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Distributed Optimal Control of Energy Hubs for
Micro-Integrated Energy Systems

Ming Qu, Student Member, IEEE, Tao Ding

Shanying Zhu™, Member, IEEE, Yongheng Yang

Abstract—Integrated energy systems become more and more
important to realize the energy complementary property. Micro-
integrated energy system, served as the terminal integrated
energy system, will have the electricity delivered directly to
the local customers by energy hubs (EHs). Here, the data and
information of the EHs during the operation are confidential
and should be kept by each owner. Therefore, this article designs
a dual-decomposition-based distributed algorithm to address this
problem, where the optimal consensus problem is used for the
dual problem to update the multipliers. The primary and dual
problems are alternatively solved until the Karush—Kuhn-Tucher
condition is satisfied. For the proposed distributed algorithm, the
feasibility can be strictly guaranteed during the iteration process.
Moreover, theorems and lemmas are proved for the linear con-
vergence rate. The numerical results verify the effectiveness of
the proposed algorithm.

Index Terms—Distributed optimal control, dual decomposi-
tion (DD), energy hubs (EHs), micro-integrated energy systems
(m-IESs).

NOMENCLATURE
Parameters
% Offset of all m energy hubs {1, 2, ..., m}.
m Number of energy hubs.
B Constraint matrix in the optimal exchange
problem.
(0] Zero matrix with proper dimension.
1 Identity matrix with proper dimension.
W Weight matrix of the communication network

with elements w;;.
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Column vector with all elements 1 with proper
dimension.

Spectral radius of a matrix.

Connectivity of W.

Column vector with all elements 0 with proper
dimension.

Communication matrix used in the optimal
consensus problem.

Eigenvalues of a matrix.

Extended real number set that equals the set
of real numbers R U {£o0}.

Euclidean space.

Rank of a matrix.

Transformation matrix of the energy hub.
Total electricity, heat, and gas load demands.
Lower bound of the ith energy hub for elec-
tricity, heat, and gas.

Upper bound of the ith energy hub for elec-
tricity, heat, and gas.

Total cost of the micro integrated energy
system.

Local cost of the energy hub to purchase
power.

Local cost of the energy hub to purchase heat.
Local cost of the energy hub to purchase
natural gas.

Amount of power purchased by the energy
hub, whose collection vector is P,

Amount of heat purchased by the energy hub,
whose collection vector is H'™.

Amount of natural gas purchased by the
energy hub, whose collection vector is G".
Power output of the energy hub, whose col-
lection vector is PO,

Heat output of the energy hub, whose collec-
tion vector is H".

Natural gas output of the energy hub, whose
collection vector is G°".
Dual variable introduced
function.

Duplicated variable of A.
Collection vector of all y; that is structure as

IEESZARR A

to local cost
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X; Shifted local decisive variable of the ith
energy hub.

X Collection vector of all x; that is structure as

T T 17

[x].xI,....xT]".

Z; Auxiliary variable for the ith EH.

f Total objective function of the primary model.

fio Cost function of the ith EH.

fi Convex and differentiable part of the ith EH.

t Regularization term of the ith EH.

! Cost function of electricity for the ith EH.

2 Cost function of heat for the ith EH.

Vi Cost function of natural gas for the ith EH.

a;, b; Coefficients for cost function of electricity for
the ith EH.

¢, d; Cost function coefficients of heat for the ith
EH.

ei, f; Cost function coefficients of natural gas for
the ith EH.

f* Optimal value of the primary model.

x* Optimal solution of the primary model.

y* Optimal dual solution of the primary model.

I. INTRODUCTION
A. Background

VER the past few decades, the climate change and

the overspend of fossil energy have put a great chal-
lenge on the development of sustainable energy. According
to the World Energy Congress, it is estimated that the
ultimate amount of traditional fossil fuels (coal, oil, and
natural gas), which accounts for 80% of the world’s cur-
rent energy consumption, is expected to sustain for two
hundred years and cannot meet the rapidly growing energy
consumption of society. To address this challenge, the devel-
opment of integrated energy system (IES) has provided
an opportunity [1], [2], which combines several different
kinds of energy systems (such as electrical power system,
natural gas system, and district heating system) together
to improve the energy utilization efficiency. As a result,
the IES has aroused a wide concern from government,
enterprise, and scholars, due to its benefits in terms of
low carbon footprint, economics, flexibility, reliability and
sustainability.

