
 

  

 

Aalborg Universitet

Standard SOGI-FLL and Its Close Variants

Precise Modeling in LTP Framework and Determining Stability Region/Robustness Metrics

Golestan, Saeed; Guerrero, Josep M.; Vasquez, Juan C.; Abusorrah, Abdullah M.; Al-Turki,
Yusuf
Published in:
IEEE Transactions on Power Electronics

DOI (link to publication from Publisher):
10.1109/TPEL.2020.2997603

Publication date:
2021

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Golestan, S., Guerrero, J. M., Vasquez, J. C., Abusorrah, A. M., & Al-Turki, Y. (2021). Standard SOGI-FLL and
Its Close Variants: Precise Modeling in LTP Framework and Determining Stability Region/Robustness Metrics.
IEEE Transactions on Power Electronics , 36(1), 409-422. Article 9099591.
https://doi.org/10.1109/TPEL.2020.2997603

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 28, 2024

https://doi.org/10.1109/TPEL.2020.2997603
https://vbn.aau.dk/en/publications/11aa9ac3-ae41-4aad-8f6d-4c4ef621271f
https://doi.org/10.1109/TPEL.2020.2997603


0885-8993 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2020.2997603, IEEE
Transactions on Power Electronics

Standard SOGI-FLL and Its Close Variants: Precise
LTP Modeling and Determining Stability

Region/Robustness Metrics
Saeed Golestan, Senior Member, IEEE, Josep M. Guerrero, Fellow, IEEE, Juan. C. Vasquez, Senior Member,

IEEE, Abdullah M. Abusorrah, Senior Member, IEEE, and Yusuf Al-Turki, Senior Member, IEEE

Abstract—In recent years, single-phase frequency-locked loops
(FLLs) are gaining more popularity as a signal processing and
synchronization tool in a wide variety of engineering applications.
In the power and energy area, a basic structure in designing
the majority of available single-phase FLLs is the second-
order generalized integrator-based FLL (SOGI-FLL), which is
a nonlinear feedback control system. This nonlinearity makes
the SOGI-FLL analysis complicated. To deal with this problem,
some attempts to derive linear models for the SOGI-FLL have
been made in very recent years. The available linear models,
however, are not able to accurately predict the dynamic behavior,
stability region, and robustness metrics of the SOGI-FLL. The
situation is even worse for close variants of the SOGI-FLL
because some of them have no linear model at all. Filling these
gaps in research is the main goal of this paper. To this end, the
structural relationship among the SOGI-FLL and its variants
is identified first. Based on this information and deriving the
LTP model of a recently proposed extended SOGI-FLL, the
LTP models of the standard SOGI-FLL and its close variants
are obtained. The accuracy assessment of these LTP models,
discussion about their limitations, and performing the stability
analysis using them are other contributions of this paper.

Index Terms—All-pass filter (APF), enhanced phase-locked
loop (EPLL), frequency-locked loop (FLL), linear Kalman filter
(LKF), linear time-invariant (LTI), linear time-periodic (LTP),
modeling, second-order generalized integrator (SOGI), single-
phase systems, synchronization.

I. INTRODUCTION

SSINGLE-PHASE frequency-locked loops (FLLs) are of-
ten known as a tool for the grid synchronization of power

converters [1]. It is, however, not their only important role.
They are now more and more employed as a tool for signal
processing, monitoring, and control in different engineering
applications [2]–[7].

In the power and energy area, a quite large number of single-
phase FLLs exist. Most of these FLLs, however, are based
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Fig. 1. Block diagram representation of SOGI-FLL. k and λ are the design
parameters of the SOGI-FLL. v is the single-phase input signal, v̂α1 is
an estimation of the fundamental component of this signal, and v̂β1 is an
estimation of its quadrature version. ωn is the nominal angular frequency
of the single-phase input signal, and ω̂, V̂1, and θ̂1 are estimations of the
angular frequency, amplitude, and phase angle of its fundamental component,
respectively.

on a basic structure, which is known as the SOGI-FLL. The
block diagram of the SOGI-FLL can be observed in Fig. 1 [1],
[7].1 Here, the SOGI is an adaptive resonant controller with a
pair of complex-conjugate poles at the fundamental frequency.
According to the internal model principle, including the SOGI
in a unity feedback control loop, as shown in Fig. 1, provides
an estimation of the fundamental component of the single-
phase input signal and its 90◦ phase-shifted version. The center
frequency of the SOGI is adapted to frequency changes using
a frequency estimator. The governing differential equation
of this estimator can be obtained using the gradient descent
method [1], [7], [8].

In recent years, extensive studies on the SOGI-FLL structure
have been conducted in the literature. Gaining a deeper insight
into the SOGI-FLL performance, improving its dynamic be-
havior and/or filtering capability in the presence of grid voltage
disturbances, and achieving a more robust performance at low
sampling frequencies and/or in fixed-point implementations
are the main objectives of these studies [7]. In what follows,
a brief review of some of these studies is presented.

It is discussed in [7], [9], [10] that using the discretization
methods such as the backward/forward Euler and the third-
order Adams–Bashforth method results in noticeable numer-
ical errors in the digital implementation of the SOGI-FLL

1The original structure of the SOGI-FLL in [1] includes a feedback loop
that multiples the input signal of the integrator of its frequency estimator by
the estimated frequency ω̂. This multiplication is neglected in this paper.
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Fig. 2. Block diagram representation of EPLL. kv , kp, and ki are the control
parameters. Throughout this paper, kv = kp is considered. This is an optimal
choice, which makes the EPLL behave as an adaptive band-pass filter [12].
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Fig. 3. Block diagram representation of APF-FLL.

when the sampling frequency is low. A possible approach
to deal with this challenge is designing a discrete-time FLL
by considering an exact discrete model of a single-phase
signal generator [11]. An alternative method is using the
enhanced PLL (EPLL) concept [12], [13]. The EPLL, which
is mathematically equivalent to the SOGI-FLL under certain
conditions [7], [12], offers high robustness at low sampling
frequencies without any requirement for the inverse tangent
and square root calculation. The block diagram representation
of the EPLL can be observed in Fig. 2.

