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p-Safe Analysis of Stochastic Hybrid Processes
Rafael Wisniewski1, Manuela L. Bujorianu2, Christoffer Sloth 3

Abstract—We develop a method for determining whether a
stochastic system is safe, i.e., whether its trajectories reach unsafe
states. Specifically, we define and solve a probabilistic safety
problem for Markov processes. Based on the knowledge of the
extended generator, we are able to develop an evolution equation,
as a system of integral equations, describing the connection
between unsafe and initial states. Subsequently, using the moment
method, we approximate the infinite-dimensional optimisation
problem searching for the largest set of safe states by a finite
dimensional polynomial optimisation problem.

In particular, we address the above safety problem to a
special class of stochastic hybrid processes, namely piecewise-
deterministic Markov processes. These are characterized by
deterministic dynamics and stochastic jumps, where both the
time and the destination of the jumps are stochastic. In ad-
dition, the jumps can be both spontaneous (in the style of a
Poisson process) or forced (governed by guards). In this case,
the extended generator of this process and its corresponding
martingale problem turn out to be defined on a rather restricted
domain. To circumvent this difficulty, we bring the generalized
differential formula of this process into the evolution equation
and, subsequently, formulate a polynomial optimisation.

Index Terms—Safety verification, martingale problem, moment
method, stochastic hybrid systems, Markov processes, optimisa-
tion.

I. INTRODUCTION

WE develop a method for safety verification of stochastic
hybrid systems. Safety verification plays an important

role as the mean of examining whether a system works as
intended. Routinely, a system is said to be safe if it does not
violate any system constraints. Safety, defined in this way,
has been studied using the concept of barrier certificates [1]
and has been applied for e.g. emergency shutdown of a wind
turbine [2]. The original inquiry has been later modified to
cope with the design of a controller that makes the closed-loop
system safe [3]. Subsequently, Romdlony and Jayawardhana
[4] have noticed that the combination of the concept of barrier
certificate with Lyapunov stability theory can be used to
control a system with constraints, and thereby the feedback
system is safe and asymptotically stable by design.

Nonetheless, in probabilistic settings, the notion of safety
has first to be carefully defined. On one hand, it has to capture
the nature of the technical inquiry, on the other hand, it has to
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be mathematically sound; and, in the best instance, it has to
be numerically tractable. Indeed, the definition of probabilistic
safety is the first contribution of this work. Intuitively, a system
is said to be safe if it violates system constraints with a
probability of at most p - an a priori assigned probability. In
engineering practice, to assign the number p, one takes into
account the risk and the price of a machine/infrastructure to
be examined for safety, as risk = p × price.

We propose a classification of the initial states. This classi-
fication is necessary since the reachability probabilities do not
capture information about the initial states that have a bigger
importance and hence bigger ”weight” in the computation.
This formulation translates into the definitions of strong and
weak p-safety. The strong p-safety is pertinent when the safety
is examined for each initial point in the state space; whereas,
weak p-safety makes sense when the examination of safety
takes into account the distribution µ0 of the initial states. We
will not dwell on them right now, but in the next section, we
will give an informal introduction and in Section IV, we will
define the concept of strong and weak p-safety.

The next step, in Section V, is to develop an algorithm for
the computation of the probabilistic safety - the computation
of the maximal safety sets. Our choice is to lean upon the
generalised moment method [5] - a particular instance of a
linear infinite optimisation problem. Importantly, there are
available software tools for the generalised moment method
[6]. We are motivated by [7] and [8], which used the concept
of an occupation measure to study the region of attraction
for dynamical systems. The time evolution of the occupation
measure was formulated, and subsequently translated to the
generalized moment method. Nonetheless, in a stochastic
setting the path of getting to the occupation measure is very
different. It starts from a definition of an extended generator
and Dynkin’s formula. After introducing the hitting measure,
which is the measure defined using the first hitting time of
a specified set (usually unsafe), we formulate the adjoint
equation, which relates the initial measure, the occupation
measure and the hitting measure. This equation is linear but
infinite dimensional. For a triplet of measures (µ, µ0, κ), the
problem of finding a process whose occupation measure is
µ, the initial measure is µ0, and the hitting measure is κ is
a version of the martingale problem. It has been studied in
[9] and [10]. Under some technical assumptions discussed in
Section V, the martingale problem has a unique solution [11].
Subsequently, we use this result to formulate in Section VI
an optimisation scheme for computing probabilistic safety by
means of the generalised moment method. The results of
this work apply immediately to diffusion processes and jump
diffusion processes. In Section VIII, we apply the results to
a specific stochastic hybrid system - the Davis’ piecewise
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deterministic Markov process (PDMP) [12]. This consists of
deterministic dynamical systems that alternate with random
discrete transitions. Randomness of the discrete transitions
(jumps) is characterised by stochastic time of jumps, and
stochastic jump-destinations. We face a challenge that the
domain of the extended generator of PDMP does not satisfy
one of the conditions for the existence of a solution of the
martingale problem in [11]. Therefore, instead of working
with the extended generator, we apply the PDMP differential
formula.

The problem addressed in this paper can be seen as dual to
the well-known viability problem for control systems [13]. For
each initial condition, viability aims to calculate the control
strategy that keeps the system in a safe set. In this work,
a control strategy is given, and the aim is to determine if
the initial states are safe (in the probabilistic sense). We do
not assume that the system is ergodic, or has any form of
asymptotic stability nor there is a finite invariant measure. As
a consequence, the choice of the initial states indeed matters
for safety.

Alternative methods for the state constrained reachability
have been proposed. Barrier certificates have been used to
assess the worst case stochastic safety in [14]. Dynamic
programming has been used to compute the reach-avoid prob-
ability. This approach has been developed for (deterministic)
hybrid system in [15], and for discrete-time stochastic hybrid
systems in [16]. The reach-avoid problem for diffusion pro-
cesses with control have been characterized in [17]. Specifi-
cally, the work proposes a method for computing the initial
states for which there exists a control policy such that the
process reaches a goal set prior to entering a forbidden set.
The approach in [17] is developed for diffusion processes,
which have continuous realizations; whereas, our method is
developed for hybrid systems with discontinuous realisations
due to both spontaneous and forced jumps. In contrast to
our work utilizing probability distribution and the evolution
equation, the approach in [17] is trajectory based. Specifically,
the reach avoidance probability is the level set for the viscosity
solution of the Hamilton-Jacobi-Bellman equation. We see
the two approaches as being a duality. Indeed, they have the
same root - the Dynkin’s Formula. Another related work is
presented in [18]. The authors propose a numerical method
for computing the survivor function for the exit time from a
set. They use two observations: 1) the sequence of the times
and the destination of jumps define a Markov chain 2) the
sojourn time between the jumps is deterministic. The resulting
numerical method leans upon a quantized approximation of
the underlying Markov chain. Again, as in [17], the method
in [18] is trajectory based.

The paper is organised as follows. Section II uses a simple
diffusion process to give an overview of the method devel-
oped in this work and to see the difference with existing
methods [16], [17]. Notations used throughout the article
are introduced in Section III. Probabilistic safety concepts
are defined in Section IV. The martingale problem and the
adjoint equation are derived in Section V. The verification
is formulated as an optimisation problem in Section VI. The
findings of the paper are applied for safety verification of a

PDMP. For consistency, the PDMP and its extended generator
are presented in Section VII. In Section VIII, we derive the
adjoint equation for PDMP. In Section IX, we provide an
illustrating numerical example.

II. OVERALL APPROACH

We will briefly and informally describe the contents of the
paper. The aim is to provide intuition and give the guidelines
of how to use the results presented in the main body of
the paper. This short section is thought as a remedy of the
formal character of the paper. To make it more concrete, we
exemplify the ideas and the results for a not-yet-hybrid system,
a diffusion process on Rn, of the form

ẋ = f(x) + σ(x)w, (1)

where w is white noise. Following the convention from
stochastic calculus, we write (1) as the following stochastic
differential equation

dXt = f(Xt)dt+ σ(Xt)dBt, (2)

where (Bt) is the Brownian motion with values in an Eu-
clidean space Rm. We have used the parenthesis to indicate
that a process is a sequence of random variables.

We want to study how the process (Xt) develops in a set
Y , which is a subset of Rn. We suppose that Y is basic semi-
algebraic, i.e., a set defined by a finite number of polynomials
with real coefficients gi(X) ∈ R[X], i ∈ {1, . . . , N}

Y = {x ∈ Rn| gi(x) ≥ 0, i ∈ {1, . . . , N}}.

We consider a subset S ⊂ Rn of allowable states and a
subset of forbidden states U ⊂ S. Also these sets are assumed
to be basic semi-algebraic. We ask the question what is the
probability that (Xt) hits U before leaving S. We denote by ζS
the first time of leaving S, and by τU the first time of hitting
U , we re-formulate the above question as follows: What is the
probability that the time of hitting U is less than the time of
leaving S? Also we do want to restrict the study to some finite
time horizon T , where the question of safety is still relevant.
We denote this probability by Py[τU < ζS , τU < T ] with
y = X0. In the applications, the set U can be regarded as
a set of forbidden states; whereas, the compliment of S as a
goal set. Hence, ζS is the time when the goal is reached. On
the other hand, the examples of the time T are the life-time
of a system and the time to a new task.

For a number p ∈ [0, 1], we say that a point y ∈ S is p-safe
if

Py[τU < ζS , τU < T ] ≤ p.

