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Abstract

Robot batching is an optimization problem found in many industrial applications. Current state-of-the-art approaches utilize a combination of
heuristic based parameters and statistical analysis. This approach necessitates many tunable parameters, which again provides challenges when
delivering systems to new customers. We challenge current state-of-the-art in statistical approaches by presenting a novel application of a policy
gradient method for a Deep Reinforcement Learning (DRL/RL) agent. We have developed a Unity simulation framework of an existing robot-
batching cell, on which a RL agent is able to successfully train and obtain a policy for performing robot batching, using a tabula rasa approach.
The trained agent is capable of packaging 47.86% of 1218 total batches within the prescribed tolerances, with a positive give-away of 8.76%. The
application of DRL in performing robot batching is to the authors knowledge the first of its kind.
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1. Introduction

Batching is a term used in industrial food processing to de-
scribe the act of combining smaller pieces into batches of a cer-
tain size.

The batching solution considered in this work is a two robot,
aligned in the direction of an item introducing conveyor belt,
robot batching cell. Batching is a task that requires a high
amount of combinatorial accuracy in order to minimize give
away and fulfill order requirements. Not only is the demand
for accuracy high; the distribution of and set of weights is un-
known in advance, as the items are continuously introduced and
moved through the batching cell. The batching algorithm has
limited time to estimate a best fit before it must assign a robot
to perform the pick and place task. This adds significantly to
the complexity of the task.

The partner company solves the task of batching by utilizing
a patented probability-based method. During production, the
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weight distribution of the incoming items is estimated. This dis-
tribution is then used to calculate which items return the high-
est probability of achieving the target weight, when placed in
a specific tray [6]. In addition to this, several other factors are
considered alongside the probability estimate. In combination,
a score is calculated of how well items match trays whilst also
optimizing throughput.

A drawback of this method is that it is highly reliant on pa-
rameter tuning. This tuning is generally performed when first
delivering a batching cell to a customer. This provides a stati-
cally tuned batching cell that works well, but over time it can
start to perform sub-optimal as the weight distribution of prod-
uct changes, as well as types of jobs, and other external parame-
ters. This provides incentive for investigating new technologies
that have the potential to replace current methods altogether or
augment them to the point where there will be no need for read-
justing parameters. The vision is to provide customers with a
product that requires less service interaction and higher effec-
tive uptime. We hypothesize that Deep Reinforcement Learning
(DRL) may provide one such solution, as it would only need to
be tuned once in the training stage, and henceforth have the
ability to adjust by generalization in the environment.

Since the release of the first Deep Q-Network (DQN) pre-
sented by Mnih. et al.[8], the field of DRL has seen an increase2351-9789 c© 2020 The Authors. Published by Elsevier Ltd.
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in both available off-the-shelf algorithm implementations and
applications of increasing complexity. Although the vast ma-
jority of Reinforcement Learning (RL) applications pertain to
training agents to play games, the underlying idea of perform-
ing trial-and-error in a feedback loop, e.g. the classic RL loop
seen in Figure 1 in order to achieve a goal or score, can be ap-
plied in many industry applications.

In this paper we are inspired by prior research in the applica-
tion of DRL in industrial automation systems. Andersen et al..
successfully trained an actor-critic RL agent in a brine injec-
tion process, where the goal was to minimize several parame-
ters of meat curing[11]. In another paper, Blad et al. developed
an RL agent capable of controlling a heating, ventilation and
air-conditioning simulated environment[3].

In this paper we seek to further the research of industry ap-
plications of DRL, by building a simulation of a batching pro-
duction setup and training a RL agent to solve the task of batch-
ing.

Agent

Environment

state 
St 

reward 
Rt 

action 
At 

Fig. 1. The classic feedback loop of reinforcement learning

For an RL algorithm to be feasible in an industry process,
the following key elements need to be present:

1. A feedback loop in the manufacturing process, which pro-
vides information about the state of the system before and
after an action has been performed. The action can e.g. be
pick-and-place.

2. A method for generating large amounts data,
3. or a large database of previously recorded data that can be

labelled into states and actions.
4. Training environment for the agent to do trial-and-error

while exploring the best policy.

