j = 1, 3, 5. The translational
modes (surge and heave) are defined as translations along the x-
and z-axes, respectively, whereas the rotational mode (pitch) is
defined as rotation about the y-axis. The dimensions and prop-
erties of the body are listed in Table 1. At equilibrium, there are
no vertical forces acting on the body except buoyancy and grav-
ity. That is, the mass of the body is m = 𝜌V0, where 𝜌 is the sea-
water density and V0 is the mean displaced volume of the body.
The location of the centre of buoyancy follows from geometry,
whereas the centre of gravity and the radius of gyration about
the x- or y-axis are specified.

3 SIMPLIFIED MODEL

3.1 Equations of motion

The equations of motion in the three degrees of freedom can be
written in a matrix form as

Mu̇ = F, (1)

where M is the mass matrix, u = �̇� is the body velocity vector,
with 𝝃 being the displacement vector, and F is the force vector.
The latter is the sum of all forces acting on the body:

F = Fe + Fr + Fd + Fk + Fs + Fu, (2)

where Fe is the wave excitation forces, which are the sum of
the Froude–Krylov forces and the forces due to the scattered
waves, Fr is the forces due to the radiated waves, Fd is the
hydrodynamic drag forces, Fk is the restoring forces due to
hydrostatics and gravity, Fs is the restoring forces due to moor-
ings, and Fu is the power take-off (PTO) forces. For conve-
nience, we have assumed that it is possible to decompose the
hydrodynamic forces into Fe , Fr , and Fd . If there are no inci-
dent waves, Fe = 0, and if there is no PTO, Fu = 0. The rest
of the forces are non-zero as long as the body oscillates in
water.

3.1.1 Wave forces

The wave excitation and radiation forces are assumed to be lin-
ear. That is, the wave excitation forces are assumed to be linearly
proportional to the incident wave amplitudes, and the wave radi-
ation forces to the body velocities. Furthermore, they are evalu-
ated at the mean position of the body.

The wave excitation forces are therefore given as

Fe (t ) = f(t ) ∗ 𝜂(t ), (3)

where 𝜂(t ) is the incident wave elevation at a chosen loca-
tion (here chosen to be the origin of the coordinate system),
f(t ) is the vector of wave excitation impulse response func-
tions, which are the inverse Fourier transforms of the com-
plex excitation force coefficients fe (𝜔), and ∗ denotes the
convolution operation. Here, t is time and 𝜔 is the angular
frequency.

The wave radiation forces are given as [27]

Fr (t ) = −A(∞)u̇(t ) − k(t ) ∗ u(t ), (4)

where A(∞) is the added mass matrix at infinite frequency and
k(t ) is the radiation impulse response function matrix, whose
elements are the inverse Fourier transforms of the elements of
the radiation damping matrix B(𝜔):

ki j (t ) =
2
𝜋 ∫

∞

0
Bi j (𝜔) cos(𝜔t )d𝜔. (5)

3.1.2 Hydrostatic and gravitational restoring
forces

In a linear model, the hydrostatic and gravitational restoring
moment in pitch for a floating body is (see, e.g. Section 6.16
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in [28] or equation (B12) in the appendix)

Fk,5 = −𝜌g(Syy +V0zB0)𝜉5 + mgzG0𝜉5

= −𝜌gV0

(
Syy

V0
+ zB0 − zG0

)
𝜉5, (6)

where 𝜉5 is the pitch displacement, Syy is the second area
moment of the mean water plane about the y-axis, and zB0 and
zG0 are the mean vertical positions of the centres of buoyancy
and gravity, respectively. The second equality follows from the
fact that the body is freely floating, m = 𝜌V0.

In the present model, instead of using the mean positions of
the centres of gravity and buoyancy, we use the instantaneous
positions of these centres. For the centre of gravity, this is,

xG (t ) = xG0 + (𝜉1 + zG0 𝜉5)i + (𝜉3 − xG0 𝜉5)k, (7)

assuming small rotations (and as such, keeping terms up to the
first order in pitch 𝜉5; see, e.g. [28, 29] or Appendix A). Here,
i and k are standard unit vectors in the direction of the x- and
z-axes. Thus,

zG (t ) = zG0 + 𝜉3(t ), (8)

since xG0 = yG0 = 0. Furthermore, approximating the body as
a uniform vertical cylinder, we can write

zB (t ) ≈ zB0 + 𝜉3(t )∕2. (9)

Replacing Syy, V0, zB0, and zG0 in (6) with Syy + ΔSyy, V0 +
ΔV , etc. and neglecting terms containing the products of the
variations give

Fk,5 = −𝜌g

[
Syy

(
1 +

ΔSyy

Syy

)
+ ΔVzB0

]
𝜉5

− 𝜌gV0[zB0 − zG0 + ΔzB − ΔzG ]𝜉5. (10)

For small rotations, the term proportional to ΔSyy∕Syy is much
smaller than the other terms, and can therefore be neglected.
However, the second area moment of the water plane increases
as sec3 𝜉5, and ΔSyy∕Syy > 1 for 𝜉5 > 37.47 degrees. This must
be borne in mind as a possible limitation of the model. To be
consistent with our assumption of small rotations, however, we
neglect any term proportional to ΔSyy∕Syy, and obtain the fol-
lowing expression for the pitch restoring moment:

Fk,5 = −𝜌g[Syy +V0(zB0 − zG0 − 𝜉3∕2) − zB0Sw𝜉3]𝜉5, (11)

where we have made the substitutions ΔV = −Sw𝜉3, ΔzG =
𝜉3(t ), and ΔzB = 𝜉3(t )∕2. Further simplification is possible by
noting that V0 ≈ −2zB0Sw , which upon substituting into (11)
gives

Fk,5 = −𝜌g
[
Syy +V0(zB0 − zG0)

]
𝜉5, (12)

which is the same as the linear expression (6).

The hydrostatic restoring force in heave is modeled as

Fk,3 = −𝜌gSw𝜉3. (13)

Again, this is true for small rotation angles. The water plane
area Sw increases with pitch angle as sec 𝜉5, and ΔSw∕Sw > 1 for
𝜉5 > 60 degrees. Figure 2 plots the functions sec 𝜉5 and sec3 𝜉5,
which describe the growth of the water plane area and the
second area moment of the water plane, respectively. The
lowest-order approximations for ΔSw∕Sw and ΔSyy∕Syy are both
proportional to 𝜉2

5 .
In Appendix B, we present a rigorous derivation of the hydro-

static and gravitational restoring forces for a freely floating
body up to the second order in body motions (while neglect-
ing second-order contributions of the free-surface elevation).
This leads to the same results; see (B5), (B11)–(B13). Thus, (12)
and (13) are valid up to second order in body motions if we do
not include the contribution of the free-surface elevation. The
exclusion of this contribution in the model is a potential source
of inaccuracy.