The collection of all p-safe points will be called the largest
strongly p-safe set. To find the largest strongly p-safe set, we
determine the probability that the realisations of (2) hit U
before leaving S and before the time passes T , for each point
y. A naive method of computing Py[τU < ζS , τU < T ] is to
simulate the realisations (2) by the Euler schemes [19]. In this
work, we strive to represent Py[τU < ζS , τU < T ] in terms
of a solution to a conic optimisation, which will be discussed
later in this section.
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The concept of strong p-safety is indeed strong, as the prob-
ability of the initial value being y is 1, as all the realisations
of (Xt) start at y. To weaken this premise, we formulate the
definition of weak p-safety. With a given initial distribution
µ0 of the start-points, we say that a set A is weakly p-safe if∫

A

Py[τU < ζS , τU < T ]dµ0(y) ≤ p.

In other words, to check whether A is weakly p-safe, first
we make an ‘experiment’ of picking an initial value y with
distribution µ0, then we execute a realisation of the diffusion
process (2) and check if it hits U without leaving S in time
less than T with the probability no greater than p.

Fig. 1 illustrates the concept of weak and strong p-safety.
The horizontal axis symbolizes the set Y with the subset U
of forbidden states in red (solid line under horizontal axis).
The probability P (y) ≡ Py[τU < ζS , τU < T ] of reaching the
forbidden states is assigned to each point y ∈ Y . Specifically,
it is 1 for the points in U . Each point y with P (y) ≤ p is
p-safe, and the collection of these points comprises the strong
p-safe set, which is indicated by green (dashed line under the
horizontal axis). If we suppose that the initial distribution µ0

on Y is uniform and the volume under the graph corresponding
to the blue set (dotted line under horizontal axis) is no greater
than p, then the blue set is weakly p-safe. In other words, a
weak p-safe set, in this example, is the collection of points
whose probability of reaching U is, in average, below p.

p

U
Strong p-safe
Weak p-safe

x

Fig. 1. Illustration of probability of reaching the forbidden states (set marked
with solid red line). The strong p-safe set is highlighted with a green dashed
line and the weak p-safe set is marked with a blue dotted line.

To compute p-safe sets, we propose to apply the generalised
moment method [20]. In a nut-shell, the generalised moment
method is a numerical scheme for solving the following
optimisation over the finite Borel measures

sup
µ

∫
Y
fdµ (3)

subject to ∫
Y
hjdµ ≤ γj , j ∈ {1 . . . L},

where Y is again a basic semi-algebraic set, f and hj are
polynomial functions on Y , and γj is a real number. The
solution to the above problem consists of a hierarchy of
semi-definite relaxations, often referred to as the Lasserre
hierarchy. The associated sequence of optimal values of the
relaxed problems converges to the solution of (3) [20, Chaper
4]. This convergence has been shown to be no worse than
O(1/

√
r), where 2r is the size of the semi-definite matrices

involved in the relaxation [21]. Since the proposed method is

based on Lasserre’s hierarchy of relaxations of polynomial
optimizations, the size of the optimization problem grows
with the number moments, which is given by the number
of monomials of a polynomial in n variables of degree d;

this is
(
n+ d
n

)
. As a consequence, the numerical method in

this work applies well to dynamical systems defined on low
dimensional state spaces, similarly to the method presented in
[8]. Additionally, if the formulation (3) is sparse, the numerical
tractability is improved [22], and larger dynamical systems can
be studied.

We show in Theorem 2 that the generalised moment method
can be used to characterise p-safety. Without dwelling on the
details, for the initial measure µ0, we search for a measure
ν0 on Y with the largest volume such that for any Borel set
A, µ0(A) − ν0(A) ≥ 0, and it satisfies the following linear
equation∫
T ×Y

hdκ1 +

∫
T ×Y

hdκ2 −
∫
Y
h(0, x)dν0 =

∫
T ×Y

Lhdµ

(4)

for any polynomial function h, where T ≡ [0, T ]. Equation (4)
relates ν0 with three yet-to-be-defined measures µ, κ1, κ2 with
µ characterising the probability of the process (Xt) staying
in S, κ1 characterising the probability of leaving S without
hitting U , and κ2 characterising the probability of hitting the
unsafe set U , which has to be no greater than p. For the
diffusion process (2), the infinitesimal generator L is given
as follows: For any differentiable function h : R+×Rn → R

Lh =
∂h

∂t
+
∂h

∂x
f +

1

2
tr
(
σσTD2h

)
,

where tr() stands for the trace, ∂h
∂xf =

∑
∂h
∂xi

fi and D2h =

[ ∂2h
∂xi∂xj

] is the Hessian of h(t, ·).
Equipped with the measure ν0 computed in (4) and the

initial measure µ0, the largest set A such that

(µ0 − ν0)(A) = 0,

is a weakly p-safe set and contains the largest strongly p-
safe set. Alternatively, there is a density ρ, a nonnegative
measurable function on [0, T ] × Y such that dν0 = ρdµ0.
The set of all points x with the density ρ(x) = 1 is weakly
p-safe. Furthermore, this set contains all p-safe points. This
result can be seen as the reminiscence of a barrier certificate
[14], whose value is 1 on the safe states.

This general approach works not only for diffusion pro-
cesses but also for diffusion jump processes. Nonetheless,
it turns out to be insufficient when dealing with PDMPs.
Specifically, the Feller property is lost due to forced jumps [12,
Sec. 27], and the domain of the extended generator comprises
of functions with an extra condition at the boundary. This is
the reason why we use the PDMP differential formula and
modify (4). The details will be given in Section VIII.

In the following, we will not consider explicitly the control.
Notwithstanding, we remark that by combining the findings in
this work with the results in [8], the occupation measure µ in
(4) can be defined on the Cartesian product Y ×U , where the
control u(t) ∈ U . Consequently, it is possible to characterize
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the set of points for which there is a control such that the
probability of the controlled process Xt leaves S before hitting
U is not greater than p.

III. NOTATIONS AND DEFINITIONS

For a predicate Q(x) of a variable x, we will use the nota-
tion [Q(x)] to denote {x ∈ A| Q(x)} if the set A is implicitly
known. For a probability P, we write P[Q(x)] ≡ P([Q(x)]).
For two functions g and h, (g ∧ h)(x) ≡ min{g(x), h(x)}.

For a smooth function g on Rn and a smooth vector field
f on Rn, Lfg denotes the directional derivative of g along f .
The Borel sigma-algebra on a topological space Y is denoted
by B(Y). For A ∈ B(Y), IA denotes the indicator function of
A. For a measure µ on a measurable space (Y,B(Y)), supp(µ)
denotes the support of µ, i.e., the largest (closed) set C such
that every open set V with V ∩ C 6= ∅ has positive measure,
µ(V ∩ C) > 0. The positive cone of finite Borel measures
on (Y,B(Y)) is denoted by M+(Y). For µ ∈ M+(Y), and
A ∈ B(Y), we define the measure µ|A(B) = µ(A ∩ B) for
any B ∈ B(Y).

The complement of a set A is denoted by Ac, its closure
by cl(A), and the boundary of A by ∂A. P(A) denotes the
power set of A. The first time of hitting a set A by a process
(Xt) is denoted by τA ≡ inf{t ∈ R≥0| Xt ∈ A}, and the exit
time from A is defined by ζA ≡ τAc . We denote the Dirac
measure at y, a measure that has a unit point mass at {y}, by
δy . The Lebesgue measure on Rn is denoted by λ.

We use the following notation, B(Y) is the space of
bounded measurable functions on Y , C(Y) is the space of
continuous functions on Y , Cb(Y) is the space of bounded,
continuous functions on Y , and Ab(Y) is the space of bounded,
absolutely continuous functions on Y .

We consider a process (Xt,P
y) on a probability space

(Ω,F) with values in a Polish space Y , adapted to a fil-
tration (Ft). That is Xt : Ω → Y is Ft measurable.
(Py(A))y∈Y is the family of probability measures on (Ω,F)
with Py[X0 = y] = 1. Furthermore, we suppose that the
realisations (Xt(ω)) for each ω are cádlag (right continuous
with left limits), and (Xt) satisfies the strong Markov property,
i.e., for every y ∈ Y and every finite stopping time s,
Py[Xs+t ∈ A|Fs] = PXs [Xt ∈ A], Py-a.s. (Py-almost
surely). To (Py), we associate a transition semigroup (Pt)
with Pt(y,A) = Py[Xt ∈ A].

For a probability measure µ, we will use the notation
Pµ(B) =

∫
Y P

y(B)µ(dy). In other words, Pµ[Xt ∈ A] is the
probability that Xt belongs to A provided that the distribution
of X0 is µ. For a function f on Y and a measure µ on Y , we
define the pairing

〈f, µ〉 =

∫
Y
f(y)µ(dy),

whenever the integral on the right hand side exists.
A collection of functions P on the space Y is said to

separate points if for every x, y ∈ Y with x 6= y, there exists
h ∈ P such that h(x) 6= h(y).

IV. P-SAFETY

In this section, we define two variants of p-safety: strong
and weak. In short, a set is strongly p-safe if for any point y
in the set, the probability that realisations of a process starting
at y reaches the unsafe states is not greater than p. Whereas,
a set is weakly p-safe if the probability of reaching the unsafe
set weighted by an initial measure is not greater than p.

Let S be an open and U a closed subsets of Y with U ⊂ S.
We refer to the set S as the state space, and a point y ∈ S as
a state.

We want to determine the probability that (Xt) reaches U
at some time without leaving S. The above statement can be
formalised introducing the first hitting time τU of the set U ,
and the first exit time ζS from S. We will study the probability
that the sample paths visit U before leaving S, Py[τU < ζS ]. It
is natural to think that if Py[τU < ζS ] is bigger than a certain
threshold p then the state y is considered unsafe. Nevertheless,
we will examine safety in an arbitrary but finite time-horizon
T . Hence, a state y is p-safe if the probability that the process
hits U within the horizon T and before it leaves S is not
greater than p.