By obtaining the transfer functions between the output
signals v̂α1 and v̂β1 and the input signal v in the SOGI-FLL2, it
is shown in [14] that the SOGI-FLL provides a more harmonic
filtering and a less sub-harmonic/dc filtering capability in its
β-axis output compared to the α-axis one. To provide the same
level of the disturbance rejection capability in these outputs,
replacing one integrator of the SOGI with a first-order all-pass
filter (APF) is proposed in [14]. Fig. 3 illustrates the resultant
structure, which is referred to as the APF-FLL here.3

Instead of using a SOGI in the unity feedback loop,
employing a linear Kalman filter (LKF) for extracting the
fundamental component of the single-phase input signal and its
quadrature version is proposed in [15]. A frequency estimator
similar to that of the SOGI-FLL is used for adapting the
LKF to frequency changes. The gains of LKF are updated in
each sampling period, according to the Kalman filter theory.
This structure is called the LKF-FLL in [15]. In [16], it is
demonstrated that there is no noticeable performance differ-

2To obtain these transfer functions, we have to assume that the estimated
angular frequency ω̂ is a constant.

3To improve the filtering capability of the APF-FLL, passing its αβ output
signals through two complex band-pass filters are proposed in [14]. These
complex filters are not considered in this paper.
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Fig. 4. Block diagram representation of SSLKF-FLL. kα, kβ , and λ are the
control gains.
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Fig. 5. Block diagram representation of eSOGI-FLL. k, k′, λ, and λ′ are
the control gains.
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Fig. 6. Block diagram representation of SOGI-FLL-WPF. k1, k2, and λ are
the control gains.

ence between the LKF-FLL and its steady-state version [called
the steady-state LKF-FLL (SSLKF-FLL)] in grid applications
as the grid frequency and, therefore, the Kalman gains of the
LKF-FLL have small variations around their nominal value
in the steady state. The block diagram representation of the
SSLKF-FLL in the continuous-time domain can be observed
in Fig. 4.

To obtain a theoretically limitless speed in the extraction of
the fundamental component of a single-phase input signal and
its quadrature version, adding a degree of freedom to a stan-
dard SOGI is proposed in [17]. It is also recommended in [17]
to use both the in-phase and quadrature-phase signals of the
fundamental component in the detection of the grid frequency.
Fig. 5 shows the resulting structure, which is referred to as

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on May 28,2020 at 08:00:00 UTC from IEEE Xplore.  Restrictions apply. 



0885-8993 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2020.2997603, IEEE
Transactions on Power Electronics

the extended SOGI-FLL (eSOGI-FLL) here.4 Designing and
including rate limitation and sign-correct anti-windup strategy
into the frequency estimator are other contributions of [17],
which are not considered in this paper.

To make the SOGI-FLL immune to the grid voltage dc
component and improve its harmonic/interharmonic filtering
capability, including a prefilter before the SOGI-FLL input
is proposed in [18]. Fig. 6 illustrates the block diagram of
the resulting structure, which is referred to as the SOGI-
FLL with prefilter (SOGI-FLL-WPF). Notice that the prefilter
is an adaptive band-pass filter centered at the fundamental
frequency, which is implemented by using a SOGI in a unity
feedback loop. Notice also that the prefilter is adapted to
frequency changes using a frequency feedback loop.

The SOGI-FLL, EPLL, APF-FLL, SSLKF-FLL, eSOGI-
FLL, and SOGI-FLL-WPF are all nonlinear feedback control
systems. This non-linearity makes their analysis a nontrivial
task. A solution to deal with this challenge is providing linear
models for them. For the APF-FLL, SSLKF-FLL, and eSOGI-
FLL, no linear model has yet been presented. For the SOGI-
FLL, EPLL, and SOGI-FLL-WPF, however, some attempts
have been made in very recent years. In [19], for example,
some linear time-invariant (LTI) models for the SOGI-FLL
and SOGI-FLL-WPF are presented. These LTI models can
predict the average dynamic behavior of the SOGI-FLL and
SOGI-FLL-WPF. However, they cannot predict the double-
frequency damped oscillations (which inherently exist in the
transient response of the SOGI-FLL and SOGI-FLL-WPF) and
the coupling between their phase and amplitude estimation
dynamics. This fact can be clearly observed in Figs. 6-8 in
[19]. In [20], deriving linear time-periodic (LTP) models for
the SOGI-FLL and EPLL are discussed. Compared to the
LTI models, the derived LTP models provide higher accuracy
in predicting the phase/frequency estimation dynamics of the
SOGI-FLL and EPLL. However, they still suffer from some
inaccuracies because they neglect the grid voltage amplitude
variations and the dynamic coupling between the phase and
amplitude variables in the SOGI-FLL and EPLL.

The main aim of this paper, which is an extension of
the work in [20], is to present precise LTP models for the
SOGI-FLL, EPLL, APF-FLL, SSLKF-FLL, eSOGI-FLL, and
SOGI-FLL-WPF. This modeling is an important contribution
to the field mainly because it facilitates the analysis of these
FLL/PLL structures. To demonstrate this fact, a thorough anal-
ysis of the SOGI-FLL using its new LTP model is conducted.

II. LTP MODELING

A. Relationship Between Synchronization Systems

If we assume that the estimated frequency ω̂ is a constant,
the characteristic transfer functions of the SOGI-FLL [Fig.
1], APF-FLL [Fig. 3], SSLKF-FLL [Fig. 4], and eSOGI-FLL
[Fig. 5] can be obtained as expressed in Table I. Based on these
transfer functions and considering the fact that the frequency
estimator of the eSOGI-FLL has an additional degree of

4It is called the modified SOGI-FLL in [17]. However, to avoid confusion
with some other SOGI-based structures with the same name, it is referred to
as the eSOGI-FLL here.