3.1.3 Restoring forces due to moorings

As a simple mooring model, a horizontal spring with linear stiff-
ness ks = 105 N/m is applied at the centre of gravity of the
body. This induces restoring forces in surge and pitch:

Fs,1 = −ksxG (t ) = −ks (𝜉1 + zG0 𝜉5), (14)

Fs,5 = Fs,1zG0. (15)

A rigorous derivation is given in the Appendix; see (B15)
and (B17). The restoring force in heave due to the spring is
assumed to be negligible.

3.1.4 Drag forces

A simplified lumped-parameter approach is used to model the
hydrodynamic drag forces, which are assumed to be a quadratic
function of the body velocities relative to the undisturbed fluid
velocities:

Fd ,i =

{
Bd ,i (vi − ui )|vi − ui | for i = 1, 3,

−Bd ,i ui |ui | for i = 5.
(16)

The drag coefficients, Bd ,i are assumed to be constants, inde-
pendent of the oscillation periods. The undisturbed fluid veloci-
ties, vi are calculated at the mean centre of gravity zG0. For deep
water, the linear fluid velocity coefficients of proportionality in
the horizontal and vertical directions are given as

vx ≡ v1∕A = 𝜔 exp(kzG0), (17)

vz ≡ v3∕A = i𝜔 exp(kzG0), (18)
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FIGURE 2 The area of the water plane increases with pitch angle, 𝜉5 as sec 𝜉5, whereas the second area moment of the water plane grows as sec3 𝜉5. These
variations are neglected in the simplified model

where A is the (complex) incident wave amplitude and k is the
wave number.

3.1.5 Power take-off forces

A linear PTO force is assumed to be applied to the heave mode.
Thus,

Fu,3(t ) = −Buu3(t ), (19)

where Bu is the PTO damping. The other elements of the PTO
force vector, Fu are assumed zero.

3.1.6 Mass matrix

The mass matrix is an important component of the present
model. In a linear model, the non-zero elements of the mass
matrix for the body are (see, e.g. Section 4.16 in [28] or Equa-
tion (A28) in the appendix)

M11 = M33 = m, (20)

M15 = M51 = mzG0, (21)

M55 = mr2, (22)

where r is the mean radius of gyration of the body about the x-
axis. The M35 = M53 elements are equal to zero because xG0 =
0 (see Table 1).

Following the same approach as we use for the restoring
forces, we replace the mean coordinates of the centre of grav-
ity with their instantaneous values given in (7). However, since
we express the equation of motion about the origin of the body
system, the translations do not contribute. Thus, in the present
model, Equations (20) and (21) are unchanged. The variation
of the moment of inertia due to the variation of the radius of

gyration is of a higher order, and is therefore neglected. Equa-
tion (22) thus also remains unmodified. However, instead of
having M35 = M53 = 0, we have

M35 = M53 = −mzG0𝜉5(t ). (23)

Notice that the heave displacement is now coupled to
the pitch displacement through the non-zero M35 = M53
elements.

A rigorous derivation of the body inertia forces up to the sec-
ond order in body motions leads to the same result, with an
extra centripetal force term in heave (see (A29)), but this term
is small and is neglected herein.

3.1.7 Summary and remarks

In sum, the simplified model is very much similar to a lin-
ear model. The only difference, apart from the introduction
of drag, is the non-zero off-diagonal elements (23) in the mass
matrix.

It should be noted that although the simplified approach, that
is, taking into account the instantaneous positions of the cen-
tres of gravity and buoyancy (or the instantaneous length of the
tether in the case of tethered devices) while keeping the wave
forces linear is meant to be general in principle, the specific
form of some of the expressions outlined above might differ
from one WEC to another. The idea of the paper is more to
verify the general principle by way of modeling a freely floating
axisymmetric body as an example.

3.2 Computation of radiation impulse
response functions, wave excitation forces, and
undisturbed fluid velocities

A three-dimensional panel method [30] based on linear poten-
tial theory is used to compute the complex excitation force
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coefficients, fe (𝜔), the infinite-frequency added mass matrix,
A(∞), and the radiation damping matrix, B(𝜔). Due to the body
symmetry, each of the A(∞) and B(𝜔) matrix has only four
unique non-zero elements.

The radiation impulse response functions k(t ) are precalcu-
lated according to (5). Because Bi j (𝜔) → 0 as 𝜔 → ∞, a finite
but sufficiently high upper integration limit, 𝜔u , may be chosen
when calculating the integral. For a given panel size, the com-
puted values of Bi j (𝜔) start to diverge for frequencies above
a certain cut-off frequency, 𝜔c , which may be lower than 𝜔u .
The values for 𝜔c < 𝜔 ≤ 𝜔u are therefore approximated using
a fitting function in the form of c1 exp(c2 𝜔) + c3 exp(c4 𝜔),
following the approach outlined in [31]. The upper limit of
integration is here chosen to be 𝜔u = 15 rad/s. The cut-off
frequency is chosen to be 𝜔c = 5 rad/s for all elements of
matrix B(𝜔).

The wave excitation forces, because they do not depend
on the body’s response, are also precalculated. For a regu-
lar incident wave of frequency 𝜔 and amplitude A, these are
given as

Fe (t ) = Re{fe (𝜔)A exp(i𝜔t )}. (24)

For an irregular wave train of significant wave height, Hs ,
peak period, Tp, and a given spectrum, S (𝜔), the incident
wave elevation can be generated using the random coefficients
method [32] as:

𝜂(t ) =
N∕2∑
n=0

Re{(an − ibn ) exp(i𝜔nt )}, (25)

where an and bn are independent random values generated
from a Gaussian distribution of zero mean and common
variance, 𝜎2

n = S (𝜔n )Δ𝜔. Here, N = tmax∕Δt is the number
of values in the time series. Also, 𝜔n = nΔ𝜔, where Δ𝜔 =
2𝜋∕tmax. As an alternative to (3), the wave excitation forces
corresponding to the incident wave elevation in (25) can be
obtained as:

Fe (t ) =
N∕2∑
n=0

Re{(an − ibn )fe (𝜔n ) exp(i𝜔nt )}, (26)

where an and bn are the same set of random values used in
(25).

Likewise, because the undisturbed fluid velocities vi—
required for the calculation of the drag forces—depend only
on the incident wave elevation, they can be precalculated in
the same way as the wave excitation forces, that is, with
the coefficients vx and vz in (17) and (18) replacing fe in
(26).

The sums (25) and (26), as well as integral (5) (in the dis-
crete form), can be efficiently evaluated using an inverse fast
Fourier transform (FFT). The initial part of the wave excitation
force and the fluid velocity time series is tapered using a cosine
taper window.

4 NON-LINEAR FROUDE–KRYLOV
MODEL

To assess the accuracy of the simplified model, the simulation
results are compared with those of a non-linear Froude–Krylov
model and a CFD model.