Definition 1: A point y ∈ S is p-safe if

Py[τU < ζS , τU < T ] ≤ p. (5)

A state that does not satisfy (5) is called p-unsafe.

We want to determine all p-safe states.

{y ∈ S| Py[τU < ζS , τU < T ] ≤ p}. (6)

Definition 2: Let µ0 be a probability measure on the state
space with supp(µ0) ⊂ S.
• A set A ∈ B(Y), A ⊂ S, is strongly p-safe with respect

to µ0 if for any measurable subset B ⊂ A,

χµ0(B) ≡
∫
B

Py[τU < ζS , τU < T ]µ0(dy) ≤ pµ0(B).

• A is strongly p-unsafe (with respect to µ0) if for any
measurable subset B ⊂ A,

χµ0(B) > pµ0(B).

Remark 1: Notice that in the definition of strongly p-
unsafe we have used the quantifier “for any” not “there
exists”; hence, being strongly p-unsafe is not the same as not
being strongly p-safe. Furthermore, one is tempted to replace
χµ0(B) > pµ0(B) in the definition of strong p-unsafety by
χµ0(B) > p as p ≥ pµ0(B). Nonetheless, by shrinking B, we
gradually decrease µ0(B) to zero. Hence, using this inequality,
there would be no strongly p-unsafe sets.

It follows from Definition 2 that a subset A ⊂ S with
µ0(A) = 0 is strongly p-safe. Furthermore, a subset of a
strongly p-safe set is again strongly p-safe and the disjoint
union of strongly p-safe sets is strongly p-safe.

The next proposition establishes a relation between Defini-
tions 1 and 2. It says that any strongly p-safe set consists of
p-safe points.

Proposition 1: A subset A ⊂ S is a strongly p-safe if and
only if for any y ∈ A (µ0-a.s.), P y[τU < ζS , τU < T ] ≤ p.
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Proof: For necessity, for any B ⊂ A, let

B′ = {y ∈ B| Py[τU < ζS , τU < T ] ≤ p}.

By the premises of the proposition, µ0(B \B′) = 0. Hence,

χµ0(B) =

∫
B′
Py[τU < ζS , τU < T ]µ0(dy) ≤ pµ0(B).

We will prove the sufficiency by contradiction. To this end,
suppose B is a subset of

{y ∈ A| Py[τU < ζS , τU < T ] > p} ⊂ A

and µ0(B) > 0. As B is a subset of the strongly p-safe set
A, it is also strongly p-safe. Hence, χµ0(B) ≤ pµ0(B). But

χµ0(B) =

∫
B

Py[τU < ζS , τU < T ]µ0(dy) > p

∫
B

µ0(dy),

which is a contradiction.
We want to express that a set is larger than another one

and at the same time to disregard points of zero µ0 measure.
Therefore, we define an equivalence relation ' on B(Y) by
A ' B if and only if µ0(A) = µ0(B). Subsequently, we
define a partial order � on B(Y)/ '

[A] � [B] ⇐⇒ µ0(A) ≤ µ0(B), (7)

where [A] is the equivalence class containing A.
In the rest of the paper, when referring to the largest set, we

mean a largest set with respect to � (if it exists). Specifically,
A is a largest strongly p-safe set with respect to �, if whenever
there exists a strongly p-safe set B and [A] � [B] then
µ0(A) = µ0(B). That is, A and B belong to the same
equivalence class, [A] = [B].

We observe that the complement of a largest strongly p-safe
set is strongly p-unsafe. In the next proposition, we show that
a largest p-safe set and a largest p-unsafe set exist.

Proposition 2: The set

{y ∈ S| Py[τU < ζS , τU < T ] ≤ p}

is the largest strongly p-safe, and the set

{y ∈ S| Py[τU < ζS , τU < T ] > p}

is largest strongly p-unsafe. Furthermore, the two sets are
measurable (belong to B(Y)).

Proof: The first statement of this proposition follows from
Proposition 1. For the second statement, recall that Y is a
Polish space, hence by Theorem 8.36 in [23], y 7→ Q(y) ≡
P y[τU < ζS , τU < T ] is a measurable function. Therefore,
the sets Q−1([0, p]) and Q−1((p, 1]) are measurable.

The last proposition was an existence result; whereas, the
following proposition is an uniqueness result.

Proposition 3: The largest strongly p-safe set is unique up
to measure µ0.

Proof: Suppose that A and A′ are both largest strongly p-
safe sets such that µ0(A\A′∪A′\A) 6= 0. Then B = A∪A′ is
strongly p-safe, A ⊂ B, and µ0(B \A) = 0. This contradicts
with the hypothesis that A is the largest strongly p-safe set.

Another concept of safety discussed in this paper is weak
p-safety. It seems reasonable to weight the unsafe points with

the measure µ0. To illustrate, if the initial measure of the set
A comprising of unsafe points is particularly small, we might
want to regard A as safe. The next definition captures this
concept.

Definition 3: Let µ0 be a probability measure on the state
space S, i.e., supp(µ0) ⊂ S. We will say that a set A ∈ B(Y),
A ⊂ S, is weakly p-safe (with respect to µ0) if

χµ0(A) ≤ p.

We say that A is weakly p-unsafe if

χµ0(A) > p.

Notice that any subset of a weakly p-safe set is again weakly
p-safe, as χµ0 is a measure. Furthermore, any strongly p-safe
set is weakly p-safe as

χµ0(B) ≤ pµ0(B) ≤ p.

The next example shows that a weakly p-safe set can contain
a strongly p-unsafe set; and vice versa a weakly p-unsafe set
can contain a strongly p-safe set.

Example 1: Suppose that the initial measure µ0 corresponds
to the uniform distribution on a compact state space S. Let
p = 0.6, and {A1, A2, A3} be a disjoint partition of S such
that

1) µ0(A1) = 0.1, µ0(A2) = 0.2, and µ0(A3) = 0.7;
2) for all y ∈ A1, P y[τU < ζS ] = 0.1, and for all y ∈

A2 ∪A3, P y[τU < ζS ] = 0.9.
The set A1 is obviously strongly p-safe; whereas, the sets A2

and A3 are strongly p-unsafe. The set A ≡ A1∪A2 is weakly
p-safe, as χµ0(A) = 0.181. Notice also that A′ ≡ A1 ∪A3 is
weakly p-unsafe, χµ0(A′) = 0.631.

Any weakly p-safe set A can be uniquely partitioned into a
strongly p-safe and a strongly p-unsafe disjoint sets B and C,
A = B∪C, since a point is either p-safe or p-unsafe. Motivated
by the above example, we ask the following question. Suppose
a set A is weakly p-safe. We regard a partitioning of A into
two subsets B and C such that B is strongly p-safe, and C
is weakly p-safe. How small can C be? Specifically, C is
greater (with respect to the inclusion) than the set of all p-
unsafe points, and at most, it is equal to A. To answer this
question, we formulate the following proposition.

Proposition 4: Let A ⊂ Y , and let B ⊂ A be strongly
p-safe. Suppose that there is an ε ≥ 0 such that

C ≡ A \B
= {y ∈ Y| p < Py[τU < ζS , τU < T ] ≤ p(1 + ε), }

and

εµ0(C) ≤ µ0(Ac).

Then A is weakly p-safe.
The number ε in Proposition 4 can be viewed as the degree to
which C is unsafe. Specifically, Proposition 4 states that the
union of a strongly p-safe set B and a strongly p-unsafe set
C is weakly p-safe provided the measure µ0 of C is small or
the unsafety degree ε of C is small.
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Proof:

χµ0(A) = χµ0(B) + χµ0(C) ≤ pµ0(B) + p(1 + ε)µ0(C)

= pµ0(A) + pεµ0(C) ≤ pµ0(A) + pµ0(Ac) = p.

Remark 2: The concept of weak p-safety allows formulating
safety for a chain of events. Specifically, assuming that the dis-
tribution of the initial states is given by µ0, the probability of
visiting firstly a set U1 in a time-horizon T1 and subsequently
hitting U2 within a time-horizon T2 is

χ
µ′0
(U2,T2)(B) ≡

∫
B

Py[τU2
< ζS , τU2

< T2]µ′0(dy),

where

µ′0 = χµ0

(U1,T1).

Hence, a set B is weakly p-safe for the above chain of events
if χµ

′
0

(U2,T2)(B) ≤ p.
The aim of the following sections is to characterise the

largest strongly p-safe set, and to use conic optimisation
for this purpose. To capture all strongly p-safe points, we
use the measures ν0, µ, κ1 and κ2, which will be formally
introduced in the next section, and their dynamics specified by
an integral equation in (4). Nonetheless, an integral ”averages”
the information; hence, an algorithm leaning on (4) will allow
the computation of a weakly p-safe set. By adding additional
optimisation constraints, we will be able to pick a weakly p-
safe that contains the largest strongly p-safe set.

In conclusion, for a Markov family (Xt,P
y) adapted to the

filtration (Ft), a number p ∈ [0, 1], and a subset U ⊂ S, we
will develop an algorithm for computing a weakly p-safe set
that contains the largest strongly p-safe set.