Note, IESs have two structures with respect to different
system levels. For the transmission system level, IES mainly
contains electricity and natural gas without heat energy. This
is because heat cannot be transferred over long distances and
should be balanced locally. For the distribution system level,
a micro-IES (m-IES), which is typically used for a local com-
munity residential supply, will contain heating resources in
addition to the electricity and natural gas.

In order to tightly couple the different forms of energy
resources in the IES, a component is needed to achieve the
production, conversion, storage, and consumption of differ-
ent energy carriers, which is called as energy hub (EH).
For example, thermoelectric converters, pumps, and electric
boilers realize the coupling of electric energy and heating
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energy; power-to-gas devices (P2Gs) and gas turbines real-
ize the coupling of electric energy and natural gas [3], [4];
combined heat and power (CHP) units realize the coupling
of electric energy, thermal energy, and natural gas [5], [6].
In general, EHs are the core equipment for the interaction of
different energy carriers in the IES, so the modeling of EHs
is critical. Mohammad et al. [7] reviewed several models of
the EH and discussed the corresponding strengths and weak-
nesses of each model. Based on the modeling of EHs, many
techniques have been developed for the IES to improve the
energy efficiency of the whole energy systems, fully accom-
modate renewable energy, enhance the energy transformation
flexibility, etc.

B. Literature Reviews

IES and m-IES have been studied extensively, especially in
unified energy flow, economic dispatch, and optimal energy
flow (OEF). Accurately and effectively analyzing the energy
flow is of great significance to the operations, planning, and
control of IESs. Various methods were proposed to execute the
energy-efficiency-based control architectures and algorithms
in [8]-[10]. With the rapid development of renewable energy,
a unified energy flow framework considering wind power
and other renewable energy has been established in [11].
Obviously, renewable energy will bring uncertainties to power
generation, which will affect the operation of the gas network
and the heat network as well. Chen et al. [12], Hu et al. [13],
and Aien et al. [14] established the probabilistic analysis mod-
els for computing the IES energy flow evaluate the impact
from uncertainties.

Based on the analysis of energy flow, OEF is stud-
ied to improve the energy efficiency and reduce the cost.
Andebili and Shen [15] focused on a bi-level optimization-
based energy scheduling for m-IES. The price-controlled
strategy was implemented to coordinate the energy man-
agement between smart homes and generation companies.
Furthermore, Faqiry and Das [16] investigated an energy auc-
tion mechanism by microgrid controller between buyers and
sellers. Also, the physical grid constraints were addressed in
the optimization model and the buyers’ private information
can be preserved. Additionally, the economic dispatch model
for an m-IES was established in [17] that quantitatively ana-
lyzed the influence of the integrated demand response on wind
power utilization.

In addition to the economic dispatch, OEF is also
a hot topic to optimize the energy flow subject to
the security constraints. Shao et al. [19] proposed a state
variable-based EH model which avoided the nonlinearity
induced by dispatch factors, so that the OEF of combined
power and gas systems can be formulated as an MILP
model. Shabanpour-Haghighi and Seifi [20] gave a modified
teaching—learning-based optimization method to solve the
multiperiod OEF problem of multicarrier energy networks.
With the consideration of different response time horizons
of the gas and power systems, Fang et al. [21] formulated
a dynamic OEF model and transformed it into a single-stage
linear programming. A multiperiod probabilistic OEF model
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was designed in [22], which adopted three-point estimation
method to solve the uncertainty caused by wind power and
load prediction. From the perspective of reducing carbon emis-
sion, the stochastic OEF for an m-IES with energy storage was
studied in [23] to handle uncertainties in energy demand and
renewable generation.