The non-linear Froude–Krylov model used for compar-
ison in this study is the partially non-linear approach [33]
implemented by the time-domain model WEC-Sim [18]. The
non-linear hydrostatic restoring and Froude–Krylov force
components are calculated by integrating the static and dynamic
pressures over each panel along the wetted body surface, which
is discretised into triangular elements. Herein, the Wheeler
stretching method is applied to correct the flow velocity and
pressure due to the instantaneous wave elevation. The hydro-
dynamic coefficients including added mass, added damping,
wave excitation, and restoring stiffness were obtained from a
potential flow program [30]. To model the PTO force in the
heave mode only (19), a user-defined block is adopted for the
current WEC-Sim model. Additionally, the mooring matrix is
added to represent the linear surge stiffness. In order to take
into account the drag forces, drag coefficients in surge, heave,
and pitch are added. It should be noted, however, that all drag
force components are calculated based on the body velocity
instead of the relative velocity between the body velocity and
the undisturbed fluid velocity as in the simplified model.

The origin of the coordinate system to define the body
motions in WEC-Sim is at the centre of gravity instead of the
mean free surface as employed in the simplified model. That is, a
point with coordinates (x, y, z ) in the coordinate system defined
in Figure 1 will have coordinates (x′, y′, z′ ) = (x, y, z − zG0)
in WEC-Sim’s coordinate system. The modes of motion are
defined as translations along the x′-, y′-, and z′-axes, and rota-
tions around the same axes. Thus, because pitch is defined in
WEC-Sim as rotation about the y′-axis (as opposed to the y-
axis), the surge and heave displacements in the two coordinate
systems are related through the following transformations:

𝜉1 = 𝜉′1 − zG0 sin 𝜉′5, (27)

𝜉3 = 𝜉′3 − zG0 cos 𝜉′5 + zG0, (28)

where 𝜉′1, 𝜉′3, and 𝜉′5 are the surge, heave, and pitch dis-
placements in WEC-Sim. To ease comparison, all responses
from WEC-Sim are transformed to the same coordinate sys-
tem defined in Figure 1. It should be mentioned, however, that
because of the difference in the coordinate systems, the drag
forces in the WEC-Sim model are different from those in the
simplified model (the drag force model as defined in (16) is used
in WEC-Sim without transforming the body velocities and with-
out considering the fluid velocities).

As the non-linear hydrostatic restoring and Froude–Krylov
force components are calculated from the discretised body sur-
face, their accuracy relies on the body mesh resolution. Thus, a
mesh convergence study is conducted to determine the proper
mesh resolution. Figure 3 shows different mesh resolutions
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FIGURE 3 Four different mesh resolutions of floating body used for non-linear WEC-Sim simulation (left to right: coarse to extra fine)

where the panel size ratio between two adjacent meshes is kept

constant at
√

2. The panel sizes of the coarsest and finest
meshes are 0.707 and 0.25 m, respectively. The proper mesh
resolution is chosen to guarantee solution accuracy. In the
present study, we conduct a mesh convergence study at a wave
period that is close to the parametric resonance period, and the
medium mesh size (0.5 m) is selected for further simulations.
Unless stated otherwise, the result presented is based on the
medium mesh.

5 CFD MODEL

High-fidelity CFD simulations are conducted using the open-
source libraries provided by OpenFOAM [34], following an
approach that was successfully utilised [35, 36] as part of the
CCP-WSI Blind Test Series [37, 38] which considered a similar
body to that in the present study. The basis of the approach is
the interFoam solver [39], modified for wave generation and
absorption [40], which solves the two-phase, incompressible,
Reynolds-averaged Navier–Stokes (RANS) equations under the
single fluid approximation:

𝜕(𝜌v)

𝜕t
+ ∇ ⋅ (𝜌vv) = −∇p+ ∇2(𝜇v) + 𝜌g, (29)

∇ ⋅ v = 0, (30)

where p is the pressure, v is the fluid velocity, and g is accel-
eration due to gravity [39]. The fluid density, 𝜌, and dynamic
viscosity, 𝜇, are determined using the volume of fluid (VOF)
interface capturing scheme [39].

The RANS equations (29)–(30) are solved using a first-order
temporal scheme (Backwards Euler) and second-order spa-
tial schemes (Central Differencing and Monotonic Upstream-
Centered Scheme for Conservation Laws (MUSCL) [41]).
A variable time-stepping approach has been utilised based

on a maximum Courant number of 0.5, with the pressure–
velocity coupling achieved via the Pressure Implicit with
Splitting of Operators (PISO) algorithm [42] using three cor-
rectors. The k–𝜔 SST [43] turbulence closure model is used,
which has been successfully demonstrated for other wave-
driven flows [44]. The motion of the device is captured using
OpenFOAM’s sixDoFRigidBodyMotion library, which uses
a deforming mesh approach based on the Spherical Lin-
ear Interpolation (SLERP) algorithm [45], and the Newmark
method [46] to determine the instantaneous position of a
rigid body. The translational motion modes are defined as
the displacement of the centre of mass (CoM) from its equi-
librium position. The rotational modes are defined as the
rotation about the CoM. For comparison with the simpli-
fied model, all responses from OpenFOAM are transformed
according to (27) and (28). The deformation region is set
to have an inner radius of 1 m, outer radius of 35 m and,
for numerical stability, an acceleration relaxation of 0.9 is
applied.

Wave generation is achieved via expression-based bound-
ary conditions, which are supplied by the waves2Foam tool-
box [40]. For regular wave cases, linear wave theory is used,
whereas the focused wave cases use a linear superposition of
100 first-order components. The relaxation zone technique [40]
is utilised to absorb waves and reduce reflections within the
numerical domain.

A linear stiffness restraint is applied along the x-axis based
on the relative position of the CoM:

Fk = −ksxG , (31)

where ks is the stiffness coefficient, and xG is the x-component
of the CoM at the present time step. This force is used to apply
an additional acceleration to the system at each time step using
Newton’s second law. A similar approach is used for the PTO
damping (19), which is applied based on the vertical velocity of
the body.
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FIGURE 4 Scale diagram of the numerical setup used in the OpenFOAM simulations: (a) side view, (b) top view. Information in red denotes mesh properties
with double-headed arrows (↠) showing the direction of increasing mesh grading

5.1 Numerical domain

The simulations are set up such that the waves propagate in the
positive x-direction (Figure 4), with the coordinate and origin
defined the same as in Figure 1. To increase computational effi-
ciency, a symmetry condition is utilised at the transverse centre
of the device (y = 0), and the simulation is constrained to three
degrees of freedom (surge, heave, and pitch).