V. TIME-SPACE PROCESS

We recall, a real-valued process (Yt) is a martingale with
respect to (Ft) if for every y ∈ Y , Ey[Yt|Fs] = Ys for t > s
and supermartingale if Ey[Yt|Fs] ≤ Ys for t > s. A process
(Yt) is a local martingale if there exists a sequence (Tn)n∈N
of stopping times (with respect to (Ft)) such that Tn → ∞
pointwise and the stopped process (Y Tn

t )

Y Tn
t ≡

{
Yt if t ≤ Tn
YTn if t ≥ Tn.

is a martingale.

A. Generator

We will introduce the so-called extended generator [12] of
the considered Markov process (Xt) - a generalisation of the
infinitesimal generator used in Section II. The reason for doing
this is the need for broadening the domain of the generator
when dealing with more general processes than the diffusion.

Following [12], we define D(L) as the set of measurable
functions h : (Y,B(Y))→ (R,B(R)) having the property that
there is a measurable function g : (Y,B(Y)) → (R,B(R))

such that the function t 7→ g(Xt) is Py-almost surely inte-
grable for each y ∈ Y , and the process Cht given by

Cht ≡ h(Xt)− h(X0)−
∫ t

0

g(Xs)ds (8)

is a local martingale (with respect to Ft). We write Lh = g and
call (D(L),L), or even L, an extended generator. Notice that
the extended generator L is possibly multivalued. Nonetheless,
if g1 and g2 are two extended generators, then g1(x) 6= g2(x)
only on a subset A where

∫∞
0
IA(Xt)dt = 0 Py-a.s. for y ∈

Y , i.e., the process (Xt) spends no time in A.
In the following, we will refer to the extended generator

as the generator. The generators of many interesting processes
encountered in control engineering have been characterised;
herein, diffusion processes, their generalisations jump diffu-
sion processes and switching diffusion processes, as well as
piecewise-deterministic Markov processes.

We turn the above problem statement upside down: Having
an operator L with a domainD(L), we ask the question if there
is a process for which Cht is a local martingale. Specifically,
let µ0 be the initial distribution of the desired processes. We
say that a process (Xt) is a solution of the martingale problem
for (L, µ0) up to a (finite) stopping time τ if there is a
filtration (Ft) such that X0 has the distribution µ0, (Xt) is
(Ft)-progressively measurable, and

h(Xt)− h(X0)−
∫ t

0

Lh(Xs)ds

is a martingale for every h in the domain of L and t ≤ τ .
We suppose that the martingale problem is well-posed that
is any two solutions have the same finite-dimensional dis-
tribution. For conditions on the generator L imposing well-
posed martingale problem we refer the interested reader to
[24]. Specifically, the martingale problem is well-posed for
multivariate point processes [25], thereby for PDMPs [26].

We consider the minimum time of hitting the forbidden set
U or leaving the state space S. At the outset, we fix a time
horizon T ∈ R+. We think of T as the maximum time of
interest, above which the information whether the system is
safe or not is no longer relevant. For instance, T might be the
life-time of the system. Consequently, we define the stopping
time τ by

τ ≡ T ∧ τU ∧ ζS .

We observe that τ is finite. Therefore, by the optional
sampling theorem, the stopped process (Cht )τ = (Cht∧τ ) is
a martingale, and Ex[Cht∧τ ] = Ex[Ch0 ] = 0. Subsequently, we
have

Ey[h(Xt∧τ )] = Ey[h(X0)] + Ey
[∫ t∧τ

0

Lh(Xs)

]
ds. (9)

Eq. (9) is instrumental to our work. In the next section,
we show how to re-formulate it in terms of the occupation
measure, which we subsequently compute.

Since (9) is valid for an arbitrary function h ∈ D(L), the
indicator functions IU and ISc (assuming that their smooth
approximations belong to the domain of L) evaluated in (9)



7

determine whether the process (Xt) hits the forbidden set U
or leaves the state space S provided τ < T . Nonetheless, we
encounter the difficulty with distinguishing whether τ < T or
τ = T , as this information is not encoded in (9). To circumvent
this obstacle, we define the time-space process (St, Xt), where
St is the solution of the Cauchy problem d

dtSt = 1, S0 = b,
i.e., St = b+t. In other words, we extend the state space of the
process (Xt) with the time dimension. Here, the time can be
seen as a (deterministic) process with infinitesimal generator
∂
∂t , Section 2.4 in [27].

Consequently, (9) pronounces

Cht∧τ ≡ h(t ∧ τ,Xt∧τ )− h(0, X0)−
∫ t∧τ

0

L̂h(s,Xs)ds,

(10)

with L̂ = L+ ∂
∂t , and Cht∧τ is a martingale for any measurable

function h : (R× Y,B(R× Y))→ (R,B(R)) in the domain
of L̂. Specifically, the functions of the form γ(t)h(x) with γ
continuously differentiable and h ∈ D(L) are in D(L̂).

We extend the family of probability measures Py related to
the process (Xt) to the family of probability measures P̂(b,y)

related to the extended process X̂t ≡ (St, Xt) by

P̂(b,y)[(St, Xt) ∈ B × C] = IB(t+ b)Py[Xt ∈ C].

As the consequence, the following equality holds

Ê(0,y)[h(t ∧ τ,Xt∧τ )]

=Ê(0,y)[h(0, X0)] + Ê(0,y)

[∫ t∧τ

0

L̂h(s,Xs)ds

]
,

(11)

where the expected value Ê(0,y) is calculated with respect to
probability P̂(0,y). We re-interpret the stopping time

τ = τ[0,T )×U ∧ ζ[0,T ]×S . (12)

The information whether τU < T can be now extracted from
(11) by applying the indicator function I[0,T )×U (provided that
the indicator functions can be approximated by the elements
of D(L̂)). Indeed, this will be a standing hypothesis in the
remainder of this paper. The left hand side of (11) becomes
the probability that (Xt), for t ≤ T , hits U before leaving S.

To formulate the p-safety of a process (Xt), we have
used the measure χµ0 on Y in Definition 2, which for the
corresponding time-space process (St, Xt) with an initial
distribution µ̂0 on R+ × Y becomes

χµ̂0(B × C) =

∫
B×C

P̂(t,y)[τ[0,T )×U < ζ[0,T ]×S ]µ̂0(dt× dy)

=

∫
B×C

P̂(t,y)[τR+×U < ζ[0,T ]×S ]µ̂0(dt× dy).

(13)

We extend the transition semigroup Pt(y, C) to the time-
space transition semigroup P̂t((b, y), B×C) (for B ∈ B(R+),
and C ∈ B(Y)) by

P̂t((b, y), B × C) ≡ δt+b(B)Pt(y, C), t ≥ 0,

where δc is the Dirac measure at c. In fact, (P̂t) is the transition
semigroup of the process (t,Xt), i.e., P̂t((b, y), B × C) =
P(b,y)[(St, Xt) ∈ B × C].

We define an action of P̂t on a bounded measurable function
h ∈ B([0, T ]× Y) by P̂th(b, y) ≡ Ê(b,y)(h(t,Xt)), where

Ê(b,y)(h(t,Xt)) =

∫
R+×Y

h(u, z)P̂t((b, y), dudz)

=

∫
Y
h(t+ b, z)Pt(y, dz).

In particular, P̂t((b, y), B × C) = P̂tIB×C(b, y), where P̂t
on the left hand side is the transition semigroup giving the
probability of the process (St, Xt) belonging to the set B×C;
whereas, P̂t on right hand side is the actions on the indicator
function IB×C .

As indicated, we focus on the process (Xt) up to the
stopping time τ . To this end, for any t ∈ R+, we define a
family of probabilistic operators/kernels (Kt) by

Kth(b, y) ≡ Ê(b,y)(h(t,Xt)I[t≤τ ]),

and

Kt((b, y), B × C) ≡ KtIB×C(b, y).

Observe that if B ⊂ (T,∞) or C ⊂ Sc then Kt((b, y), B ×
C) = 0. Furthermore, if t ≤ τ , P(c,y)-a.e., then Kt = P̂t.
Hence, (Kt) fully characterises the process (Xt) up to the
stopping time τ . That is, (Kt) determines the probability that
(Xt) hits a set before “dying” - leaving the state space S or
entering the unsafe set U .

Likewise (P̂t), (Kt) for t ∈ R+ forms a one parameter
semigroup, Kt+sf(b, y) = Kt(Ksf)(b, y). This follows from
the observation that τ in (12) is a terminal time, i.e., it satisfies
s+τ ◦θs = τ P-a.s. on [s < τ ], where θs is the shift operator
for (X̂t).

B. Occupation Measures

We will formulate (11) as an equation relating three mea-
sures: 1) the occupation measure capturing the information
about where the realisations of the process evolve in the state
space, 2) hitting measure encapsulating the information of
probability of hitting the boundary of the state space and the
forbidden state, and 3) the initial measure.

For an initial probability measure µ̂0 on [0, T ] × (S \ U),
we define the occupation measure at time t µ̂t on [0, T ]× Y
by

µ̂t(B × C) =

∫
R+×Y

Kt((b, y), B × C)µ̂0(db× dy).

In the following, we study initial probability measures of the
form µ̂0 ≡ δ0⊗µ0. We are ready to define the primary objects
of the investigation in this work:

1) the occupation kernel

µ̄((b, y), B × C) ≡
∫ ∞

0

Kt((b, y), B × C)dt

= Ê(b,y)

∫ τ

0

IB×C(t,Xt)dt,
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and the occupation measure

µ̂(B × C) ≡
∫
R+×Y

µ̄((b, y), B × C)µ̂0(db× dy)

=

∫
[0,T ]×Y

µ̄((b, y), B × C)µ̂0(db× dy)

=

∫
[0,T ]

µ̂t(B × C)dt (14)

with µ̂0 ≡ δ0 ⊗ µ0,
2) the hitting kernel

κ̄((b, y), B × C) ≡ Ê(b,y) (IB×C(τ,Xτ )) ,

and the hitting measure

κ̂(B × C) ≡
∫
R+×Y

κ̄((b, y), B × C)µ̂0(db× dy).