Note that all the above studies were performed by using
centralized approaches, which require a center to handle the
whole network information. However, since different EHs in
an m-IES may belong to different companies, the centralized
approaches cannot guarantee privacy concerns on sensitive
data, for example, the energy prices of different companies
reflected by the gradient information. Thus, the decentralized
approaches (also known as, the distributed optimization meth-
ods) is necessary to protect the information privacy of different
EH agents.

In fact, distributed optimization methods for solving eco-
nomic dispatch, unit commitment, and OEF have attracted
considerable attentions in recent research. Wang et al. [24]
developed an optimization model and blockchain-based archi-
tecture to manage the operation of crowdsourced energy
systems to solve the day-ahead scheduling problem of gen-
eration and controllable distributed energy resources. The
presented operational model can also be used to operate
islanded microgrids. Furthermore, a peer-to-peer distributed
coordination method was considered in [25] for optimizing
the cyber-physical energy system. Then, a fully distributed
algorithm was designed to exchange local information only
among neighbors without the interactive information between
generation and load.

However, the augmented Lagrange methods may result in
the inseparable problem. Thus, ADMM was used to con-
quer this trouble [26], [27]. Ma et al. [28] reviewed several
calculation forms of ADMM in distributed power systems
and compared the differences between consensus ADMM
and proximal ADMM in economic scheduling problems. In
addition, a fully distributed and robust algorithm based on
ADMM was applied to solve OPF problem in [29], and this
algorithm did not need a coordination center. Considering
stochastic communication delay and aiming at the minimum
power loss, Xu et al.[30] raised a synchronous and asyn-
chronous method to solve the distributed OPF problem. More
specifically, Bolognani and Zampieri [31] verified the compu-
tational efficiency of the distributed algorithm ADMM to solve
the economic dispatch problem through a large-scale Polish
2383-bus system.

Despite the improvements of the aforementioned distributed
algorithms, they have two common disadvantages.

1) The convergence of the ADMM method is challeng-
ing. Chen et al. [32] pointed out that the convergence
of the ADMM is not necessarily guaranteed for the
multiblock convex optimization problem while only the
case with two blocks can be convergent. Meanwhile,
some counterparts were illustrated which greatly chal-
lenged the ADMM for the applications using distributed
optimization.

2) ADMM algorithms always terminated when the feasi-
bility was met, which means that if the iteration was

interrupted by unexpected failures, the solution could not
be feasible (or the infeasible solution will be obtained
during the iteration process).

In view of this, the algorithm has been studied which not
only solves both the primal problem and the dual problem
simultaneously but also ensures that each step is feasible.
Under assumptions that the objective function has strong con-
vexity and smoothness, Doan and Olshevsky [33] proposed
a fully distributed primal-dual method, which can achieve
a geometric convergence. Based on this idea, Qu and Li [34]
raised a distributed algorithm which can accelerate the conver-
gence by using history information to achieve fast and accurate
estimation of the average gradient. Xu et al. [35] focused on
different constant step-sizes and developed an augmented dis-
tributed gradient method based on consensus theory. It had
been proved that the optimal solution could be obtained even
when the step size was constant. Furthermore, Xu et al. [36]
created the distributed forward—backward Bregman splitting
algorithm which was suitable for stochastic networks by
solving both primal and dual problem simultaneously. In
consideration of privacy, a distributed method called dual
splitting approach (DuSPA) was established in [36], which
did not need to communicate iterative information when
seeking optimal value. This method was proven to have a lin-
ear convergence rate for smooth and strongly convex cost
functions.

C. Contributions

We propose a novel distributed algorithm for EH optimal
control in m-IES, which does not need to exchange the sen-
sitive information of different types of energy resources, thus
keeping the data privacy [37], [38] as the ADMM method.
Specifically, the main contributions of this article can be
summarized as follows.

1) A dual-decomposition (DD)-based distributed algorithm
is proposed for optimal dispatching the m-IES in which
the feasibility can be strictly guaranteed at each step.
The optimal consensus problem (OCP) is used for the
dual problem to update the multipliers. The primary and
dual problems are alternatively solved until the KKT
condition is satisfied.