The body is truncated 10 m above the SWL. The water depth
is set as 50 m to ensure that the generated waves are in the deep-
water regime and to allow the mesh deformation algorithm to
be accurate and robust at large deformations, whilst minimising
the size of the computational domain. The numerical domain
is 325 m long (−150 ≤ x ≤ 175 m), 50 m wide (0 ≤ y ≤ 50 m),
and 100 m high (−50 ≤ z ≤ 50 m) (Figure 4).

5.2 Mesh discretisation

For the regular wave cases, the discretisation in the free-surface
region (|z| ≤ 1.5 m) is set to Δz = 0.25 m (Figure 4a), which
ensures that the wave is resolved within 1% of the theoreti-
cal solution [47]. A cell aspect ratio of 1 is used in the work-
ing region (|x| ≤ 25 m), in the vicinity of the body (y ≤ 10 m)
(Figure 4b). Mesh grading (indicated by double-headed arrows
↠ in Figure 4) is used to mitigate the computational cost by
reducing the number of mesh cells: in the x-axis the mesh has
constant discretisation (Δx = 0.25 m) for |x| ≤ 25 m, and it lin-
early increases up to Δx = 1.25 m for |x| > 25 m; in the y- and

z- coordinates (y > 10 m, |z| > 1.5 m), the mesh increases to
Δy = Δz = 2.5 m (Figure 4). The focused wave cases are set up
in a similar way but with additional vertical refinement around
the free surface (Δz = 0.0625 m; Δx = 4Δz).

The body is meshed using snappyHexMesh to one level of
octree refinement finer than the free surface (Δz = 0.125 m for
regular waves; Δz = 0.03125 m for focused waves), and based
on preliminary simulations, additional layers are applied around
the body to ensure that the dimensionless wall distance, y+, is
less than 300, ensuring that the wall functions are applied within
the appropriate region of the boundary layer. This leads to a
total mesh size of 7.25M cells for the regular cases and 11.8M
cells in the focused wave cases. Relaxation zones based on an
exponential weighting function [40] are used at both the inlet
and outlet boundaries with target solutions of linear wave the-
ory, and still water conditions, respectively. These zones are 75
and 100 m in length, respectively (Figure 4). Therefore, depend-
ing on the case, the outlet relaxation zone will be 0.75–1.25
wavelengths, and is estimated to produce a reflection coefficient
of less than 0.1% at the outlet boundary [40].

5.3 Boundary conditions

The ‘Bottom’, ‘Outlet’, and ‘Side Wall’ boundaries (see
Figure 4) are considered as solid walls and hence no-slip con-
ditions have been applied along with zero-gradient conditions
for pressure and VOF. A zero-gradient condition is also applied
on the ‘Atmosphere’ for the VOF but the velocity boundary
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condition varies according to the near boundary flux: using a
zero-gradient condition for outflow and the internal cell value
of the normal component to the patch face for the inflow. The
‘Atmosphere’ boundary condition for pressure is defined as the
total pressure:

p = p0 +
1
2
|v|2, (32)

where p0 is the user defined reference value, and v is the veloc-
ity. For this case p0 is set to zero because the solver uses the
difference between total pressure and hydrostatic pressure. The
‘Inlet’ boundary uses expression-based wave generation bound-
ary conditions for the VOF and velocity. The body boundary
is modelled as a rigid, moving wall with zero-gradient applied
for the VOF and a consistent no-slip condition for the velocity
and pressure. Continuous wall functions are applied on the ‘Side
Wall’, ‘Bottom’, and body boundaries, which switch between
low and high Reynolds number flows, depending on whether
the near wall cell centre lies in the log or laminar sublayer. The
other boundaries use zero gradient for the turbulence model
parameters, except at the ‘Inlet’ and ‘Atmosphere’ boundaries
where the turbulent kinetic energy is zero gradient for outflow
and fixed as

k =
1
2

(cpI )2, (33)

for inflow, where I and cp are the turbulence intensity and phase
speed of the wave, respectively [44, 48]. The dissipation rate,
𝜔, is then adjusted such that the eddy viscosity is a fraction, 𝜆,
of the kinematic viscosity, that is, 𝜈t = 𝜆𝜈. Following Lin and
Liu [48], I and 𝜆 are chosen as 0.0025 and 0.1, respectively, in
this study. The initial conditions are set as still water and the
turbulence parameters specified at the inlet.

6 RESULTS AND DISCUSSION

Only motions in surge, heave, and pitch are considered in this
study. The parameters of the model are given in Table 1.

Simulations for the simplified model are performed using a
fourth-order Runge–Kutta scheme with a constant time step of
0.02 s. The convolution part of the wave radiation force (4) is
evaluated once for each time step.

6.1 Decay

For the first case, we study the response of the floating body to
a given set of initial displacements, in otherwise still water (in
the absence of any exciting forces), with the PTO damping set
to zero, but with the mooring force applied.

From the Fourier spectra of the decay time histories, the nat-
ural periods of the body can be obtained. These are listed in
Table 2. The pitch natural period, 19.0 s, is close to twice the
heave natural period, 7.9 s. The natural periods obtained from
eigenvalue analysis of the linear undamped equations of motion

TABLE 2 Natural periods of the floating body identified from non-linear
decay simulations and from linear undamped model (in parentheses)

Symbol Quantity Value [s]

Tn,1 Surge natural period 27.5 (27.7)

Tn,3 Heave natural period 7.9 (7.8)

Tn,5 Pitch natural period 19.0 (18.9)

are also presented in the table. Surge and pitch as defined here
are coupled, even in the linear case. Thus, depending on the ini-
tial condition, the surge decay may contain oscillations in the
pitch natural period, and vice versa. Based on the instability con-
dition of the Mathieu equation, we expect parametric resonance
in surge/pitch to be triggered by heave oscillations at around
9.5 s.

To ensure that the simplified model and WEC-Sim have con-
sistent setup, the linear free-decay displacements obtained from
the two models (i.e. with non-linearities switched off) are first
compared. They are shown to be in good agreement (Figure 5),
confirming that the two models have consistent setup despite
the different coordinate systems used.

Having ensured that the two models are consistent, we then
run the models with non-linearities included and compare them
also with OpenFOAM. In contrast to the linear case, heave is
coupled to pitch in the non-linear case. Thus, free-decay oscilla-
tions in pitch can excite heave (as seen from Figure 6h), unlike
in the linear case. In addition, free-decay oscillations with initial
displacements in both heave and surge/pitch can excite surge
and pitch oscillations with amplitudes greater than their initial
displacements (not shown). As seen from Figure 6, non-linear
responses obtained from the three models show more promi-
nent differences as non-linear forces come into play. Because
there is no incident wave, differences should arise only from
restoring and drag forces and, with OpenFOAM, also radiation
forces. The smaller amplitudes of the response predicted by the
simplified model suggest that it has higher damping, presum-
ably due to larger drag forces. Some phase differences are also
evident. In Figure 6c), the pitch response predicted by WEC-
Sim appears to oscillate at a shorter period than those predicted
by the simplified model and OpenFOAM, which seem to agree
in phase, despite having different decay rate. From Figure 6e,
we see that the heave response predicted by OpenFOAM has
higher amplitudes than the response predicted by WEC-Sim or
the simplified model, presumably due to reflections from the
boundaries of the numerical domain.