TABLE I
CHARACTERISTIC TRANSFER FUNCTIONS

Gα(s) = v̂α1(s)
v(s) Gβ(s) =

v̂β1(s)
v(s)

SOGI-FLL
kω̂s

s2 + kω̂s+ ω̂2

kω̂2

s2 + kω̂s+ ω̂2

APF-FLL
kω̂2 + kω̂s

s2 + kω̂s+ ω̂2 + kω̂2

kω̂2 − kω̂s
s2 + kω̂s+ ω̂2 + kω̂2

SSLKF-FLL
kαs− kβω̂

s2 + kαs+ ω̂2 − kβω̂
kβs+ kαω̂

s2 + kαs+ ω̂2 − kβω̂

eSOGI-FLL
kω̂s− k′ω̂2

s2 + kω̂s+ ω̂2 − k′ω̂2

k′ω̂s+ kω̂2

s2 + kω̂s+ ω̂2 − k′ω̂2

freedom (the control gain λ′) compared to that of the SOGI-
FLL, APF-FLL, and SSLKF-FLL, the following conclusions
can be made.
• The SOGI-FLL is a special case of the eSOGI-FLL,

where k′ = 0 and λ′ = 0.
• The APF-FLL is a special case of the eSOGI-FLL, where
k′ = −k and λ′ = 0.

• The SSLKF-FLL is a special case of the eSOGI-FLL,
where kω̂ = kα, k′ω̂ = kβ , and λ′ = 0.5

The above observations suggest that the LTP modeling of
only the eSOGI-FLL suffices for obtaining the LTP models
of the SOGI-FLL, EPLL, APF-FLL, SSLKF-FLL, and SOGI-
FLL-WPF. Notice that the EPLL is mathematically equivalent
to the SOGI-FLL [12]. Therefore, the LTP model of the EPLL
will be the same as that of the SOGI-FLL. Notice also that the
LTP model of the SOGI-FLL-WPF can be directly obtained
using the LTP model of the SOGI-FLL. These facts will be
discussed with more details later.

B. LTP Modeling of eSOGI-FLL

1) Assumptions and Definitions: During the modeling pro-
cedure, the presence of disturbance components in the single-
phase input signal is neglected, and the single-phase input
signal is considered as

v(t) = V1 cos (θ1) (1)

where V1 and θ1 =
∫
ωdt are the amplitude and phase angle of

the fundamental component of the input signal v, respectively,
and ω is the fundamental angular frequency.

From Fig. 7, which shows the Bode plot of the characteristic
transfer functions of the eSOGI-FLL for different values of
control parameters, it can be observed that both transfer
functions Gα and Gβ have a unity gain (0 dB gain) at
the fundamental frequency. It is also observed that Gα and
Gβ have respectively a zero phase and −90◦ phase at the
fundamental frequency. These imply that the signal v̂α1 in
the eSOGI-FLL structure is an estimation of the fundamental
component of the input signal v, and the signal v̂β1 is its 90◦

phase-shifted version. Considering this fact, the output signals
v̂α1 and v̂β1 can be considered as

v̂α1(t) = V̂1 cos(θ̂1), v̂β1(t) = V̂1 sin(θ̂1) (2)

5As kα and kβ are constants, kα = kωn and kβ = k′ωn need to be
considered in practice.
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Fig. 7. Frequency response of the characteristic transfer functions of the eSOGI-FLL. (a) Frequency response of Gα(s) = v̂α1(s)/v(s). (b) Frequency response
of Gβ(s) = v̂β1(s)/v(s). The characteristic transfer functions of the eSOGI-FLL can be found in Table I. In obtaining these Bode plots, ω̂ = ωn = 2π50
rad/s is considered.

where V̂1 and θ̂1 are estimations of V1 and θ1 in (1), respec-
tively.

The eSOGI-FLL is also assumed to be working in a quasi-
locked state, which is corresponding to consider V̂1 ≈ V ,
ω̂ ≈ ω, and θ̂1 ≈ θ1.

We also define the actual and estimated parameters as a
nominal value plus a small perturbation, as expressed in (3).

V1 = Vn + ∆V1,
ω = ωn + ∆ω,
θ1 = θn + ∆θ1,

V̂1 = Vn + ∆V̂1

ω̂ = ωn + ∆ω̂

θ̂1 = θn + ∆θ̂1

(3)

In (3), ∆ and the subscript n denote a small perturbation
and a nominal value, respectively. Throughout this paper,
Vn = 1 p.u., ωn = 2π50 rad/s, and θn =

∫
ωndt = ωnt are

considered.

2) Governing Differential Equations: According to Fig. 5,
the estimated angular frequency, phase angle, and amplitude
by the eSOGI-FLL can be expressed as

ω̂= ωn +

∫
(v − v̂α1)(λ′v̂α1 − λv̂β1)

V̂ 2
1

dt (4a)

θ̂1= tan(v̂β1/v̂α1) (4b)

V̂1=
√
v̂2
α1 + v̂2

β1. (4c)

Differentiation from (4) with respect to time results in

dω̂

dt
=
λ′(v − v̂α1)v̂α1 − λ(v − v̂α1)v̂β1

V̂ 2
1

(5a)

dθ̂1

dt
=
v̂α1

dv̂β1
dt − v̂β1

dv̂α1

dt

v̂2
α1 + v̂2

β1

=
v̂α1

dv̂β1
dt − v̂β1

dv̂α1

dt

V̂ 2
1

(5b)

dV̂1

dt
=
v̂α1

dv̂α1

dt + v̂β1
dv̂β1
dt

V̂1

(5c)

where the time derivatives dv̂α1

dt and dv̂β1
dt , according to Fig.