2) We investigate the structure of the communication
network matrix for the m-IES and the properties of the
communication network matrix are given to guarantee
the convergence. In particular, we have strictly proven
the linear convergence rate of the proposed method on
the economic dispatch model under the mild condi-
tion that the objective function is smooth and strongly
convex.

The reminder structure of this article is as follows. Section II
develops the basic optimal control model for m-IESs, and the
model is rewritten as an optimal exchange problem (OEP)
form. Section III describes the DD algorithm which contains:
1) the communication network model; 2) the dual optimal con-
sensus model; and 3) the specific process of the DD algorithm.
Section IV proves the linear convergence rate of the proposed
method under the mild conditions. Section V shows the results
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Fig. 1. m-IES with multiple EHs.

and analysis of case studies. Finally, Section VI draws main
conclusions.

II. OPTIMAL CONTROL MODEL FOR MICRO INTEGRATED
ENERGY SYSTEMS

Consider that the integrated load demands in an m-IES are
supplied by several EHs, including electricity, heat, and natural
gas. As shown in Fig. 1, the local output of each individual
EH is limited for different energy resources due to the physical
constraints and the input purchases electricity, heat, and natural
gas from the external price-based markets. The EH itself will
convert the energy resources from one type to another type,
such that the output quantities of the energy resources will
meet the total load demands while satisfying the physical
constraints. Furthermore, the optimization model for the opti-
mally controlling EHs of an m-IES is set up to minimize the
total purchasing cost for the whole m-IES while satisfying the
energy balance constraints for each energy resource as well as
the physical constraints for EHs, such that

min

C(Pm’ Hln’ Gm)
P,i"Hi",Gi“,P"“‘,H“u‘,(}"meR’"

(cF(rr) +ct(mr)

+cf(ar) 1)

|
.Ms

1

pin o
st. A;| HP H" | VieV
Gi'n G?ut
(2)
m
ZP;?‘“ =P, VieV (3)
i=1
m
Y HM™=H_ VieV )
i=1
m
Y GM=GL vieV (5)

i=1
P;)ut < P?Ut < P?ut VieV (6)
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Hlput < Hl?m < [—Il(.’ut VieV (7)
G;)ut < G?m < G?Ut VieV (8

where A;in (2) is a ﬁ3X3 matrix that describes the relationship
between the output and input of the EH i; R is the real number
space; Constraints (3)—(5) are the energy balance for each kind
of energy resource; and constraints (6)—(8) limit the output of
the EHs.

It should be noted that in the practical engineering, the cost
response function is considered to be quadratic. Therefore, the
cost functions (C(e), CH (e), C (o)) are usually expressed as
quadratic functions with positive coefficients, which have the
strictly convex quadratic property [40], such that

Ci(PP H. GP) = ai(PP) + biP" +2Ci(H}n)2 VieV.
+ dH" + ¢;(G]")” + fiG}"

C))

Recall that the model (1)-(8) has a special mathematical
structure where the constraints (2) and (6)—(8) are separa-
ble for each individual EH while only the equality energy
balance constraints (3)—(5) will link multiple EHs together.
Let x; be the local decision variables of each EH, such that
x; = (P, HM, G, PO, HOY, G9™). Splitting the constraints
that only related to the local variables from the coupled con-
straints, we will encode the constraints (2) and (6)—(8) to the
Euclidean space

X6i—5 X6i—2
Ail x6i—4 | = | X6i-1
X6i—3 Xoi

t t [
P < xgi—p < P}" VieV.
HM < xgi—1 < H™

out out
G < x6i < G;

Then, shifting the energy load demands to zero by [36], the
proposed optimal control model for m-IES can be recognized
as the classical OEP as follows:

min f(x) = DR = () + 1i(x)

i=1 i=1

= Z(fil (x6i—5) + £ (x6i—4) + 7 (X6i—3) + ti(Xi))
i=1

(10)
s.t. Zx&-,z =0 VieV (11)
i=1
Zx(,i_l =0 VieV (12)
i=1
Zx6,~=0 VieV (13)

i=1

where the local cost function for the ith EH, giving f; : H — R
is convex, differentiable, and is onl_y related to the ith EH;

the regularization term #; : H — R is convex but may be
nonsmooth, which contains all the information related to the
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feasible region of the original optimization model. Obviously,

) =£() + (), for all i.