6.2 Regular wave excitation

We now compare the response of the body to regular wave exci-
tation of various periods (T = 7, 8, 9.5 s) and wave heights
(H = 0.5, 1 m). The PTO damping is set to 2 × 104 kg/s.

Figures 7 to 9 compare the surge, heave, and pitch displace-
ments obtained from the simplified model with those from
the non-linear Froude–Krylov model (WEC-Sim). For H = 0.5
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FIGURE 5 Linear free-decay displacements of the body without any PTO damping and with (a–c) initial surge displacement of 0.5 m, (d–f) initial heave
displacement of 1.5 m, (g–i) initial pitch displacements of 10 degrees about the centre of gravity: simplified model (blue), WEC-Sim (red)

m, results from CFD (OpenFOAM) are also included in the
comparison.

At T = 7 s, no parametric resonance is observed. The dis-
placements from the simplified model agree closely with those
from WEC-Sim for both incident wave heights. For H = 0.5 m,
OpenFOAM gives a similar response, but the motion envelopes
display small oscillations, presumably arising from some reflec-
tions from the boundaries of the numerical domain.

Parametric resonance is observed for OpenFOAM at T = 8
s and H = 0.5 m (see Figure 8). Here, the surge and pitch
responses start off small and oscillate with a period equal to
the incident wave period, but, after some time, they increase

gradually to much larger amplitudes, oscillating at twice the wave
period. At this wave height, parametric resonance is not pre-
dicted by WEC-Sim and the simplified model, at least for the
simulated duration. When the incident wave height is increased
to 1 m, parametric resonance is observed for both WEC-Sim
and the simplified model. The simplified model predicts similar
response amplitudes to those predicted by WEC-Sim, for all the
three modes.

At T = 9.5 s, H = 0.5 m, parametric resonance is not
observed in the response predicted by WEC-Sim within
the duration of the simulation. Both OpenFOAM and the
simplified model predicts parametric resonance towards the



KURNIAWAN ET AL. 11

i

h

g

f

e

d

c

b

a

FIGURE 6 Non-linear free-decay displacements of the body without any PTO damping and with (a–c) initial surge displacement of 0.5 m, (d–f) initial heave
displacement of 1.5 m, and (g–i) initial pitch displacements of 10 degrees about the centre of gravity: simplified model (blue), WEC-Sim (red), OpenFOAM (yellow)

FIGURE 7 Surge, heave, and pitch displacements of the body in response to incident regular waves of two different wave heights (H = 0.5 m and H = 1 m)
and wave period T = 7 s: simplified model (blue), WEC-Sim (red), OpenFOAM (yellow). The PTO damping is 2 × 104 kg/s. The incident wave amplitude is
gradually increased from zero for the first 200 s using a cosine tapering window
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FIGURE 8 As in Figure 7, for wave period T = 8 s

FIGURE 9 As in Figure 7, for wave period T = 9.5 s

end of the 800-s simulation period, with the simplified model
predicting it slightly later than OpenFOAM. For H = 1 m,
parametric resonance is predicted by both WEC-Sim and the
simplified model, with the simplified model predicting it slightly
earlier and with response amplitudes that are slightly higher
than those predicted by WEC-Sim.

In all cases, the response predicted by the simplified model
practically agrees with that predicted by the non-linear Froude–
Krylov model (WEC-Sim) up to the time when parametric res-
onance takes place. Some differences are observed as soon as
parametric resonance takes place, but the fact that the simpli-
fied model predicts parametric resonance at wave periods where
OpenFoam or WEC-Sim predicts it, with similar response
amplitudes to those predicted by WEC-Sim or OpenFOAM, is
encouraging, given its simplicity.

The simulation results confirm that the degree of parametric
resonance in surge/pitch is tied with the vicinity of the inci-
dent wave period to half the pitch natural period, as well as the
amplitude of parametric excitation available at this wave period.
The closer the wave period is to half the pitch natural period
and the larger the heave oscillations are at this wave period, the
more likely and the more immediate parametric resonance is to
happen.

The normalised displacement amplitudes obtained from the
simplified model are plotted in Figure 10 as functions of the
incident wave period. These are obtained from regular wave
simulations with different discrete periods (with an increment
of 0.3 s around T = 9.5 s, an increment of 0.5 s around T = 19
and 27.5 s, and an increment of approximately 1 s elsewhere)
and three different wave heights, making up a total of 159 reg-
ular wave simulations. The displacement amplitudes are nor-

malised by the incident wave amplitude A for surge and heave,
and by A∕a for pitch. The subharmonic and superharmonic
amplitudes are also plotted alongside the wave-frequency ampli-
tude. These amplitudes are obtained by least-squares fitting
sinusoidal functions with frequency equal to the wave frequency,
half the wave frequency, and twice the wave frequency, to rel-
evant steady-state portions of the displacement response time
series. For the heave displacement, the wave-frequency, subhar-
monic, and superharmonic amplitudes are all obtained by fitting
sinusoidal functions to a portion towards the end of the heave
displacement time series. For the surge and pitch displacements,
the subharmonic and superharmonic amplitudes are obtained
from the end of the time series, whereas the wave-frequency
amplitudes are obtained from the end if no parametric reso-
nance occurs; otherwise, they are obtained from the beginning
of the time series.

Three sets of curves are plotted for each of the subharmonic
and superharmonic responses, corresponding to different inci-
dent wave heights, H = 0.5, 1, and 2 m. For the wave-frequency
response, a curve corresponding to the response obtained from
the linear model (but with drag) for H = 0.5 m is also plot-
ted. The wave-frequency responses peak as expected around
the natural periods identified earlier (see Table 2). Significant
subharmonic response, corresponding to parametric resonance,
is evident for surge and pitch at around T = 7.9 s (the heave
natural period) and T = 9.5 s (half the surge/pitch natural
period).

When parametric resonance happens, we see that as the
subharmonic response in surge/pitch amplifies, the wave-
frequency response in heave reduces relative to the linear
response. It is clear how this would be detrimental to power
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FIGURE 10 Normalised displacement amplitudes of the body: wave-frequency response (blue), subharmonic response (red), superharmonic response
(yellow); for three wave heights: H = 0.5, 1, and 2 m (thinnest to thickest). The PTO damping is 2 × 104 kg/s. Also plotted is the response from a linear model with
drag (dashed black). Vertical dotted lines indicate (from left to right) T = 7.9, 9.5, 19, and 27.5 s, which are related to the system’s natural periods (see Table 2)

absorption for devices whose absorbing mode is heave. An
additional observation is that parametric resonance is relatively
narrow banded, with increasing bandwidth as the wave ampli-
tude is increased, in agreement with the Mathieu equation’s
stability diagrams (see [15] or [16]). We also observe that the
normalised amplitudes, including those of the subharmonic
surge and pitch motions, are reduced as the incident wave
height is increased, which is expected due to the greater drag
forces, which increase quadratically with motion amplitudes.