(15)

As the time-space process (St, Xt) terminates when leaving
[0, T ]×(S \U), we observe that the support of the occupation
and hitting measures

supp(µ̂) ⊂ [0, T ]× cl(S \ U),

supp(κ̂) ⊂ {T} × cl(S \ U) ∪ [0, T ]× Sc ∪ [0, T ]× U.

Equipped with the occupation and the hitting measures, (11)
becomes∫

[0,T ]×Y
h(t, z)κ̂(dt× dz) =

∫
[0,T ]×Y

h(t, z)µ̂0(dt× dz)

(16)

+

∫
[0,T ]×Y

L̂h(t, z)µ̂(dt× dz)

for any h in the domain of L̂, where µ̂0 = δ0 ⊗ µ0.
To simplify the notation, we introduce the pairing 〈g, ρ〉 for

an integrable function g on [0, T ] × Y and a measure ρ on
B([0, T ]× Y),

〈g, ρ〉 ≡
∫

[0,T ]×Y
g(t, z)ρ(dt× dz).

As a consequence (16) becomes

〈h, κ̂〉 = 〈h, µ̂0〉+ 〈L̂h, µ̂〉. (17)

Definition 4: We say that a triple

(µ1, µ2, µ3) ∈M+([0, T ]×Y)×M+(Y)×M+([0, T ]×Y)

of measures solve the evolution equation for the generator L̂
if

〈h, µ3〉 = 〈h, µ̂2〉+ 〈L̂h, µ̂1〉. (18)

is satisfied for every h ∈ D(L̂).
In the remaining part of this section, we reverse the problem

and assume that there is a triple (µ̂, µ̂0, κ̂) that is a solution
of (17). We strive to recover the original process (Xt). To
this end, we recall the definition of a martingale problem in
Section V-A. So far, we have explained how to compute the
occupation and hitting measures for a given process (St, Xt).
On the other hand, Theorem 3.3 in [11] answers the question

if there is a process (Xt), which is a solution of the martingale
problem (L, µ0) up to time τU ∧ ζS ∧ T .

Assumption 1: Let L be an operator that satisfies
1) L : D(L) ⊂ Cb(Y) → C(Y), and L1 = 0, where

1 : y 7→ 1;
2) The domain D(L) of L is closed under multiplication

and separates points, see Section III;
3) The graph of L is separable, i.e., there exists a countable

collection (hk) ⊂ D(L) such that (h,Lh)h∈D(L) is
contained in the bounded, pointwise closure of the linear
span of (hk,Lhk)k≥1.

We shed some light on Assumption 1. Condition 1) states
that all L is zero on constant functions. In particular, if L
is an infinitesimal generator of the process (Xt), L1 = 0,
due to Markov semigroup property, P(t,y)

t 1 = 1. Condition
2) is a necessary condition for a martingale problem to be
well-posed. For details, we refer the reader to Theorem 2.1
in [10]. Condition 3) allows to represent any function f (in
the domain of L) and Lf as a linear combination of basis
functions hk. Explicitly, Condition 2) together with 3) ensure
the existence of a stationary process [24, page 247] whenever
there is a measure µ on the state space Y such that

∫
Y Lfdµ =

0 for all (f,Lf) ∈ D(L). This property is used in the proof
of Theorem 3.3 in [11] to construct a process whose initial,
hitting, and occupation measures satisfy (17).

Theorem 1 (Theorem 3.3 in [11]): Suppose that L is an
operator with the domain D(L) that satisfies Assumption 1.
Let κ̂ be the probability measure and µ̂ be the measure both
on R+ × Y that satisfy

〈γh, κ̂〉 = 〈γh, δ0 ⊗ µ0〉+ 〈 d
dt
γ + Lh, µ̂〉,

for all continuously differentiable functions γ : R+ → R that
vanish at infinity and h ∈ D(L). Then there exist a filtration
(Ft), a process (Xt), and an (Ft)-stopping time s such that
(Xt) is a solution of the martingale problem for (L, µ0) up
to time s, κ̂ is the hitting measure and µ̂ is the occupation
measure for the time-space process (St, Xt) with the stopping
time s.

The following corollary is a consequence of Theorem 1.
Corollary 1: Suppose that L is an operator with the domain
D(L) that satisfies Assumption 1. Let (µ̂, µ0, κ̂) be a triplet of
measures solving the evolution equation for L̂, where µ0 and
κ̂ are probability measures, and the supports of µ̂, µ0, and κ̂
satisfy

supp(µ̂) ⊂ [0, T ]× cl(S \ U) (19a)
supp(µ0) ⊂ S \ U, (19b)
supp(κ̂) ⊂ {T} × cl(S \ U) ∪ [0, T ]× Sc ∪ [0, T ]× U,

(19c)

and the martingale problem (µ0,L) well-posed.
Then

χδ0⊗µ0(R+ × S) = κ̂([0, T )× U). (20)

Proof: By Theorem 1, there is a process (Yt, P̃
y) a

solution of the martingale problem for (L, µ0), and a stopping
time s such that the hitting kernel of the time-space process
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(St, Xt) is κ̂ and the occupation measure is µ̂. Since the
martingale problem is well-posed, we have Xt = Yt, a.e., up
to stopping time s. Here, a.e. means P̃µ0 -almost everywhere.

By (19c), s ≥ τU∧ζS∧T , a.e., and by (19a), s ≤ τU∧ζS∧T ,
a.e. Hence, s = τU ∧ ζS ∧ T , a.e.

Now, (20) follows from the definition of χδ0⊗µ0(R+ × S)
in (13) and

P̂(0,y)[τ[0,T )×U ∧ ζ[0,T ]×S ] = P̂(0,y)[Xτ ∈ U, τ ∈ [0, T )]

=Ê(b,y)
(
I[0,T )×U (τ,Xτ )

)
= κ̄((0, y), [0, T )× U). (21)

In the corollary, we have assumed well-posedness of the
martingale problem. Specifically, the martingale problem is
well-posed for diffusion processes, Levy processes and PDMP
(for PDMP the result can be derived from the results existing
for multivariate point processes [24]). In the next section, we
will use Theorem 1 for the verification of p-safety.

VI. SAFETY VERIFICATION

We strive to solve the problem of computing a maximal p-
safe set applying the generalized moment method [20]. In a
nutshell, the moment method computes a solution to

sup
µ∈M+([0,T ]×Y)

〈f, µ〉

subject to

〈hj , µ〉 ≤ γj , j ∈ Γ,

where Γ is a finite index set, f , hj are integrable functions on
[0, T ]× Y and γj are real numbers.

To this end, we let κ̂ = κ̂1 + κ̂2, where

κ̂1 ≡ κ̂|{T}×(S\U)∪[0,T ]×Sc (22a)
κ̂2 ≡ κ̂|[0,T )×U . (22b)

The measure κ̂1 is the probability that the process (Xt)
leaves the state space before hitting the unsafe set U ; whereas,
κ̂2 is the probability that (Xt) hits U within the time horizon
T . Specifically, by (20), for an initial distribution µ0 on S \U ,
we have

κ̂2([0, T ]× Y) = κ̂([0, T )× U) = χδ0⊗µ0([0, T ]× Y).

In the following, we use the notation χµ0 ≡ χδ0⊗µ0

To compute the probability χµ0([0, T ] × Y) of hitting U
before leaving S in the time horizon T , we lean upon the
aforementioned generalized moment method.

In the next theorem, we will show that computation of the
maximal p-safe set can also be formulated as a generalized
moment problem. For this purpose, we define the involved
measures as follows.

Definition 5: We denote by

O ⊂M+([0, T ]× Y)×M+(Y)×M+([0, T ]× Y)2,

the set of quadruples of measures (µ̂, ν0, κ̂1, κ̂2) whose sup-
ports satisfy

supp(µ̂) ⊂ [0, T ]× cl(S \ U), (23a)
supp(ν0) ⊂ S \ U, (23b)
supp(κ̂1) ⊂ {T} × cl(S \ U) ∪ [0, T ]× Sc, (23c)
supp(κ̂2) ⊂ [0, T ]× U. (23d)

Theorem 2 (Characterisation of the largest strongly p-safe
set): Let µ0 be an initial probability measure on Y with
supp(µ0) ⊆ S \ U . Suppose that the quadruple of measures
(µ̂∗, ν∗0 , κ̂

∗
1, κ̂
∗
2) ∈ O in Definition 5 is a solution to the conic

optimisation1

v∗ = sup{ν0(Y)| (µ̂, ν0, κ̂1, κ̂2) ∈ O} (24)

such that

∀h ∈ D(L̂) 〈h, κ̂1〉+ 〈h, κ̂2〉 − 〈h, δ0 ⊗ ν0〉 = 〈L̂h, µ̂〉,
(25)

and

〈1, κ̂2〉 ≤ p〈1, δ0 ⊗ ν0〉, (26)
ν0 ≤ µ0 (27)

Then the complement of the set

supp(µ0 − ν∗0 )

is a weakly p-safe set and contains the largest strongly p-safe
set with respect to �.

The inequality ν0 ≤ µ0 in (27) is to be understood as the
following predicate: There is α ∈M+(Y) such that ν0 +α =
µ0.