The first element is inherently present in robot batching. The
second and fourth are attainable by constructing a simulation
that follows the logic of the real process. We therefore recog-
nize the potential of investigating RL in the batching scenario.

2. Related work

The vast majority of RL implementations to date, are fo-
cused on playing games. Games serve as a good benchmarking
tool, as the performance often can be compared directly to hu-
man performance. From playing 70 & 80’s 2D Atari games[7],
to more complex games such as DOTA2[10], Starcraft [17]

and GO [15], the goal has always been to reach and super-
sede human performance, which has been achieved time and
time again. The first to achieve human performance in a video-
game using DRL was the team behind DeepMind in their work
”Human-level control through deep reinforcement learning”[8].
They achieved this utilizing the off-policy method Deep Q-
learning, and along the way invented several ML-methods that
have since been applied in many newer RL-algorithms. Deep Q-
learning was the first DRL algorithm, and since its publication
the number of available reinforcement learning frameworks, al-
gorithms and applications have increased significantly.

Silver et al.. solved the game of GO by developing a novel
monte carlo simulation method augmented by RL trained on
data derived from expert humans[15]. OpenAI et al.. hypothe-
sised that current state-of-the-art pure RL algorithms have un-
tapped potential, and proved it by applying Proximal Policy Op-
timization (PPO)[14] to the computer game DOTA2; a game
with a considerable complexity [10]. When discussing the feats
of AlphaGO (DeepMind’s GO agent), finding an optimal solu-
tion in the vast state-space is usually the highlight. In DOTA2,
searching the state-space for an optimal next action would be
near impossible, not only due to the vastness of the search
space, but also due to time constraints, as the game is not turn-
based as opposed to GO. Additionally, DOTA2 was solved by
providing floating point inputs of various game information to
the neural networks, proving that a complex environment can be
reduced to a meaningful set of floating point numbers, allowing
for a simpler network architecture than the Convolutional Neu-
ral Networks used to play Atari from a set of images[10].

Whilst the bulk of research is focused on playing games,
recent years have also brought insights into possible indus-
try applications. One such example is in [12], where Deep Q-
Learning is applied to process control. It is demonstrated that
DRL is capable of obtaining a policy that can replace the need
for controller design. Controller design would under normal
circumstances require manual tuning of parameters, similar to
robot batching, and this result is therefore particularly interest-
ing in regards to the current work. The authors hypothesise that
the RL algorithm PPO, developed and applied by OpenAI et
al.., can be utilized in solving the task of end-to-end batching.
This is promising due to similarities in regards to selecting an
appropriate action when considering a long term strategy whilst
in a time constrained environment and reducing a complex en-
vironment to an input array of floating points.

3. Framework and Setup

In order to apply Proximal Policy Optimization to the robot
batching problem, a simulation environment capable of repre-
senting the problem is developed. The simulation consists of the
respective CAD models of the partner company’s robot batch-
ing solution and is designed using Unity [16]. The physical
batching cell consists of the following parts:

• Weighing station
• Infeed conveyor
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• Two tray feeding stations
• A left and a right side tray feeding conveyor
• A left and a right side tray lane conveyor
• Two Delta Robots
• Metal casing for the entire cell

For the simulation, the batching cell is modified by omitting
the metal casing and by merging the tray feeding conveyor with
the the tray lane conveyor. A screenshot of the Unity environ-
ment can be seen in Figure 2 and a descriptive overview of the
simulated robot batching cell can be seen in Figure 3.

The simulation obeys by the following heuristics:

• Each item is assigned a weight drawn from a normal dis-
tribution
• Items are spawned with 1 second intervals
• Items are centered on the infeed conveyor, with identical

orientation
• Infeed conveyor speed 0.5 m

s
• Tray lane conveyor speed 0.2857 m

s
• Tray lane conveyor advancement step size of 30cm
• Tray lane conveyor advancement occurs when possible,

i.e. when trays that will leave the cell meet or supersede
the target weight
• It is impossible to place in a moving tray
• Trays are of size 25x20x5cm
• Items are of size 10x5x5cm

In the real batching cell, the infeed conveyor is capable of
different speeds depending on the job and configurations of con-
nected machines. In the simulation, it has been set to a fixed
speed, of 0.5 m

s . For the tray conveyors, the speed is 0.2857 m
s .