5, are equal to

dv̂α1

dt
= −ω̂v̂β1 + kω̂ (v − v̂α1) (6a)

dv̂β1

dt
= +ω̂v̂α1 + k′ω̂ (v − v̂α1) . (6b)

Substituting (6) into (5) gives

dω̂

dt
=
λ′(v − v̂α1)v̂α1 − λ(v − v̂α1)v̂β1

V̂ 2
1

(7a)

dθ̂1

dt
= ω̂ +

k′ω̂(v − v̂α1)v̂α1 − kω̂(v − v̂α1)v̂β1

V̂ 2
1

(7b)

dV̂1

dt
=
kω̂ (v − v̂α1) v̂α1 + k′ω̂ (v − v̂α1) v̂β1

V̂1

. (7c)

Equations (7) are the governing differential equations of the
eSOGI-FLL, which are nonlinear. Therefore, they need to be
linearized for obtaining a linear model for the eSOGI-FLL.

3) Linearization: Two main nonlinear terms of the differen-
tial equations (7) are 1

V̂1
(v − v̂α1) v̂α1 and 1

V̂1
(v − v̂α1) v̂β1,

which are linearized in what follows.

Substituting (1) and (2) into the above nonlinear terms
results in
1

V̂1

(v − v̂α1) v̂α1 =
(
V1 cos(θ1)− V̂1 cos(θ̂1)

)
cos(θ̂1)

=
1

2

[
V1 cos(θ1 − θ̂1) + V1 cos(θ1 + θ̂1)− V̂1 − V̂1 cos(2θ̂1)

]
(8a)

1

V̂1

(v − v̂α1) v̂β1 =
(
V1 cos(θ1)− V̂1 cos(θ̂1)

)
sin(θ̂1)

=
1

2

[
−V1 sin(θ1 − θ̂1) + V1 sin(θ1 + θ̂1)− V̂1 sin(2θ̂1)

]
. (8b)
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Considering the definitions (3), (8) can be rewritten as

1

V̂1

(v − v̂α1) v̂α1 = −Vn + ∆V̂1

2

[
1 + cos(2θn + 2∆θ̂1)

]
+
Vn + ∆V1

2
[ cos(∆θ1 −∆θ̂1)︸ ︷︷ ︸

≈1

+ cos(2θn + ∆θ1 + ∆θ̂1) ] (9a)

1

V̂1

(v − v̂α1) v̂β1 = −Vn + ∆V̂1

2
sin(2θn + 2∆θ̂1)

+
Vn + ∆V1

2
[ sin(2θn + ∆θ1 + ∆θ̂1)− sin(∆θ1 −∆θ̂1)︸ ︷︷ ︸

≈(∆θ1−∆θ̂1)=∆θe

] (9b)

By applying trigonometric identities, (9) can be approxi-
mated by (10) at the bottom of the page. Considering (10)
and the definitions (3), the governing differential equations of
the eSOGI-FLL, which are expressed in (7), can be linearized
as
d∆ω̂

dt
≈ λ

2

[
{1− cos(2θn)}∆θe −

1

Vn
sin(2θn)∆Ve

]
+
λ′

2

[
1

Vn
{1 + cos(2θn)}∆Ve − sin(2θn)∆θe

]
(11a)

d∆θ̂1

dt
≈ kωn

2

[
{1− cos(2θn)}∆θe −

1

Vn
sin(2θn)∆Ve

]
+∆ω̂ +

k′ωn
2

[
1

Vn
{1 + cos(2θn)}∆Ve − sin(2θn)∆θe

]
(11b)

d∆V̂1

dt
≈ kωn

2
[{1 + cos(2θn)}∆Ve − Vn sin(2θn)∆θe]

−k
′ωn
2

[Vn {1− cos(2θn)}∆θe − sin(2θn)∆Ve] . (11c)

Using (11), which is a set of LTP differential equations, an
LTP model as shown in Fig. 8 can be obtained for the eSOGI-
FLL.

C. LTP Modeling of SOGI-FLL

In Section II-A, it was demonstrated that the SOGI-FLL
is a special case of the eSOGI-FLL, in which k′ = 0 and

λ′ = 0. Therefore, the LTP model of the SOGI-FLL can be
simply obtained by considering k′ = 0 and λ′ = 0 in the
LTP model of the eSOGI-FLL (Fig. 8). Fig. 9(a) shows the
resulting model. The comparison of this model with the basic
LTP model of the SOGI-FLL [see Fig. 9(b)], which has been
presented in [20], can be informative. The basic LTP model
of the SOGI-FLL, contrary to the new one, does not predict
the amplitude estimation dynamics. According to Fig. 9(a),
there is also a cross-coupling between the amplitude and phase
estimation loops of the SOGI-FLL, which the basic LTP model
[Fig. 9(b)] neglects it. The reason is that in obtaining the basic
LTP model in [20], the grid voltage amplitude variations are
neglected.

D. LTP Modeling of EPLL

It has been proven theoretically and numerically in several
publications that the EPLL is mathematically equivalent to
the SOGI-FLL if kp = kv = kωn and ki = λ [7], [12].
Considering this fact, the LTP model of the EPLL can be
directly obtained from that of the SOGI-FLL, as shown in Fig.
10(a). The basic LTP model of the EPLL, which has already
been presented in [20], may also be observed in Fig. 10(b).

E. LTP Modeling of APF-FLL

It was discussed in Section II-A that the APF-FLL is a
special case of the eSOGI-FLL, in which k′ = −k and λ′ =
0. Therefore, the LTP model of the APF-FLL can be simply
obtained by considering k′ = −k and λ′ = 0 in Fig. 8. The
resulting model is shown in Fig. 11.

F. LTP Modeling of SSLKF-FLL

We discussed in Section II-A that the SSLKF-FLL is a spe-
cial case of the eSOGI-FLL, in which kα = kωn, kβ = k′ωn,
and λ′ = 0. Consequently, the LTP model of the SSLKF-FLL
can be readily obtaining by considering the above relations in
Fig. 8. Fig. 12 shows the resultant model.