Proof: At the outset, we define

µ̄ ≡ µ̂∗

ν∗0 (Y)

ν̄0 ≡
ν∗0

ν∗0 (Y)

κ̄i ≡
1

ν∗0 (Y)
κ̂∗i , i ∈ {1, 2},

and κ̄ ≡ κ̄1 + κ̄2. Subsequently, the triple (µ̄, ν̄0, κ̄) solves
the evolution equation for L̂, and ν̄0 is a probability measure.
Hence by Corollary 1,

Pδ0⊗ν̄0 [τR+×U < ζ[0,T ]×S ] = κ̄([0, T )× U) (28)
=κ̄1([0, T )× U) + κ̄2([0, T )× U) ≤ κ̄2([0, T ]× Y) ≤ p.

Let A ≡ (supp(µ0−ν∗0 ))c. It follows that (µ0−ν∗0 )(A) = 0.

1The optimisation is over the cone of positive measures.
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Next, we show that A is weakly p-safe

χµ0(A) =

∫
A

P(0,y)[τR+×U < ζ[0,T ]×S ]µ0(dy)

=

∫
A

P(0,y)[τR+×U < ζ[0,T ]×S ]ν∗0 (dy)

=ν∗0 (Y)

∫
A

P(0,y)[τR+×U < ζ[0,T ]×S ]ν̄0(dy)

≤Pδ0⊗ν̄0 [τR+×U < ζ[0,T ]×S ] ≤ p.

We have used the fact that ν∗0 (Y) ≤ µ0(Y) = 1 and (28).
Now, we will prove by contradiction that A contains the

largest strongly p-safe set. Suppose that there is a strongly p-
safe set A′ ⊂ S \ U such that A ∩ A′ = ∅ and µ0(A′) 6= 0.
Let α ≡ µ0|A′ − ν∗0 |A′ . Notice that α ∈ M+(Y), α(Y) > 0,
and ν∗0 + α ≤ µ0. By Proposition 1,∫

Y
P(0,y)[τR+×U < ζ[0,T ]×S ]α(dy) ≤ p

∫
Y
α(dy).

For the initial probability measure α, we construct the occupa-
tion measure µ̂′ and the hitting measure κ̂′ as in (14) and (15).
We define κ̂′i, i ∈ {1, 2} as in (22). We observe that µ̂′, κ̂′1, κ̂

′
2

satisfy (23) and (µ̂′, α, κ̂′1 + κ̂′2) solves the evolution equation
for L̂. Since all the constraints in the optimisation problem are
linear, (µ̂, ν0, κ̂1, κ̂2) = (µ̂∗ + µ̂′, ν∗ + α, κ̂∗1 + κ̂′1, κ̂

∗
2 + κ̂′2)

solves (23) to (27). But this is a contradiction as (α+ν∗0 )(Y) >
ν∗0 (Y).

Corollary 2: Suppose that the premises of Theorem 2 hold
with the constraint

∫
dκ̂2 ≤ p

∫
dν̂0 substituted by

∫
dκ̂2 >

p
∫
dν̂0. Then the complement of the set

V = supp(µ0 − ν∗0 )

is a weakly p-unsafe set and contains the largest strongly p-
unsafe set.

The virtue of Corollary 2 is that all p-unsafe states are
excluded from the found set V . In other words, contrary to
Theorem 2, it under-approximates the p-safe states, which is
a desired property of any safety-verification algorithm.

Let R be the weakly p-safe set in Theorem 2 and R′ be
the weakly p-unsafe set in Corollary 2, then the following
inclusions show that R \R′ is a subset of the largest strongly
p-safe set A

R \R′ ⊂ R \Ac ⊂ S \Ac = A.

In conclusion, we have the following evaluation of the largest
strongly p-safe set

R \R′ ⊂ A ⊂ R.

The main result below shows that p-safety is equivalent
to the existence of the quadruple (µ̂∗, ν∗0 , κ̂

∗
1, κ̂
∗
2) ∈ O of

measures solving the optimisation problem (24).
Proposition 5: There exists a measure ν∗0 solving (24) to

(27). Furthermore, there is a unique density ρ∗ such that

dν∗0 = ρ∗dµ0. (29)

Proof: First, we observe that the optimisation problem is
feasible. To this end, we let ν0 = µ0|A, and define µ̂ as in

(14) with µ0 substituted by ν0, κ̂1, and κ̂2 as in (22) with κ̂
defined in (15).

We will show that there exists a measure ν∗0 solving (24)
to (27). Since ν0 ≤ µ0 (there is α ∈ M+(Y) such that
ν0 + α = µ0), ν0 is absolutely continuous with respect to
µ0. Therefore, by Radon-Nikodym theorem, there is a unique
density ρ, a nonnegative measurable function on Y such that
dν0 = ρdµ0. Specifically ρ ≤ 1 as ν0 ≤ µ0. Consider a
sequence of measures (νj0) satisfying limj→∞ νj0(Y) = v∗. To
each measure νj0 , we associate the density ρj . By dominated
convergence theorem, there is a density ρ∗ such that

lim
j→∞

νj0(Y) = lim
j→∞

∫
ρjdµ0 =

∫
ρ∗dµ0.

We define ν∗0 by dν∗0 = ρ∗dµ0.
Theorem 3: Let µ0 be an initial measure on Y with

supp(µ0) ⊆ Y . A set A is a maximal p-safe set if and
only if there exists a quadruple (µ̂∗, ν∗0 , κ̂

∗
1, κ̂
∗
2) ∈ O that

solves the optimisation problem given by (24) to (27), and
A ⊂ (supp(µ0 − ν∗0 ))c.

Proof: The sufficiency follows from Theorem 2, and the
necessity from Proposition 5.

As the consequence of Proposition 5, we use the density ρ∗

to characterise the largest strongly p-safe set. Specifically for
an A ⊂ S, if ρ∗|A = 1 then A is weakly p-safe.

Later in the paper, we use the moment method of [20]
to compute an approximation of ν∗0 . Suppose for a while
that Y ⊂ Rn. Consequently, the sequences of reals are
computed corresponding to the moments of the finite Borel
measures µ̂∗, ν∗0 , κ̂

∗
1, and κ̂∗2. Let the sequence (yν0α )α∈Nn be

the moments of ν∗0 , and (yµ0
α )α∈Nn be the moments of µ0.

If both sequences of moments are finite, then from (29), ρ∗

is a polynomial function ρ∗(X) =
∑
γ∈Nn ρ∗γX

γ of degree
d, where the coefficients ρ∗γ are uniquely determined by the
system of linear equations

yν0α =
∑

γ+β=α

ρ∗γy
µ0

β .

The results derived in this section can be applied for the
processes with (extended) generators satisfying Assumption 1.
The list includes diffusion and jump diffusion processes.
Nonetheless, Assumption 1 does not hold for processes with
forced jumps. In the next sections, we will show how to
circumvent this problem for piecewise-deterministic Markov
processes.

VII. PIECEWISE-DETERMINISTIC MARKOV PROCESSES

A piecewise-deterministic Markov process, in short PDMP,
is a stochastic hybrid process, whose dynamics represent
alternation of continuous dynamics captured by deterministic
differential equations with spontaneous and forced stochastic
jumps [12]. The jumps are characterised by stochastic time of
jumps and stochastic jump-destinations.

We consider a countable set Q of discrete states, a function
d : Q→ N, and X : Q→

⋃
j∈Q {j}×P(Rd(j)) a multivalued

map assigning to each discrete state j ∈ Q an open subset of
{j} ×Rd(j). A hybrid state space of a PDMP is the set

Y ≡
⋃
j∈Q
X (j) = {(j, x) ∈ X (j)| j ∈ Q} .
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A vector field f on the hybrid state space Y is a map

f : Y →
⋃
j∈Q
{j} ×Rd(j)

with the section property π1f = id, where π1(j, x) = j, and
id is the identity map on Q. In other words, f assigns to each
hybrid state y = (j, x) a vector f(y) ∈ {j} × Rd(j). For an
open interval (−ε, ε) ⊂ R the flow of f is a map

φ : (−ε, ε)× Y → Y

such that φ(0, y) = y

d

dt
φ(t, y) = f(φ(t, y)), for t ∈ (−ε, ε). (30)

Let Γ be the set of points on the boundary ∂Y of Y , which
are reached by the flow of the vector field f

Γ ≡ {y ∈ ∂Y| ∃(t, y′) ∈ R+ × Y, y = φ(t, y′)} .

Let
Y ≡ Y ∪ Γ.

We are now ready to define a piecewise-deterministic
Markov process.

Definition 6 (PDMP): A piecewise-deterministic Markov
process is a collection

((Q, d,X ), f, ν0, λ,K),

where
• (Q, d,X ), and f are as described above;
• ν0 : B(Y)→ [0, 1] is an initial probability measure;
• λ : Y → R+ is a jump rate that defines the survivor

function F of the ith jump after the jump at time Ti−1

from the hybrid state yi−1 as follows
F (yi−1, t) ={

exp
(
−
∫ t

0
λ(φ(yi−1, τ))dτ

)
if t < t∗(yi−1)

0 if t ≥ t∗(yi−1),

where t∗ : Y → R+ ∪ {∞} is the exit time defined by

t∗(y) = inf {t > 0| φ(y, t) /∈ Y} ;

• K : B(Y) × Y → [0, 1] is a transition measure. At any
point y ∈ Y , K(A, y) is the probability that the jump is
onto the set A.

The execution of a PDMP consists of a deterministic process
(Xt) corresponding to the solution of ODE starting at yi−1,
alternating with stochastic jumps at time Ti defined by the
survivor function F (yi−1, t). The post-jump location yi is
described by the transition measure K(dyi, yi−1).