In a compact form, the primal OEP (primal
problem) (10)—(13) can be rewritten as
m
min f(x) = ;f?(x,-) (14)
st. B'x=0 (15)
(0]
where B = [03x3 I3x3 e 0343 I3><3:|.

III. DUAL-DECOMPOSITION-BASED DISTRIBUTED
ALGORITHM

At first, it can be easily found that the OEP problem (14),
(15) for the m-IES is a centralized optimization model that
needs a control center to collect all the data from each EH. In
order to conduct the OEP model in a distributed way, we will
investigate the dual problem and relevant algorithm of the OEP
to obtain the optimal solution in a distributed way. At the
beginning, some preliminaries should be given.

A. Preliminaries

1) Spectral Radius: The spectral radius p(A) of the matrix
A is defined as
p(A)

= max{[§(A)[} (16)

where £ represent the eigenvalues of A.
2) G-Space: A G-space is defined by the given symmetric
positive-definite matrix G with the induced norm as follows:

(Ga, @)

(e, B)g = (Gar, B) and Jleellg = Va, B € H.

a7

3) Saddle Point: A saddle point of ¢ in the domain D is
the pair (x*, y*) that satisfies the following condition:

P(x*.y) <o(x*.y*) <o(x.y*) V.y)eD. (18)

4) Fenchel Duality: Let f : H — R be a convex function.
Then, its convex conjugate (Fenchel’ dual) is defined as

[y = —fx®)} 19)

sup {(x, y)
xeH
where y is the dual variable corresponding to the primary
variable x.

5) Subgradient: The subgradient of f : H — R at point X
is defined as

of ={p e HIf(y) = fX) +(p,y—Xx),Vy e H}. (20)

6) Proximal Operator: The proximal operator of a convex
function f is defined as

1
prox, ,(y) = arg min{f(x) +5-lx— y||2}. 1)
xeH T

B. Model of the Communication Network

An undirected graph G = {V, £} is designed to describe
the communication network between the multiple EHs, where
each vertex v; € V denotes the ith EH and each edge
ejj = (vi, vj) € £ denotes a communication link with a positive
weight w;; between the vertex v; and the vertex v;. In addition,
N; = {jle;j € £} is used to denote all the neighbors of the ith
EH. Furthermore, we consider that the weight matrix W of
the communication network has the following requirements:

= Wand W > 0 (22)
1or1Tw=1" (23)

olW—-—])<1. (9
m

Thus, nullI— W) = span{1} can be derived from the above
requirements. And the further selection of the weight matrix
W is detailed in [36].

(Positive-definiteness) wT
(Stochasticity) W1 =

(Connectivity) ng =

C. Dual Optimal Consensus Model and Feasibility
The global Lagrange function for (14) and (15) is cast as

m
ZLi(X, X;)
i=1

where A = [0,0,0, A, Ay, k3]T is the dual variables and the
local Lagrange function for the ith EH is

L\, X) = 25)

Li(h, xi) = £ (%) — A"x;. (26)
Then, the dual problem for the ith EH is
ES

D) = infLik,x) = (£7) () 27)

where (fl.o)* the convex conjugate of flO and can be gath-
ered together to formulate a popular distributed optimization
problem as

m m
3
min 3" Di%) =Y (#7) . (28)
i=1 i=1
Note that the dual variables are shared among all the EHs.
To realize a distributed way, a reformulation can be performed
with the duplicated dual variables and one constraint is added
to guarantee the equivalence among the duplicated variables.