———————————————————————————————————————————————————–

1

V̂1

(v − v̂α1)v̂α1 ≈
1

2

[ ∆Ve︷ ︸︸ ︷
∆V1 −∆V̂1 +Vn cos(2θn)

≈0︷ ︸︸ ︷{
cos(∆θ1 + ∆θ̂1)− cos(2∆θ̂1)

}
−Vn sin(2θn)

≈∆θe︷ ︸︸ ︷{
sin(∆θ1 + ∆θ̂1)− sin(2∆θ̂1)

}
+ cos(2θn)

{
∆V1 cos(∆θ1 + ∆θ̂1)−∆V̂1 cos(2∆θ̂1)

}
︸ ︷︷ ︸

≈∆Ve

− sin(2θn)
{

∆V1 sin(∆θ1 + ∆θ̂1)−∆V̂1 sin(2∆θ̂1)
}

︸ ︷︷ ︸
≈0

]

≈ 1

2
[{1 + cos(2θn)}∆Ve − {Vn sin(2θn)}∆θe] (10a)

1

V̂1

(v − v̂α1)v̂β1 ≈
1

2

[
− Vn∆θe + Vn sin(2θn)

≈0︷ ︸︸ ︷{
cos(∆θ1 + ∆θ̂1)− cos(2∆θ̂1)

}
+Vn cos(2θn)

≈∆θe︷ ︸︸ ︷{
sin(∆θ1 + ∆θ̂1)− sin(2∆θ̂1)

}
+ sin(2θn)

{
∆V1 cos(∆θ1 + ∆θ̂1)−∆V̂1 cos(2∆θ̂1)

}
︸ ︷︷ ︸

≈∆Ve

+ cos(2θn)
{

∆V1 sin(∆θ1 + ∆θ̂1)−∆V̂1 sin(2∆θ̂1)
}

︸ ︷︷ ︸
≈0

]

≈ 1

2
[sin(2θn)∆Ve − Vn {1− cos(2θn)}∆θe] (10b)
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Fig. 8. LTP model of the eSOGI-FLL.
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Fig. 9. (a) New LTP model of the SOGI-FLL. (b) Basic LTP model of the
SOGI-FLL [20].

G. LTP Modeling of SOGI-FLL-WPF

The SOGI-FLL-WPF, as shown in Fig. 6, is constructed by
using a prefilter before the SOGI-FLL input. As we already
have an LTP model for the SOGI-FLL [see Fig. 9(a)], the
complete LTP model of the SOGI-FLL-WPF can be obtained
by modeling the prefilter part and connecting this model with
that of the SOGI-FLL.

Modeling of the prefilter of the SOGI-FLL-WPF can be
done mathematically by following a similar procedure as that
described in Section II-B. However, for the sake of brevity,
an intuitive way is presented here. A quick look at Fig. 6
reveals that the prefilter of the SOGI-FLL-WPF is actually
a SOGI-FLL without its frequency estimator, which receives
an estimation of the grid frequency through a feedback loop.
Therefore, the LTP model of this prefilter will be the same as

1
s

1V
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1̂
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1
s

cos(2 )n
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(b)

/ 2ik

s

2
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2
pk

2
pk

/ 2ik

s

Fig. 10. (a) New LTP model of the EPLL. (b) Basic LTP model of the EPLL
[20].
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Fig. 11. LTP model of the APF-FLL.
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Fig. 12. LTP model of the SSLKF-FLL.
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Fig. 13. LTP model of the SOGI-FLL-WPF.

TABLE II
CONTROL PARAMETERS

Parameters

SOGI-FLL [20] k =
√

2, λ = 49 384
EPLL [20] kp = kv = 444, ki = 49 384

APF-FLL k =
√

2, λ = 49 384
SSLKF-FLL [16] kα = 444, kβ = −141 , λ = 49 384

eSOGI-FLL k =
√

2, k′ = −0.45, λ = 49 384, λ′ = 15 685

SOGI-FLL-WPF [19] k1 = k2 =
√

2, λ = 23 948

Fig. 9(a) but without the highlighted (red color) part. Instead,
the signal ∆ω̂ in the linear model of the prefilter is provided
through a feedback loop from the SOGI-FLL model, as shown
in Fig. 13.

H. Model Verification

To evaluate the accuracy of the obtained LTP models, the
following tests are conducted in Matlab/Simulink.

• Test 1: 10◦ phase angle jump.
• Test 2: +2 Hz frequency jump.
• Test 3: 0.2 p.u. voltage sag.

In each test, the estimated amplitude V̂1, the estimated
angular frequency ω̂, and the phase error signal θ1 − θ̂1

(which is the difference between the actual and estimated
phase angles) in each FLL/PLL structure are compared with
those predicted by its LTP model. In the case of the SOGI-FLL
and EPLL, the results predicted by their basic LTP models
[see Fig. 9(b) and Fig. 10(b)] are also shown. Notice that
these basic LTP models can only predict the output phase and
frequency of the SOGI-FLL and EPLL.

All the FLL/PLL structures under study and their LTP
models are discretized with a sampling frequency of 10 kHz.
The nominal amplitude and frequency of the signal phase input
signal are considered to be 1 p.u. and 50 Hz, respectively.
Table I summarizes the selected values for their control
parameters.

Fig. 14, 15, and 16 show the model verification results
in response to Test 1, 2, and 3, respectively. In all tests, it
is observed that the LTP models derived for the SOGI-FLL,

EPLL, APF-FLL, SSLKF-FLL, eSOGI-FLL, and SOGI-FLL-
WPF can accurately predict the dynamics of these FLL/PLL
structures in the estimation of phase, frequency, and amplitude
and also the coupling between these variables. Notice that, in
the case of the SOGI-FLL and EPLL, the results predicted
by their basic models are also shown. As expected, these
models have a lower accuracy compared to the new ones,
mainly because they cannot predict the amplitude estimation
dynamics and also the coupling between the phase/frequency
and amplitude variables.