6.3 Wave group excitation

Rather than simulating the response of the body to a long irreg-
ular wave record, for the third case we study the response of

the body to wave group excitation, in the form of a scaled auto-
correlation function of some chosen wave spectrum S (𝜔), rep-
resenting the average (linear) shape of large wave events in the
record [49]. That is,

𝜂(t − t0) =
𝛼

m0 ∫
∞

0
S (𝜔) cos[𝜔(t − t0)]d𝜔, (34)

where 𝛼 is the surface elevation at t = t0 and

m0 = ∫
∞

0
S (𝜔)d𝜔. (35)

The integral (34) as well as the corresponding exciting force
vector may be written in discrete forms as in (25) and (26),
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FIGURE 11 Wave spectra corresponding to the focused wave groups
(with Tp = 7, 8, 9, 10, and 20 s). Vertical dotted lines (from right to left)
indicate T = 7.9, 9.5, 19, and 27.5 s, which are related to the system’s natural
periods (see Table 2)

with 𝛼S (𝜔n )Δ𝜔n∕m0 replacing (an − ibn ), and similarly evalu-
ated using an inverse FFT.

The use of a wave group as input facilitates comparison with
CFD, for which a long irregular wave simulation would be com-
putationally prohibitive. At the same time, it allows responses
under broad-banded excitation to be studied, since a wave group
can be thought of as a compact representation of an irregular sea
state (as it is generated from the same underlying spectrum). As
our interest is in comparing the response of the body to a deter-
ministic train of irregular waves, only isolated wave groups are
used as input to the simulation. If one is interested in obtaining
the correct statistical properties of the response in a true ran-
dom sea state, a wave group embedded into a random train of
background waves could be used [50].

The focused wave groups are generated using a Pierson–
Moskowitz (PM) spectrum with different peak periods Tp. The
spectra are shown in Figure 11 and the time series of the inci-
dent surface elevation at the focused location x = 0 are shown
in Figure 12. The amplitude at focus is 𝛼 = 1 m and the focus
time is t0 = 200 s. Each simulation is run for 400 s.

The simulated responses of the body to the focused wave
groups are shown in Figure 13a–c. We can see that although
the wave groups are very localised (in time), the responses are
long lived. The surge and pitch amplitudes predicted by the sim-
plified model after the wave group passage are generally much
smaller than those predicted by WEC-Sim and OpenFOAM.
This could be due to the larger drag forces in the simplified
model and/or the exclusion of the contribution of the free-
surface elevation in the hydrostatic restoring forces in the sim-
plified model.

An interesting behaviour is observed for the heave response
predicted by OpenFOAM, where the response increases after
an initial decay. This behaviour is not seen with the simplified
model and WEC-Sim, and hence is thought to be due to imper-
fect absorption within the CFD numerical domain, particularly
on the side walls because there is no absorption applied in the
transverse direction.

For comparison, the response of the device from a linear
model with drag is also shown in Figure 13d–f (the response
from a linear model without drag is similar). The linear heave
response is similar to the non-linear one. However, the linear
surge and pitch responses after the wave group passage are
smaller than the non-linear ones. In particular, there is very
little response in surge and pitch after the wave group pas-
sage for Tp = 7 to 10 s, in contrast to the non-linear surge and
pitch responses, which persist after the wave passage. The wave
spectra for Tp = 7 to 10 s are well away from the pitch nat-
ural period (as indicated by the second vertical line from the
left in Figure 11), and so there is no mechanism, linearly, to
excite these motions. There is, however, quite significant energy
content at the heave natural period for these spectra, which
excite the heave resonance. The significant motions in heave in
turn excite the pitch/surge motions in a non-linear, parametric,
fashion.

6.4 Computation time

For the simplified model, simulations are run with an Intel Core
i7-7700 CPU @ 3.60 GHz, 64 GB RAM. A 800-s long sim-
ulation with a time step of 0.02 s takes approximately 8 s to
complete. This is equivalent to approximately 5000 time steps
per second.

For the non-linear Froude–Krylov model (WEC-Sim), which
is based on body surface discretisation, a computer specifica-
tion with Intel Core i7-7820 CPU @ 2.9 GHz, 32 GB RAM is
utilised to run the simulations. A 800-s long simulation with a
time step of 0.05 s takes approximately 33 s to complete, equiv-
alent to approximately 500 time steps per second.

For the CFD model (OpenFOAM), all simulations were run
on 64 cores of the in-house high performance computing ser-
vice at the University of Plymouth. This facility consists of 52
2U Twin Sq. (4 nodes) networked with Intel Omni-Path cabling,
and equipped with dual Intel E5-2683v4 8 core 2.5 GHz proces-
sors with 128 GB of memory per motherboard. For the regular
wave cases, the simulations had an execution time of 60–85 h,
whereas each focused wave case took 65–70 h.

FIGURE 12 Focused wave groups corresponding to the spectra in Figure 11. The peak periods Tp are as indicated and the focus amplitude is 1 m
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FIGURE 13 (a–c) Surge, heave, and pitch displacements of the body in response to focused wave groups based on a PM spectrum with Tp as indicated and
focus amplitude of 1 m: simplified model (blue), WEC-Sim (red), OpenFOAM (yellow). (d–f) Corresponding displacements from linear models with drag: simplified
model (blue), WEC-Sim (red). The PTO damping is 2 × 104 kg/s in all cases

7 CONCLUSION

Floating bodies of certain mass distributions are prone to para-
metric resonance in pitch/roll. WECs are no exception. Here,
a simplified model to capture parametric resonance in pitch has
been presented and applied to model a hypothetical WEC in
the form of a floating axisymmetric body, where power is taken
from heave only.

We hypothesised that a simple model which includes a heave-
modulated pitch/roll restoring stiffness without including any

non-linear wave forces is able to simulate parametric reso-
nance in WECs with sufficient accuracy. Contrary to our ini-
tial hypothesis, our derivation shows that linear expressions for
the hydrostatic and gravitational restoring forces remain valid at
second order in body motions, if we ignore variations of the
free-surface elevation. Compared to a linear model, the only
modification to the equation of motions arising from keep-
ing terms up to the second order in body motions is the
introduction of non-zero off-diagonal elements in the mass
matrix.



16 KURNIAWAN ET AL.

We confirm that our model is capable of predicting paramet-
ric resonance in pitch at the wave periods where it is expected
to occur, as well as predicting the associated reduction in heave
response at these periods. The accuracy of the model has been
assessed by comparing the simulated response of the body
in surge, heave, and pitch with those obtained from state-of-
the-art non-linear Froude–Krylov and CFD models, generally
showing satisfactory agreement.