This speed has been chosen to combine ans simplify several fac-
tors, including pre-movement unavailability, movement, post-
movement unavailability. The tray conveyors advance in steps
of 30cm whenever they are able to, without moving unfinished
trays outside of the work area of the finishing robot. Both Delta
robots can reach within a radius of 0.6m of the base center and
move at a speed of 3.3m/s with infinite acceleration. It should be
noted that depending on the position of the end-effector, items
can be deemed unreachable even though they are still within the
reachable space. This prevents the robot from moving towards
an item that will have left the reachable space before it can be
reached.

The simulation environment, seen in Figure 3, is reduced to
an array of floating numbers, representing only what is consid-
ered of highest priority when assessing the batching process. A
large battery of experiments lay the basis for distilling the input
array to the following:

• Current Weight of reachable trays, at most 16
• Weight of up to 9 items on the infeed conveyor, where the

first and second inputs are reserved for the item that will
be interacted with should the front or finishing robot per-
form an action, the remainder serving as an information
buffer

• Position of up to 9 items, following the same logic as the
point above, provided in a single coordinate on the axis
of movement of the conveyor
• 4 Boolean inputs representing the availability of either

robot and both tray conveyors
• 2 Boolean inputs representing if either tray lane requires

more than 1 tray to finish, before an advance can occur

3.1. RL Agent

The RL task of batching requires the agent to obtain a policy
that can match incoming items by weight to obtain a given tar-
get weight, while at the same time ensure that trays move out of
the batching cell. The RL agent proposed in the current paper
utilizes the PPO algorithm. PPO is an on-policy RL method that
builds on the idea of Trust Region Policy Optimization [13]. It
utilizes the policy update constraint rt(θ) and implements a clip-
ping factor, which results in a novel objective function seen in
equation 1, developed by Schulman et al.[14]. Schulman et al.
attempted to ensure that no policy update step is too large. This
guarantees to some extent policy improvement, albeit there can
be no guarantee against local minima.

LCLIP(θ) = Êt

[
min(rt(θ) ˆAt, clip(rt(θ), 1 − ε, 1 + ε)Â)

]
(1)

The environment described in the previous chapter has a
time step resolution of 0.02 seconds. This in turn provides the
learning agent with resolution of 1cm per time step on distance
traveled by items on the infeed conveyor. This again means that
for every centimeter of item movement, the agent will have to
assess state and attempt an action. The agent can in this envi-
ronment perform a total of 18 actions at each step:

• Place item available to robot 1 in any of the 8 trays within
its reach (8 actions).
• Ignore the item currently available to robot 1 until it be-

comes available to robot 2. This will move up the next
item in the buffer to the actionable input of robot 1 (1
action).
• Place item available to robot 2 in any of the 8 trays within

its reach (8 actions).
• Do nothing (1 action).

The availability of these actions depend on the state of the
environment. As previously mentioned, information regarding
when certain actions are possible are passed along the remain-
der of state information. So not only does the agent have to learn
a policy that will minimize give away and ensure that trays are
moving through the cell; it also needs to learn when certain ac-
tions are possible and not. In addition to this; tray advancement
configuration presents a challenge in the sense that in certain
tray placement configurations, the heuristics of the environment
call for the two front trays to be filled within limits for an ad-
vancement to occur. As this is a rarely occurring phenomenon,
it presents a considerable learning challenge for the agent.
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Fig. 2. Simulation environment developed in Unity. The simulation environment contains two parallel robots placed over a conveyor system. On either side of the
center conveyor, empty trays are continuously fed for the batching process where objects are filled in. On the center conveyor, new objects are continuously spawned
with a given weight distribution. All item and tray movement is from the point of view, left to right.

4. Experiments and results

4.1. Neural network configuration

When choosing the network architecture for a new RL appli-
cation; one with few or no predecessors, a multitude of rule-of-
thumb approaches exist for where to begin. One way is to base
the initial design on intuition. Throughout the development of
the simulation, an RL agent designed on intuition has been in-
troduced each time a milestone had been achieved. This has
provided ample chance to test various network settings. Arriv-
ing at the final simulation environment, it has been possible to
test the various network architectures found throughout devel-
opment. In Figure 4, a comparison between the three most suc-
cessful network architectures can be seen, and it is clear that the
simplest network architecture not only learns faster, is more sta-
ble but also reaches a better policy. All tested networks utilize
ReLU neurons[1].