III. SOGI-FLL ANALYSIS

The main aim of this section is to demonstrate the effective-
ness of the LTP models derived in this paper for the stability
analysis. For the sake of brevity, this study is only carried
out on the SOGI-FLL. As the SOGI-FLL is mathematically
equivalent to the EPLL, the results of this study are also valid
for the EPLL. The stability analysis of other FLL structures
can be performed in a similar manner.

A. Harmonic Transfer Function of SOGI-FLL

From Fig. 9(a), the output signals ∆V̂1 and ∆θ̂1 in the new
LTP model of the SOGI-FLL can be expressed in the Laplace
domain as

∆V̂1(s) = KG(s)L[(1 + cos(2θn)) ∆Ve(t)

−Vn sin(2θn)∆θe(t)] (12a)

∆θ̂1(s) = KH(s)L[(1− cos(2θn)) ∆θe(t)

− sin(2θn)∆Ve(t)/Vn] (12b)

where L denotes the Laplace transform, θn = 2ωnt, K =
kωn/2, H(s) = s+Γ

s2 , Γ = λ/(kωn), and G(s) = 1
s .

By replacing the sine and cosine functions in (12) by
their equivalent expressions in terms of exponentials, i.e.,
cos(2θn) = e−j2ωnt+ej2ωnt

2 and sin(2θn) = je−j2ωnt−jej2ωnt
2 ,

and considering the frequency shifting property of the Laplace
transform, i.e., L [eatf(t)] = F (s− a), (12) can be rewritten
as (13) at the bottom of the next page. By defining sm =
s+ j(2ωn)m (m ∈ Z) and replacing s by sm in (13), it can
be rewritten as (14). In the matrix form, (14) is corresponding
to (15). The matrix equation (15) is the open-loop harmonic
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Fig. 14. Model verification in response to Test 1 (10◦ phase jump). (a) SOGI-FLL. (b) EPLL. (c) APF-FLL. (d) SSLKF-FLL. (e) eSOGI-FLL. (f) SOGI-
FLL-WPF.———————————————————————————————————————————————————

∆V̂1(s) = KG(s) [∆Ve(s) + ∆Ve(s− j2ωn)/2 + ∆Ve(s+ j2ωn)/2 + jVn∆θe(s− j2ωn)/2− jVn∆θe(s+ j2ωn)/2] (13a)

∆θ̂1(s) = KH(s) [∆θe(s)−∆θe(s− j2ωn)/2−∆θe(s+ j2ωn) /2 + j∆Ve(s− j2ωn)/(2Vn)− j∆Ve(s+ j2ωn)/(2Vn)] .(13b)

∆V̂1(sm)= KG(sm) [∆Ve(sm) + ∆Ve(sm−1) /2 + ∆Ve(sm+1)/2 + jVn∆θe(sm−1)/2 −jVn∆θe(sm+1)/2] (14a)

∆θ̂1(sm)= KH(sm) [∆θe(sm)−∆θe(sm−1)/2−∆θe(sm+1)/2 +j∆Ve(sm−1)/(2Vn)− j∆Ve(sm+1)/(2Vn)] . (14b)

Y︷ ︸︸ ︷

...

∆V̂1(s−1)

∆θ̂1(s−1)

∆V̂1(s0)

∆θ̂1(s0)

∆V̂1(s+1)

∆θ̂1(s+1)
...



=

K︷︸︸︷
kωn

2

F(s)︷ ︸︸ ︷

. . .
...

...
...

...
...

... . . .

· · · G(s−1) 0 G(s−1)
2 −j VnG(s−1)

2 0 0 · · ·

· · · 0 H(s−1) −jH(s−1)
2Vn

−H(s−1)
2 0 0 · · ·

· · · G(s0)
2 jVn

G(s0)
2 G(s0) 0 G(s0)

2 −jVn G(s0)
2 · · ·

· · · jH(s0)
2Vn

−H(s0)
2 0 H(s0) −jH(s0)

2Vn
−H(s0)

2 · · ·

· · · 0 0 G(s+1)
2 jVn

G(s+1)
2 G(s+1) 0 · · ·

· · · 0 0 jH(s+1)
2Vn

−H(s+1)
2 0 H(s+1) · · ·

. . .
...

...
...

...
...

...
. . .



E︷ ︸︸ ︷

...

∆Ve(s−1)

∆θe(s−1)

∆Ve(s0)

∆θe(s0)

∆Ve(s+1)

∆θe(s+1)
...


(15)
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Fig. 15. Model verification in response to Test 2 (+2-Hz frequency jump). (a) SOGI-FLL. (b) EPLL. (c) APF-FLL. (d) SSLKF-FLL. (e) eSOGI-FLL. (f)
SOGI-FLL-WPF.

transfer function (HTF) of the SOGI-FLL, which translates its
LTP dynamics into an LTI system, as shown in Fig. 17(a).
Therefore, the theory of multivariable LTI feedback control
is applicable for its analysis. The only point here is that the
HTF F(s) has an infinite dimension. Therefore, its truncated
version needs to be considered for the analysis.

B. Overview of Generalized Nyquist Theory for LTP Systems

The generalized Nyquist criterion is a good choice for the
SOGI-FLL stability analysis as it is able to determine its
stability for a range of control gain (here the control gain K)
based on the eigenloci (i.e., the closed curves generated by
the eigenvalues) of its open-loop HTF (15). In what follows,
the Nyquist criterion for the stability assessment of an LTP
feedback control system is briefly explained.

Theorem [21]–[23]: Consider a feedback control system as
Fig. 17(a). Assume that {λi(s)}+∞i=−∞ denote the eigenvalues
of the HTF F(s) for s belonging to a strip defined by
−jωp/2 ≤ Im(s) < jωp/2 [see Fig. 17(b)]. If we assume that
Np is the number of right-half-side poles of F(s) in this strip,

then the closed-loop LTP system in Fig. 17(a) is asymptotically
stable if and only if the eigenloci of F(s) encircles the −1/K
point exactly Np times in the counterclockwise direction.