With a typical simulation speed of two orders of magnitude
faster than real time, the proposed model offers a computa-
tionally efficient means to simulate parametric resonance in the
time domain.

The presented numerical simulations are yet to be validated
by physical model tests. It will then be necessary to extend the
analysis to six degrees of freedom. This is expected to intro-
duce additional coupling between modes of motion which do
not exist in the present model.
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APPENDIX A: DERIVATION OF THE MASS

MATRIX

Our purpose here is to rigorously derive the expressions of the
body inertia forces for different orders of approximations in
the body motions. We will show that the expressions given in
(20)–(23) agree with the second-order expression of the body
inertia forces. We start with the general form of equations for
rigid body motion, as given, for example, in [51]. For com-
pleteness, the expression is derived again here. As in the main
body of the paper, we restrict our treatment to surge, heave, and
pitch motions.

It is useful to define a body-fixed coordinate system which
moves with the body, but coincides with the inertial coordinate
system (Figure 1) when the body is at rest. Thus, we define rb

G
as

the coordinates of the centre of gravity in the body frame, that is,

rb
G
= [xG0 yG0 zG0]⊺. (A1)

We make no distinction between the centre of gravity and the
centre of mass.

The coordinates of a point on the moving body, expressed in
the inertial frame, are given as

r = 𝝃O + Rrb, (A2)

where 𝝃O =
[
𝜉1 𝜉2 𝜉3

]⊺
is the translation of the origin of the

body system relative to the inertial system, rb is the coordinates
of the point in the body frame, and R is the rotation matrix
defined as

R = RzRyRx , (A3)

with

Rx =

⎡⎢⎢⎢⎣
1 0 0

0 cos 𝜉4 − sin 𝜉4

0 sin 𝜉4 cos 𝜉4

⎤⎥⎥⎥⎦ , (A4)

Ry =

⎡⎢⎢⎢⎣
cos 𝜉5 0 sin 𝜉5

0 1 0

− sin 𝜉5 0 cos 𝜉5

⎤⎥⎥⎥⎦ , (A5)

Rz =

⎡⎢⎢⎢⎣
cos 𝜉6 − sin 𝜉6 0

sin 𝜉6 cos 𝜉6 0

0 0 1

⎤⎥⎥⎥⎦ . (A6)

If pitch is the only rotational mode, then 𝜉4 = 𝜉6 = 0, and both
Rx and Rz become identity matrices, and so R = Ry.

The velocity of a point on the body, expressed in the inertial
frame, is obtained by differentiating (A2) with respect to time,
giving

v = uO + Ṙrb, (A7)

https://doi.org/10.1049/rpg2.12229
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noting that rb is constant and uO = �̇�O . Substituting rb from
(A2), we can write (A7) as

v = uO + ṘR⊺(r − 𝝃O ). (A8)

Equation (A7) can be written in a different form as

v = uO + 𝝎 × (r − 𝝃O ). (A9)

The second term with the cross product arises due to the fact
that (r − 𝝃O ) is rotating with the body relative to the inertial
frame, with an angular velocity 𝝎.

Now, a vector cross product between two vectors can be writ-
ten as a multiplication of a skew-symmetric form of the first
vector and the second vector. Thus, (A9) can be written alterna-
tively as

v = uO + (𝝎)×(r − 𝝃O ), (A10)

where (𝝎)× is the skew-symmetric form of 𝝎. Hence, from (A8)
and (A10) we have the identity

(𝝎)× = ṘR⊺, (A11)

whereby the components of the angular velocity 𝝎 are
now obtained. Indeed, ṘR⊺ is skew symmetric by virtue of
the identity RR⊺ = I, which upon differentiating with time
gives

ṘR⊺ = −RṘ⊺ = −(ṘR⊺ )⊺, (A12)

which completes the proof.
Differentiating (A9) with time gives the acceleration of a

point on the body, in the inertial frame:

a = aO + 𝜶 × (r − 𝝃O ) + 𝝎 × [𝝎 × (r − 𝝃O )], (A13)

where 𝜶 = �̇� and aO = u̇O .
Newton’s second law of motion dictates that the sum of

forces acting on the body must equal the rate of change of its
momentum. Thus,

FG =
dp

dt
=

d
dt ∫

b

v dm = ∫
b

a dm = m aG , (A14)

since the body mass m is constant. Likewise, the sum of
moments acting on the body must equal the rate of change of
its angular momentum:

TG =
dLG

dt
=

d
dt ∫

b

(r − rG ) × v dm. (A15)

However, we would like to express these equations about the
origin of the body system, which is different from the centre of

gravity. We do this by using the following relationships:

FO = FG , (A16)

TO = TG + (rG − 𝝃O ) × FG . (A17)

Before proceeding further, it is useful to note the relationship
between the angular momentum about the origin of the body
system O and the angular momentum about the centre of
gravity:

LO = LG + (rG − 𝝃O ) × muG , (A18)

which is evident by definition:

LO = ∫
b

(r − 𝝃O ) × v dm. (A19)

Thus, we can write

TO =
dLO

dt
− (uG − uO ) × muG

=
dLO

dt
+ uO × muG .

(A20)

The equations of motion about the origin of the body system
are therefore

FO = m
{

aO + 𝜶 × (rG − 𝝃O ) + 𝝎 × [𝝎 × (rG − 𝝃O )]
}
,

(A21)

obtained from (A13), (A14), and (A16), and

TO = m(rG − 𝝃O ) × aO + Mi
O
𝜶 + 𝝎 × (Mi

O
𝝎), (A22)

obtained from (A9), (A19), and (A20), where

Mi
O
= −∫

b

(r − 𝝃O )×(r − 𝝃O )×dm (A23)

is the moment of inertia matrix about O, expressed in the iner-
tial frame. This can be expressed in terms of the moment of
inertia matrix in the body frame as

Mi
O
= RMb

O
R⊺, (A24)

where Mb
O

is constant. Equations (A21) and (A22) can be writ-
ten in matrix form as[

FO

TO

]
=

[
mI mR(rb

G
)×⊺R⊺

mR(rb
G

)×R⊺ RMb
O

R⊺

][
aO

𝜶

]

+

[
m (𝝎)×(𝝎)×Rrb

G

(𝝎)×RMb
O

R⊺𝝎

]
. (A25)
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This is the general form of equation for an arbitrary rigid body.
We can expand (A25) in terms of the translations and rota-

tions and their derivatives and obtain expressions for different
orders of approximations. The expressions up to the first order
are