It should be noted however, that the network architecture
performance is extremely dependent on the hyperparameters
Horizon and mini-batches. Hyperparameters are discussed in
the next subsection.

4.2. Hyperparameters

Like all other RL algorithms, PPO has several hyperparame-
ters that can all impact the learning agent in different ways. The
hyperparameters and their settings for this agent are:

It was found that horizon and mini-batches are most signif-
icant for the performance and also most challenging to tune.
Horizon determines how far we look into the future in regards
to the sum of rewards used for the policy gradient update. Mini-
batches should cover the steps from an action has been taken
until a reward has been provided. As such, the complexity of

Table 1. Hyperparameters for the experiment.

Hyperparameter Value

Discount (γ) 0.99
Entropy coeff. 0.0001
Learning rate (α) 0.00025
Horizon (T ) 2048
Mini-batches 16
Clip range (ε) 0.2
GAE Lambda(λ) 0.95
Value loss weight 0.5

a strategy, that a policy can learn is determined by the size of
these parameters, most notably the horizon.

This simulation environment reaches approximately 82000
steps pr. 1000 items batched. In comparison to the DOTA2
PPO implementation, where complex strategy is learned, they
scale the environment to ultimately provide 80000 time steps
per game finished. They distribute the training between multi-
ple systems; obtaining 60 batches of size 1048576 per minute to
train on[9]. An additional key feature of the DOTA2 implemen-
tation is the utilization of Long Short Term Memory (LSTM),
which greatly increases the NN complexity but allows for more
coherent strategies.

4.3. Reward Function

The reward function is the core of the agent. In order to
obtain any kind of meaningful behavior, a valuable target for
optimization must be established. The desired behavior of the
agent, is to pair items to reach a target weight, but also ensure
trays leave the cell. For the placement of items into a tray, the
reward is based on the deviation from the target weight:

4
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Fig. 3. Overview of the robot batching cell, with affixed names. The infeed con-
veyor moves items forward towards the two robots placed above the conveyor.
The tray line conveyor provides new empty trays to be filled during the batching
process.

Fig. 4. A comparison between network architectures; [128,128] dark blue,
[64,64] light blue, [32,32] pink. It is clear that the first of the aforementioned
networks quickly runs into overfitting, whereas the latter is stable throughout
and reaches a better policy.

• new weight < target weight - tolerance
reward = 4

newweight

•
√

(newweight − targetweight)2 < tolerance
reward = 0.15

•
√

(newweight − targetweight)2 < 10g
reward = 0.2
• new weight = target weight

reward = 0.25
• new weight > target weight + tolerance

reward = -0.10

Additional terms:

• Item passes all the way through the cell
reward = -0.14
• finished tray leaves the cell within tolerance

reward = 2√
(trayweight−targetweight)2

• finished tray leaves the cell with less than 10g give away
reward = 0.2

The reward function is designed to give a strong signal when
the agent either hits the target weight or comes close within the
established tolerances of the batching job. For this particular
scenario, the tolerance has been set to 30g either positive or
negative deviation from the target weight. The very first term,

4
newweight , provides an increasingly stronger signal, the closer the
weight gets to the specific tolerance used. At 31g deviation, the
reward is 0.12, and at 30 it becomes 0.15. Thereafter the reward
can at most increase by a factor of 1.6, given the agent hits
either less than 10g or no deviation at all, as seen in Figure 5.

Fig. 5. The reward function. The reward linearly increases up until the batch
weight reaches within tolerance. This provides incentive to match items to reach
as close as possible to 0 g give away, which releases the strongest reward. Any
action that leaves a batch with a weight that supersedes the positive tolerance,
releases negative reward.

The additional terms provide some incentive as to avoid let-
ting items leave the cell and for pushing trays out of the cell,
but only rewards those who leave the cell within the tolerance.
If the aforementioned mini-batch and horizon hyperparameters
could be increased significantly, this reward term would gain a
greater influence on the learned policy.
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4.4. Training

Training of the agent has been conducted using Unity ML-
Agents[5], stable-baselines[4] and the OpenAI Gym API[2].