C. Stability Region of SOGI-FLL

Fig. 18 shows the LTP Nyquist plot of the HTF F(s) in (15)
for three different values of Γ: Case a: Γ = 0.2ωn = 62.83,
Case b: Γ = ωn = 314.16, and Case c: Γ = 2ωn = 628.32.
According to these plots, the following observations can be
made.

• Based on the generalized Nyquist theory, the stability in
the left, middle, and right Nyquist plots in Fig. 18 is
guaranteed if

Case a (Γ = 0.2ωn) ⇒ −∞ < − 1
K < −6.398e− 4

Case b (Γ = ωn) ⇒ −∞ < − 1
K < −3.618e− 3

Case c (Γ = 2ωn) ⇒ −∞ < − 1
K < −8.707e− 3.

(16)
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Fig. 16. Model verification in response to Test 3 (0.2-p.u. voltage sag). (a) SOGI-FLL. (b) EPLL. (c) APF-FLL. (d) SSLKF-FLL. (e) eSOGI-FLL. (f)
SOGI-FLL-WPF.
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Fig. 17. (a) LTP feedback control system under study. (b) LTP Nyquist
contour. I is an identity matrix of the same dimension of the HTF F(s).
All channels have the same gain, i.e., K. For the case of the SOGI-FLL,
ωp = 2ωn.

As K = kωn/2, where k is the SOGI gain, the above
stability regions are corresponding to

Case a (Γ = 0.2ωn) ⇒ 0 < k < 9.95
Case b (Γ = ωn) ⇒ 0 < k < 1.76
Case c (Γ = 2ωn) ⇒ 0 < k < 0.73.

(17)

• Increasing the gain Γ reduces the stability range of the

gain k. This fact can be better visualized in Fig. 19, which
illustrates the stability range of the gain k versus the gain
Γ.

• Even for small values of the gain Γ, the SOGI-FLL may
become unstable (see Fig. 19). This observation implies
that the stability region of the SOGI-FLL is limiter than
what was predicted before using its basic LTP model
[Fig. 9(b)]. The reason behind this inaccuracy is that
the dynamics of the input signal amplitude have been
neglected in obtaining the basic LTP model. Considering
these dynamics, as proved in this paper, results in a cross-
coupling between the phase and amplitude loops, which
explains the rather limited stability region of the SOGI-
FLL.

D. dSPACE-based Verification

In section III-C, by applying the generalized Nyquist theory
to the open-loop HTF of the SOGI-FLL, its stability region
was determined (see Fig. 19). The aim of this section is to
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Fig. 18. LTP Nyquist plot of F(s) in (15). (a) Γ = 0.2ωn = 62.83, (b) Γ = ωn = 314.16, and (c) Γ = 2ωn = 628.32.
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Fig. 19. Stability region of the SOGI-FLL.

verify the correctness of this region. To this end, Fig. 20, which
is an alternative representation of the SOGI-FLL in Fig. 1,
is implemented using dSPACE 1006 platform. The sampling
frequency, the nominal frequency, and the nominal amplitude
are set to 10 kHz, 50 Hz, and 1 p.u., respectively. Two cases
are considered: Γ = ωn = 314.16 and Γ = 2ωn = 628.32.
According to (17), the stability limits of the gain k for the
SOGI-FLL stability in these cases are 0 < k < 1.76 and
0 < k < 0.73. In each case, first, the gain k is set to be
slightly lower than its upper stability limit. Suddenly, through
the control desk of the dSPACE platform, the value of this gain
is slightly increased to go a bit beyond its stability limit. This
process is highly sensitive to the noise as the SOGI-FLL is
very close to its stability border during it. Therefore, to avoid
any noise, the single-phase input signal of the SOGI-FLL is
generated internally by the dSPACE. The output signals of the
SOGI-FLL are then sent out using DAC ports and displayed
on a Tektronix digital oscilloscope. To save space, only the
estimated frequency by the SOGI-FLL is shown here (see Fig.
21). In both cases, it can be observed that the SOGI-FLL
is stable at first and becomes unstable after increasing the
control gain k. These results are consistent with theoretical
predictions.
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Fig. 20. Alternative representation of the SOGI-FLL in Fig. 1.

1.7k = 1.8k =

1 s

(a)

0.7k = 0.8k =

200ms

(b)

E
st

im
at

e
d
 f

re
q

u
en

cy
 (

H
z)

E
st

im
at

e
d
 f

re
q

u
en

cy
 (

H
z)

46 

47

48

49

50

51

52

53

54

46 

47

48

49

50

51

52

53

54

314.16n = =

moment of
changing k

Moment of 
changing k

2 628.32n = =

Fig. 21. dSPACE-based testing of the SOGI-FLL stability limit. (a) Γ =
ωn = 314.16 and k changes from 1.7 to 1.8. (b) Γ = 2ωn = 628.32 and k
changes from 0.7 to 0.8. The stability limit of the gain k for these two cases
can be observed in Fig. 18 and equation (17).

E. Robustness Metrics
Metrics such as phase margin (PM) and gain margin (GM)

demonstrate how close the eigenloci of a feedback control
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  63.7°

1
GM

-0.254

Fig. 22. LTP Nyquist plot of the SOGI-FLL open-loop HTF using parameters
listed in Table II.

system is to the critical point −1 + j0 and, therefore, provide
a measure of the control system robustness. As the HTF
translates the LTP system into a multivariable LTI one, the
same definitions as those presented for the PM and GM
of LTI MIMO feedback control systems are applicable for
determining these robustness metrics of an LTP feedback
control system. In what follows, the GM and PM in MIMO
systems are succinctly defined.