The extended generator of a PDMP is characterised by the
following theorem.

Theorem 4 (Theorem 11.2.2 in [12]):
Let ((Q, d,X ), ξ, ν0, λ,K) be a PDMP. The restriction g|Y of
a measurable function g : Y → R to Y belongs to the domain
D(L) of the extended generator L if
• For each y ∈ Y , the function t 7→ g(φ(t, y)) is absolutely

continuous on the open interval (0, t∗(y)).

• For each y in the active boundary Γ,

g(y) =

∫
Y
g(z)K(dz; y). (31)

• For each y ∈ Y , and t ≥ 0,

Ey

[∑
i∈Nt

|g(XTi
)− g(XTi−

)|

]
<∞, (32)

where Xy
Ti−

is the limit limt↑Ti
Xy
t from the left.

Furthermore, for g ∈ D(L), the extended generator L is
defined by

Lg(y) ≡ 〈f(y),∇g(y)〉+ λ(y)

∫
Y

(g(z)− g(y))K(dz; y).

(33)
Example 2: Consider a PDMP with two modes K = Z2.

Firstly, denote the open box ] − 1, 1[× ] − 1, 1[⊂ R2 by
◦
B,

and its closure in R2 by B. Suppose that d : Z2 → {2}, and

X : Z2 → {
◦
B}. As a consequence, the hybrid state space is

Y = Z2 ×
◦
B.

Let the vector field on Y be denoted by

f0(x) ≡ f(0, x) and f1(x) ≡ f(1, x).

For explicit forms of functions f0 and f1 see (40) in
Subsection IX.

Suppose that the jump rate is λ(v, x) = λv (λ0 and λ1

are constant on the continuous states). Consider deterministic
jumps from the mode v to v + 1 mod 2 (0 7→ 1, 1 7→ 0)

defined by maps jv : B →
◦
B . Subsequently, the transition

measure is

K(dy′; y) = Q(dv′ × dx′; (v, x))

=
(
δj0(x)(dx

′)I{v=0} + δj1(x)(dx
′)I{v=1}

)
δ(v+1 mod 2)(dv

′).

Finally, suppose that the initial measure is concentrated at a
point (v0, x̄0) ∈ Y , ν0 = δ(v0,x̄0).

The realisations of the PDMP ((Q, d,X ), f, ν0, λ,K) for
the initial state (v0, x̄0) are of the form

xt(ω) = (v, φv(t, x̄i)) for Ti−1(ω) ≤ t < Ti(ω),

where φv is the flow map of the vector field fv . At each time
Ti, there is a jump from (v, φv(Ti(ω), xi)) to

(v + 1 mod 2, hv(φv(Ti(ω), xi))).

The time of the ith jump is

T0(ω) = 0

Ti(ω) = Ti−1(ω) + Si(ω), i ∈ N,

where Si are independent random variables of exponential
distribution with the intensity λ(i mod 2).

Using the notation gv(x) ≡ g(v, x), the extended generator
in (33) is expressed as

Lg(v, x) =
∂g0

∂x
(x)f0δ0(v) +

∂g1

∂x
(x)f1δ1(v)

+ λv
(
g1 ◦ j0(x)I{v=0} + g0 ◦ j1(x)I{v=1} − gv(x)

)
.
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Finally, (31) takes the form: For any x ∈ Γ ⊂ ∂B and any
t ∈ R+

f0(t, x) = f1(t, h0(x))

f1(t, x) = f0(t, h1(x)),

where Γ in plain words is the subset of the boundary of Y
that is reached by the realisations.

VIII. OCCUPATION MEASURES FOR PDMPS

We observe that the domain of the extended generator of
PDMP does not satisfy Assumption 1. Specifically, relation
(31) prohibits D(L) from being closed under multiplication.
Our strategy is to extend the domain of the operator L such
that Assumption 1 is satisfied.

We define an operator Ch(t, y) ≡
∫
Y h(t, z)K(dz; y) −

h(t, y), y ∈ Γ, and an increasing predictable process

pt =
∑
Ti≤t

I[x
T
−
i
∈Γ].

Using the PDMP differential formula [12, Sec. 31], we
conclude that the process

Mh
t∧τ ≡ h(t ∧ τ,Xt)− h(0, X0)−

∫ t∧τ

0

L̂h(s,Xs)ds

−
∫ t∧τ

0

Ch(s,Xs−)dp(s),

where L̂ = L+ ∂
∂t and L is given by (33), is a martingale for

h absolutely continuous. As a consequence,

E(0,y)[h(t ∧ τ,Xt∧τ )] = E(0,y)[h(0, X0)]

+E(0,y)

∫ t∧τ

0

L̂h(s,Xs)ds+ E(0,y)

∫ t∧τ

0

Ch(s,Xs−)dp(s).

We have already introduced the hitting and the occupation
measures in Subsection V-B, we will in addition define a
measure ρ̂ by

ρ̂(B × C) ≡
∫
R+×Y

ρ((b, y), B × C)µ̂0(dy).

where

ρ((b, y), B × C)) ≡E(b,y)

∫
[0,t∧τ ]

IB×C(s,Xs−)dp(s)

=
∑
Ti≤τ

IB×(C∩Γ)(Ti, XT−i
).

Intuitively, ρ̂ is the part of the occupation measure that
corresponds to the jumps.

Equipped with the quadruple of measures (µ̂, µ0, κ̂, ρ̂) with

supp(µ0) ⊂ S \ U, (34a)
supp(κ̂) ⊂ {T} × cl(S \ U) ∪ [0, T ]× Sc ∪ [0, T ]× U,

(34b)
supp(µ̂) ⊂ [0, T ]× cl(S \ U), (34c)
supp(ρ̂) ⊂ [0, T ]× (cl(S \ U) ∩ Γ) (34d)

the PDMP is characterised by the following relation

〈h, κ̂〉 = 〈h, µ̂0〉+ 〈L̂h, µ̂〉+ 〈Ch, ρ̂〉. (35)

In consequence, we are able to modify the results in
Section VI to encounter for PDMPs. Specifically, Theorem 2
and Corollary 2 are reformulated as follows.

Theorem 5: Let µ0 be an initial (probability) measure on
Y with supp(µ0) ⊆ S. Suppose that the quadruple (µ̂∗, δ0 ⊗
ν∗0 , κ̂

∗
1, κ̂
∗
2, ρ̂
∗) of measures on [0, T ] × Y is a solution to the

conic optimisation

v∗ = sup{ν0(Y)| µ̂, δ0 ⊗ ν0, κ̂1, κ̂2, ρ̂ ∈M+([0, T ]× Y)}

such that ∀h ∈ Ab([0, T ]× Y)

〈h, κ̂1〉+ 〈h, κ̂2〉 − 〈h, δ0 ⊗ ν0〉 = 〈L̂h, µ̂〉+ 〈Ch, ρ̂〉, (36)

and (23), (26), (27) together with (34d) . Then the complement
of the set

supp(µ0 − ν∗0 )

is a weakly p-safe set and contains the largest strongly p-safe
set with respect to �.

Corollary 3: Suppose that the premises of Theorem 5 hold
with the constraint

∫
dκ̂2 ≤ p

∫
dν̂0 substituted by

∫
dκ̂2 >

p
∫
dν̂0. Then the complement of the set

supp(µ0 − ν∗0 )

is a weakly p-unsafe set and contains the largest strongly p-
unsafe set.

Example 3: We continue with Example 2. We use the
extended generator of the time-space process

L̂h(t, (v, x)) = Lht(v, x) +
∂h(t, (v, x))

∂t
. (37)

In (37), we have used the notation ht(v, x) ≡ h(t, (v, x)) to
indicate that the variable t is seen as a parameter.

Consequently, noticing that the occupation measure takes
the form

µ̂(dt× dy) = µ̂(dt× dv × dx)

= µ0(dt× dx)δ0(dv) + µ1(dt× dx)δ1(dv),

the term in (35) that involves the generator in the optimisation
formulation takes the form

〈L̂h, µ̂〉 =

∫
[0,T ]×Y

L̂h(t, (v, x))µ̂(dt× dv × dx) (38)

=

∫
[0,T ]×

◦
B

(
∂h0

∂t
+
∂h0

∂x
f0 + λ0(h1 ◦ id× j0 − h0)

)
dµ0

+

∫
[0,T ]×

◦
B

(
∂h1

∂t
+
∂h1

∂x
f1 + λ1(h0 ◦ id× j1 − h1)

)
dµ1.

(39)

In (38), we have suppressed the arguments (t, x) and denoted
hv(t, hw(x)) by (hv ◦ id× jw)(t, x), w ∈ Z2. Again noticing
that

ρ̂(dt× dv × dx) = ρ0(dt× dx)δ0(dv) + ρ1(dt× dx)δ1(dv),
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the last term in (35) becomes

〈Ch, ρ̂〉 =

∫
[0,T ]×Y

Ch(t, (v, x))ρ̂(dt× dv × dx)

=
∑
v∈Z2

(h(t, (v + 1, jv(x)))− h(t, (v, x)))ρv(dt× dx).

Notice that if λ0 = λ1 = 0, f1 = 0, and p = 1. The p-safety
verification of this PDMP corresponds to the verification of the
dynamical system ẋ = f0(x); whereas, if the continuous state
space is R, λ0 = λ1, f0 = f1 = 0, and j0(x) = j1(x) = x+1,
it corresponds to p-safety verification of a Poisson process with
intensity λ0.