The agent has been trained for upwards of 30 million time
steps, where one episode consists of approximately 33000 steps
and 400 items batched, corresponding to batching approxi-
mately 363600 items. It is however found that improvement
stagnated beyond 4 million steps. In order to extract the best
performing policy, it is evaluated on an average reward return
across 40000 steps, upon each concluded episode. During train-
ing runs, the various policies tested are compared to a baseline
test. In the baseline test, all items spawned weighed exactly 1

4
of the target weight. This makes the learned policy as simple
and easily obtainable as possible. Of all the training runs per-
formed, the final agent represents the policy that came closest
to a perfect score compared to the baseline test.

4.5. Results

As a final test to evaluate the batching performance, the best
agent extracted from training has been inserted into a test en-
vironment requiring 4000 items, generated from a normal dis-
tribution with mean 200 and a standard deviation of 28, to be
batched. This is the same type of distribution on which it was
trained. The distribution of the generated item weights can be
seen in Figure 6. The batching job itself is prescribed as target
weight 600g, tolerances ±30g.

Fig. 6. Histogram representing items introduced in the batching cell during the
final test. Mean 200, standard deviation 28.

In total, the agent finished 1218 trays, 573 of which were
within the set tolerances of ±30g. A success rate of 47.86%. In
Figure 7, the distribution of the finished batches can be seen,
and it can be noted that upwards of 100 trays were less than 1
standard deviation away from being accepted. The agent placed
an average of 3.28 items into each tray, and obtained an average
tray weight of 654.48g, with a standard deviation of 65.13g.
The agent batched 100% of items.

Fig. 7. A histogram of the batches produced by the final agent. Everything be-
tween 570 and 630g is considered a successful batch.

In order to compare the agent with the state-of-the-art, a sim-
ulation tool from the partner company was used. The simulation
tool utilizes the statistical batching method, and the exact same
batching cell layout as the RL agent. It was fed the same 4000
items and asked to perform the same batching job. In total, it
finished 1294 trays, 1294 of which were within the aforemen-
tioned tolerances. The average tray weight is provided by each
individual tray lane, as opposed to the RL agent combining it,
and adds up to 600.12g and 600.45g. Opposite to the RL agent,
which batched 100% of items, 103 items were discarded during
the batching job.

5. Discussion

The application of the PPO agent in the batching environ-
ment shows promise. The agent is able to successfully learn a
policy. It overcomes the challenge of double tray advance and
batched trays without producing excessively gross overweight.
As mentioned previously, a correlation between the hyperpa-
rameters horizon and mini-batch size and the learned policy is
still to be thoroughly investigated. The primary reason for the
values attributed to the aforementioned hyperparameters is the
fact that training time required for convergence grows consid-
erably with these parameters; most notably horizon. With the
hardware available for conducting training of the agent in the
current work, the parameters had to be kept small.

It was noted during testing that the agent utilizes only the
last robot. Also, at most 2-4 trays are being filled at any time.
This showcases a rather shortsighted strategy, albeit successful.
This shortsighted strategy clearly indicates a necessity for in-
creasing the horizon parameter in future work. In addition, the
reward term which rewards trays leaving the cell further en-
forces the shortsightedness of the strategy of only utilizing the
trays close to exiting the cell. This term should be revised in
future work to provide less incentive to focus on the finishing
robot, regardless of the horizon parameter. Having a mini-batch
size of 16, corresponds to observing the steps of taking an ac-
tion; having the robot move the item into the tray and receive
the reward. This is considered of reasonable size.
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6. Conclusion

The hereby paper presents a novel application of a Deep
Reinforcement Learning algorithm in a simulated robot batch-
ing environment developed in Unity. The final batching job
performed by the trained agent, results in 47.86% successful
batches, clearly demonstrating that a DRL agent is capable of
learning the task of robot batching with a tabula rasa approach.
We hypothesize that with more powerful hardware and addi-
tional hyperparameter tuning, a significant increase in accept-
able batches can be achieved. Future work will focus on in-
creasing the batching accuracy, i.e. increasing the successful
batches and decreasing give away. The approach shows to be
very promising in the domain of robot batching and it is be-
lieved that it can provide similar or better batching results than
existing statistical methods.
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