For an LTP feedback control system as Fig. 17(a), the PM
is defined as the amount of phase lag that can be added to
all branches before the system becomes unstable, and the GM
is defined as the minimum gain in dB that can be added to
all branches to make the system unstable [24]. Notice that
these PM and GM definitions are the same as those in single-
input-single-output (SISO) systems. Therefore, they can be
determined in a similar manner as a SISO system. To better
visualize this fact, Fig. 22 shows the LTP Nyquist plot of
the open-loop HTF of the SOGI-FLL. The SOGI-FLL control
parameters are the same as those listed in Table II. The PM
and GM of the SOGI-FLL in this case, as highlighted in Fig.
22, are equal to 63.7◦ and GM = 20 log

(
1

0.254

)
= 11.9 dB.

In this stage, it can be informative to see how increasing the
control gains affects the SOGI-FLL stability margins, and to
see the difference of the SOGI-FLL LTP and LTI6 models in
determining the stability margins. Fig. 22 shows the variations
of the PM and GM of the SOGI-FLL determined using its new
LTP model and its LTI model as a function of the gain k. In
obtaining these results, Γ = 0.2ωn = 62.83 is selected which,
according to (17), results in a stability range of 0 < k <
9.95 for the control gain k. It can be observed that the LTP

6The LTI model of the SOGI-FLL has been presented before in [19] (see
Fig. 3 in [19]).
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Fig. 23. (a) PM and (b) GM of the SOGI-FLL determined using its LTP and
LTI models as a function of k. In obtaining these results, Γ = 0.2ωn = 62.83
is considered. According to the equation (17), the stability limit of the gain
k for the selected value of Γ is kmax = 9.95. The GM of the SOGI-FLL
according to its LTI model is infinite and, therefore, it cannot be shown.

and LTI models are in agreement in determining the PM of
the SOGI-FLL as long as the gain k is considerably smaller
than its upper stability limit. By further increasing the gain k,
the PM determined by the LTP model decreases and finally
becomes zero when k reaches its upper stability limit (kmax =
9.95). On the contrary, the PM determined by the LTI model
continues to increase in this condition, which is not consistent
with the SOGI-FLL behavior. Regarding the SOGI-FLL GM, it
is infinite according to the LTI model and, therefore, it cannot
be shown in Fig. 23. However, according to the LTP model,
the GM reduces with increasing k and becomes zero when k
reaches its upper stability limit. All these observations suggest
that the stability margins determined by the LTI model of the
SOGI-FLL are trustworthy as long as the control parameters
of the SOGI-FLL are far away from its stability/instability
border.

F. Discussion

An issue that needs to be discussed here is identifying
scenarios where the LTP models derived in this paper may not
be very accurate. The LTP modeling of grid synchronization
systems, as mentioned in section II-B1, involves defining
perturbations around the nominal values of the actual and
estimated grid parameters, and the linearization of nonlinear
terms around a trajectory. The accuracy of the LTP model
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Fig. 24. SOGI-FLL model verification in response to 0.5 p.u. voltage sag.
The SOGI-FLL control parameters can be found in Table II.

depends on the size of these perturbations. As long as the
perturbations are small, the LTP model provides a good
accuracy. For example, as shown in Fig. 14, 15, and 16, the
LTP models derived in this paper can provide a remarkable
accuracy in response to 10◦ phase jump, +2 Hz frequency
jump, and +0.2 p.u. voltage sag. However, if the magnitude
of these disturbances increases, the level of the LTP model
accuracy reduces. For example, Fig. 24 shows the results of
the SOGI-FLL and its new LTP model in response to a large
voltage sag (0.5 p.u. voltage sag). If we compare these results
with those shown in Fig. 16(a), a reduction in the accuracy of
the SOGI-FLL LTP model is observed.

In summary, the accuracy of the LTP models and, therefore,
the accuracy of their predictions reduces in response to large-
signal disturbances. It implies that the large-signal modeling
should be considered if a high accuracy in response to large
disturbances is required.

IV. CONCLUSION

Developing precise LTP models for the standard single-
phase SOGI-FLL and some of its close variants, including the
EPLL, APF-FLL, SSLKF-FLL, eSOGI-FLL, and SOGI-FLL-
WPF, was the main aim of this paper. To this end, some discus-
sions about the relationship among these grid synchronization
systems were conducted. It was mentioned that the EPLL

is mathematically equivalent to the SOGI-FLL under certain
conditions. It was also demonstrated that the SOGI-FLL, APF-
FLL, and SSLKF-FLL are some special cases of the eSOGI-
FLL. Considering these facts, it was concluded that developing
a precise LTP model for the eSOGI-FLL suffices for obtaining
LTP models for all of the grid synchronization systems under
study. The paper was then proceeded with developing an
LTP model for the eSOGI-FLL. After some assumptions and
definitions and through a step by step mathematical procedure,
an LTP model was developed for the eSOGI-FLL. Using
this model and considering the relationship among the grid
synchronization systems under study, the LTP models of the
SOGI-FLL, EPLL, APF-FLL, SSLKF-FLL, and SOGI-FLL-
WPF were obtained. The accuracy of all these LTP models was
verified numerically using phase/frequency/amplitude jump
tests.

To highlight the effectiveness of an LTP model for the
analysis of a grid synchronization system, some investigations
on the SOGI-FLL and its new LTP model were conducted. It
was demonstrated how the open-loop HTF of the SOGI-FLL
can be simply obtained using its LTP model. It was shown
how using the eigenloci of its open-loop HTF and applying
the generalized Nyquist criterion, the stability region of the
SOGI-FLL and its robustness metrics (i.e., its PM and GM)
can be determined. Finally, the limitation of the SOGI-FLL
LTP model was briefly discussed.

The LTP models developed in this paper make two main
contributions to the field.
• They facilitate analyzing the SOGI-FLL, EPLL, APF-

FLL, SSLKF-FLL, eSOGI-FLL, and SOGI-FLL-WPF as
they enable researchers to simply obtain their HTFs and
determine their stability region and robustness metrics.

• They pave the way towards the LTP modeling and
analysis of advanced single-phase grid synchronization
systems, which have been designed based on the SOGI-
FLL and its close variants.
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