FO = m

⎡⎢⎢⎢⎢⎣
𝜉1 + zG0𝜉5 − yG0𝜉6

𝜉2 − zG0𝜉4 + xG0𝜉6

𝜉3 + yG0𝜉4 − xG0𝜉5

⎤⎥⎥⎥⎥⎦
, (A26)

and

TO =

⎡⎢⎢⎢⎢⎣
−mzG0𝜉2 + myG0𝜉3 + Ixx𝜉4 + Ixy𝜉5 + Ixz𝜉6

mzG0𝜉1 − mxG0𝜉3 + Iyx𝜉4 + Iyy𝜉5 + Iyz𝜉6

−myG0𝜉1 + mxG0𝜉2 + Izx𝜉4 + Izy𝜉5 + Izz𝜉6

⎤⎥⎥⎥⎥⎦
, (A27)

from which the familiar expression for the mass matrix in linear
theory (see, e.g. Section 4.16 in [28]) is obtained:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 mzG0 −myG0

0 m 0 −mzG0 0 mxG0

0 0 m myG0 −mxG0 0

0 −mzG0 myG0 Ixx Ixy Ixz

mzG0 0 −mxG0 Iyx Iyy Iyz

−myG0 mxG0 0 Izx Izy Izz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A28)

For a body with xG0 = yG0 = 0 and with xb = 0 and yb = 0 planes
of symmetry, some of the off-diagonal elements in this matrix
vanish. If we also exclude sway, roll, and yaw as we have done
throughout, we end up with (20)–(22) as the only non-zero ele-
ments.

The general second-order expressions corresponding to
(A26) and (A27) are more involved, but they simplify consid-
erably if the body has xb = 0 and yb = 0 planes of symmetry
and xG0 = yG0 = 0, and if we also exclude sway, roll, and yaw.
The result can be written as

[
FO

TO

]
= Mu̇ − m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

zG0�̇�
2
5

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A29)

where the elements of the mass matrix M are as in the linear
case, but with

M35 = M53 = −mzG0𝜉5 (A30)

instead of zeros. The mzG0�̇�
2
5 term is the centripetal force due

to pitch and can be moved to the left-hand side. This term is
generally much smaller than the other force contributions.

APPENDIX B: DERIVATION OF THE

RESTORING FORCES

B.1 Hydrostatic and gravitational restoring forces

The restoring force due to hydrostatic pressures and gravity is
given as

FkO = 𝜌g∫
Sb

nz dS − mgk, (B1)

where Sb is the wetted surface of the body and n is a unit normal
vector pointing outwards of the body.

In the following derivation, we assume that the surface inte-
gral is taken up to the mean free surface, z = 0, instead of the
actual free surface z = 𝜂. At second order, the free-surface ele-
vation 𝜂 will contribute to the integral, but we neglect this con-
tribution for simplicity. We can therefore add a surface bounded
by the intersection of the body and the z = 0 plane to the inte-
gral in (B1), so it becomes an integral over a closed surface. We
can then express this surface integral as a volume integral by
means of Gauss’s theorem, such that

FkO = 𝜌g∫
∀

𝛁z dV − mgk

= 𝜌gk∫
∀

dV − mgk. (B2)

The integral over the displaced volume of the body, ∀, can
be expressed as a sum of an integral over the mean displaced
volume, ∀0, and an integral over a volume bounded by the zb =
0 and z = 0 planes and the surface of the body. For a cylindrical
body, we can write

FkO = 𝜌gk

(
∀0 + ∫

Sw

zb
w dS

)
− mgk, (B3)

where Sw is the mean water plane area of the body and zb
w is the

zb-coordinate of a point on z = 0. This is obtained by setting
z in (A2) to zero and solving for zb in terms of xb, yb, and the
body displacements. Different orders of approximation for Fk

can then be obtained based on Taylor series expansion of zb
w .

The first- and second-order expressions turn out to be equal
and are given as

zb
w = −𝜉3 − yb𝜉4 + xb𝜉5. (B4)

Hence,

FkO = 𝜌gk

[
∀0 − ∫

Sw

(𝜉3 + yb𝜉4 − xb𝜉5) dS

]
− mgk. (B5)
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For a body with xb = 0 and yb = 0 planes of symmetry, this
becomes

FkO = 𝜌g
(
∀0 − 𝜉3Sw

)
k − mgk, (B6)

which further reduces to

FkO = −𝜌gSw𝜉3k (B7)

for a freely floating body.
The restoring moment is given as

TkO = 𝜌g∫
Sb

[
(r − 𝝃O ) × n

]
z dS − mg(rG − 𝝃O ) × k

= −𝜌g∫
∀

𝛁 × (zRrb) dV − mgR(rb
G

)×R⊺k, (B8)

where we have again expressed the surface integral as a volume
integral and made use of (A2). Splitting the integral as we did
before, we arrive at

TkO = −𝜌g

{
∫
∀0

𝛁 × (zRrb) dV + ∫
Sw

𝛁 × (zRrb)zb
w dS

}

− mgR
(
rb
G

)×
R⊺k. (B9)

We can expand (B9) to any order of approximation. If we
write

TkO =
[
Fk,4 Fk,5 Fk,6

]⊺
, (B10)

the first-order expressions, for a freely floating body, are

Fk,4 =
[
−𝜌g(∀0zB0 + Syy ) + mgzG0

]
𝜉4 − 𝜌g(Sy𝜉3 − Sxy𝜉5),

(B11)

Fk,5 =
[
−𝜌g

(
∀0zB0 + Sxx

)
+ mgzG0

]
𝜉5 + 𝜌g(Sx𝜉3 + Sxy𝜉4),

(B12)

Fk,6 = 0, (B13)

where Sx , Sxx , etc. are the area moments of the mean
water plane. For a body with xb = 0 and yb = 0 planes of
symmetry, only the first term of each of these expressions
remains.

Equations (B5) and (B11)–(B13) are the familiar equations
for the linear hydrostatic and gravitational restoring forces
for an arbitrary freely floating body; see, for example, Sec-
tion 6.16 in [28]. The corresponding second-order expressions
are more involved, but they reduce to the first-order expres-
sions if the body is freely floating and if we also exclude
yaw.

B.2 Restoring forces due to mooring

The restoring force due to the horizontal spring, applied at the
centre of gravity, is given as

Fs,1 = −ks (rG − rb
G

) ⋅ i

= −ks (𝝃O + Rrb
G
− rb

G
) ⋅ i. (B14)

The first-order approximation, excluding yaw, is

Fs,1 = −ks (𝜉1 + zG0𝜉5). (B15)

The second-order approximation, for a body with xG0 = yG0 =
0, and excluding yaw, is equal to the first-order one.

The restoring moment due to the horizontal mooring is given
as

Ts = (rG − 𝝃O ) × Fs,1i. (B16)

The first-order approximation, for a body with xG0 = yG0 = 0,
is

Fs,5 = −ks (zG0𝜉1 + z2
G0𝜉5) = zG0Fs,1. (B17)

The second-order approximation, if we also exclude yaw, is
equal to the first-order one.
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