IX. EXAMPLE

This section provides a numerical validation of the proposed
method for finding p-safe initial states of a PDMP with three
different jump rates, similar to the PDMP in [28]. Results
of Monte Carlo simulations are provided to give an approxi-
mation of the largest strong p-safe set. The simulation-based
results are subsequently compared to the weakly p-safe set
found with our optimization-based solution. The optimization-
based solution provides an inner approximation of the weakly
p-safe set to ensure soundness of the algorithm; however,
the Monte Carlo simulations provide an approximation of the
strongly p-safe set. Therefore, the approximate of the weakly
p-safe set includes the strongly p-safe set identified by Monte
Carlo simulations.

A. Monte Carlo Simulations

Similar to Example 2, we consider a PDMP with two modes
K = Z2 and vector field f(v, x) = (v, fv) given by

f0(x) =

[
2x1 − x2

2 + 2
x2

]
and f1(x) =

[
x1

x2

]
, (40)

where x = (x1, x2), and both jump maps are chosen to be
identity.

The state space of the system is S = {0, 1} × B, where
B = [−1, 1]× [−1, 1] ⊂ R2. The jump rates are chosen to be
constant on the continuous states

λ(0, x) = λ(1, x) = λ.

Three different jump rates (λ = 0, λ = 5, and λ = 100)
are considered, where λ = 0 corresponds to no jumps, λ =
100 corresponds to very frequent jumps, and λ = 5 is an
intermediate value. This is seen from a realization of the time
between jumps, which can be found numerically from

∆tjump = − log(X)

λ
,

where X is a uniformly distributed random variable on the
interval [0, 1].

In the numerical study, the final time is set to T = 10, and
the set of unsafe states is defined as

U = {0, 1} × {x ∈ B| x1 + x2 − 1.7 > 0}.

1) Jump rate λ = 0: When the jump rate of a PDMP
is zero, no jumps happen between the discrete states of the
system, i.e., the system is deterministic. As a consequence,
an initial state is either safe or unsafe with probability one.
A simulation of the two vector fields f0 and f1 without any
jumps is shown in Fig. 2. The green diagonal hatched area
illustrates the largest strongly p-safe set for λ = 0.
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Fig. 2. Phase plot (blue arrows) of the two vector fields f0 (left) and f1
(right). The red area (upper right corner) is the set of unsafe states U , the
green diagonal hatched area is the set of safe initial states, when no jumps
occur.

2) Jump rate λ = 5: When the jump rate of the PDMP is
larger than zero, then jumps occur between the discrete states
of the system. In this case, an approach similar to [29] is
used for the simulation of PDMPs. We use a discretisation of
the state space into a uniform grid of cells of size nx × ny
(nx, ny ∈ N), with each cell defined as

Bi,j =

{
(x, y) ∈ B| i− 1

nx
(x− x) ≤ x− x ≤ i

nx
(x− x),

j − 1

ny
(y − y) ≤ y − y ≤ j

ny
(y − y)

}
for i = 1, . . . , nx and j = 1, . . . , ny where x = min(x,y)∈B x
and x = max(x,y)∈B x (and similarly for y, y).

The Monte Carlo simulation is performed according to Al-
gorithm 1. For a set X , Rand(X) returns a point x ∈ X given
by a uniform distribution on X and sim(fk, [0, tjump], x0)
returns the trajectory x(t) of the differential equation

ẋ = fk(x)

for t ∈ [0, tjump] with x(0) = x0.
The Monte Carlo simulation is performed by partitioning the

state space uniformly into 10,000 cells, i.e., nx = ny = 100
and simulating 100 trajectories from each cell (N = 100), with
initial conditions given by a uniform distribution on each cell.
The result of the Monte Carlo simulation is shown in Fig. 3 as
a contour plot, where the contour lines indicate probabilities
of reaching the unsafe set U . The contour lines indicate the
probability of reaching the unsafe set, which is approximated
by the fraction of simulations that reached the unsafe set in
the 100 simulations. The contour line closest to the upper right
corner indicates a probability of 0.9 for reaching U , and this
probability decreases by 0.1 per contour line.
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Algorithm 1 Monte Carlo Simulation
1: procedure
2: for k0 ∈ K do
3: for (i, j) ∈ {(i, j) ∈ N2| i ≤ nx, j ≤ ny} do
4: for l = 1, . . . , N do
5: t0 ← 0
6: k ← k0

7: x0 ← rand(Bi,j)
8: stopFlag← False
9: while stopFlag==False do

10: tjump = − log(rand([0,1]))
λ

11: x(t) = sim(fk, [0, tjump], x0)
12: tU = mint x(t) ∈ U
13: tS = maxt x([0, t]) ⊂ B
14: if tU ≤ min(tS , T − t0) then
15: stopFlag← True
16: Unsafe
17: else if tS < min(tjump, T − t0) then
18: stopFlag← True
19: Safe
20: else if t0 + tjump > T then
21: stopFlag← True
22: Safe
23: else
24: t0 ← t0 + tjump
25: k ← mod(k + 1, 2)
26: x0 ← x(tjump)
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Fig. 3. Contour plots showing the probability of reaching the unsafe set
U from initial discrete state k = 1 (left) and initial discrete state k = 2
(right), when the jump rate is λ = 5. The simulations are performed with
nx = ny = 100 and N = 100, i.e., 1,000,000 simulations are performed in
total with a combined simulation time of 2 hours.

3) Jump rate λ = 100: Monte Carlo simulations are also
performed for the PDMP with jump rate λ = 100 following
Algorithm 1, according to the same approach as for the case
where λ = 5. The result of the Monte Carlo simulation is
shown in Fig. 4 in terms of a contour plot.

It is seen in Fig. 4 that the initial discrete state of the system
has little impact on the safety of the initial state of the system
when the jump rate is very high (λ = 100). It should be
observed that the simulation time is very short, at the time
between jumps is very short.
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Fig. 4. Contour plots showing the probability of reaching the unsafe set
U from initial discrete state k = 1 (left) and initial discrete state k = 2
(right), when the jump rate is λ = 100. The simulations are performed with
nx = ny = 100 and N = 100, i.e., 1,000,000 simulations are performed in
total with a total simulation time of 19 hours.

B. Optimization-Based Safety Analysis

The following explains how a weakly p-safe set is found
by use of the numerical optimization problem presented in
Theorem 5, with p = 0.1.

The optimization problem is modified, to be implemented as
a numerical optimization problem that can be solved in MAT-
LAB using GloptiPoly 3. To this end, we impose additional
assumptions on the vector field f in the PDMP formulation
to be real polynomial, and S and U to be semi-algebraic (sets
generated by polynomials). We also suppose that the set S is
bounded.

Since the measure κ̂1 has support on the union of two
subsets, it is split into two measures κ̂1,1 and κ̂1,2 with
supports on each of the subsets. In addition, the initial measure
µ0 is chosen to be the Lebesgue measure on Y . Thus, we
attempt to solve the optimization problem

sup ν0(Y)

such that

〈h, κ̂1,1 + κ̂1,2〉+ 〈h, κ̂2〉 − 〈h, δ0 ⊗ ν0〉 = 〈L̂h, µ̂〉+ 〈Ch, ρ̂〉

and

〈1, κ̂2〉 ≤ p〈1, δ0 ⊗ ν0〉,
ν0 + νc0 = µ0,

supp(µ̂) ⊂ [0, T ]× cl(S \ U),

supp(ν0) ⊂ S \ U,
supp(νc0) ⊂ S \ U,
supp(κ̂1,1) ⊂ {T} × cl(S \ U),

supp(κ̂1,2) ⊂ [0, T ]× Sc,
supp(κ̂2) ⊂ [0, T ]× U.

where µ̂, δ0 ⊗ ν0, δ0 ⊗ νc0, κ̂1,1, κ̂1,2, κ̂2 ∈M+([0, T ]× Y).
The above optimization problem should hold for all h ∈

Ab([0, T ] × Y); however, in the optimization, the problem is
relaxed - truncated such that measures with moments up to
degree 10 are used in the implementation.

The optimization problem is formulated in MATLAB using
GloptiPoly 3 and YALMIP, and the resulting SDP is solved
using SeDuMi. The standard absolute accuracy for checking
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feasibility of constraints (0.001) was used when solving the
SDP problem.

The sets obtained from the optimization are shown in Fig. 5,
Fig. 6, and Fig. 7. It takes between 80 s and 130 s to solve
each of the three optimization problems on a standard laptop
PC.
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Fig. 5. Phase plot (blue arrows) of the two vector fields. The red diagonal
cross hatched area is the set of unsafe states U , the green diagonal hatched
area is the weakly 0.1-safe set with λ = 0.
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Fig. 6. Phase plot (blue arrows) of the two vector fields. The red diagonal
cross hatched area is the set of unsafe states U , the green diagonal hatched
area is the weakly 0.1-safe set with λ = 5.
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Fig. 7. Phase plot (blue arrows) of the two vector fields. The red diagonal
cross hatched area is the set of unsafe states U , the green diagonal hatched
area is the weakly 0.1-safe set with λ = 100.

X. CONCLUSIONS

We defined the concept of probabilistic safety (weak and
strong p-safety). Our analysis started with the martingale
problem associated to the underlying stochastic process. Using

this, we derived the adjoint equation that relates the occupation
measures and the hitting probabilities. Equipped with the
adjoined equation, we formulated a linear infinite dimensional
optimisation problem, which can be solved by the generalised
moment method. We applied our method to probabilistic safety
analysis of a piecewise-deterministic Markov process that can
be thought of as a realisation of some stochastic hybrid system.
A numerical example illustrating the method was provided.
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