This therefore gives a decomposable problem, such that

m
*
min f* () ;(ff)) (v:) (29)
sty = y2 = y3 =0 (30)
yi=y.¥ =y.¥=y vijev (D

where the duplicated variable y; equals A. Resorting to [36],
since it holds for nulld — W) = span{l} from (22)-(24), it
can be known that, if the communication network topology
is connected, problem (29)—(31) is the same as the following
OCP:

mm Ay = (32)

Z()Htl vi)
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s.t. y1 = y2 = y3 =0 (33)

I-Wy*=0,I-W)y =0,I—-W)y° =0

Vi,je V. (34)
In a compact form, the OCP can be rewritten as
m
min f*(y) = Y (i +0)*(y;) (39)
yeH i=1
st. I-T)y=0 Vi,jeV (36)

where T is defined as the augmented weight matrix which is
structured as follows:

alz 033 O3x3  O3x3
O3x3  onlz 0353 o3
Temx6m = :
0353  Osx3 alz 0343
O3x3 w3 0343 wmmlz

(37

where « € (0, 1) is a real number.

Finally, the original problem (OEP) in (14) and (15) and the
dual problem (OCP) in (35) and (36) constitute the primal—
dual problem, called as OCEP problem. Accordingly, the KKT
conditions of the OCEP problem can be presented as

(Primal Feasibility — OEP) B x* =0 (38)
(Dual Feasibility — OCP) (I—T)y* =0 (39)
(Lagrangian Optimality) y* — Vf(x*) € 97(x*). (40)

D. Distributed Algorithm

It should be noted that the essential aim of this article is to
solve the primal OEP problem in a distributed way. To reach
this goal, we tend to solve the dual OCP problem alternatively
in a distributed way. Resorting to our previous works [36]
and [39], we can obtain the following algorithm:

Yir1 = Yi + 72Xk — Xp—1 — %) 41
1

Xyl = X — ;(I = D)¥it1 (42)

Zir1 = prox,, (zi — V)V (ze(—2¥k11 +¥i))  (43)

where zj is the auxiliary variable which is embedded in (41)
and updated by using the latest information of yj. From step
4 in the algorithm, it is obvious that each EH only needs its
local information such that the algorithm can be performed in
a distributed way. Note, the primal feasibility always holds for
the OEP during the iteration, if the initial value is proper. This
is a very useful property in the practical engineering applica-
tion. For the optimal dispatch of an IES, the energy balance
constraint is critical to the secure operation. From a physical
viewpoint, the operators usually expect to fast find a feasi-
ble solution and then gradually improve the feasible solution
toward the optimal solution. Most importantly, the improve-
ment at each step will strictly guarantee the energy balance;
otherwise, the energy system will lose the steady-state point.

In addition, the convergence criteria of the proposed algo-
rithm should be defined as: the KKT condition holds, or the
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Algorithm 1 DD-Based Distributed Algorithm

1. Initialization: Let x; o = 0, Vi € VV such that BTXO = 0, and choose any
value for y(, zg, X_1.
2. While the algorithm is not converged
3. Dual Update: For Vi € V, do
Yik+1 =Yik T TCXix — Xik—1 — Zi 1),
4. Primal Update: For Vi € V,

T T
(X6i—5, X6i—4> X6i—3)jy] = (X6i—5, X6i—4> X6i—3)}
1 T
--q —0‘)()’61’—5»)’61’—47)’6i—3)k+17
T
. . AV A . AT
(X6i—25 X6i—1+ X6 j 1 = (X6i—2> X6i—1, X6k

1 T T
- - > w:j((ysifs,y6i74,y6i73)k+1 - (Y6j75y)’6j—4sy6j73)k+1>»
JeN;

(44)
5. Update of Auxiliary Variable: For Vi € V, do
Z ft1 = ProxX,, (zi k — v (Vfi(Zi k) — 2¥; g1 + Yii))-

6. Set k — k+ 1 and go to the Step 3
7. End

maximum number of iterations is achieved. Finally, the dis-
tributed algorithm can be summarized as in Algorithm 1,
where (X, Y, »Zik) are the ith components of the vectors
(Xk, Yx» Zk) in (41)—(43); taking (37) in (42) will give the
step 4.

IV. LINEAR CONVERGENCE ANALYSIS

The proposed DD-based distributed algorithm has a linear
convergence rate for the optimization models with separable
convex quadratic objective functions. To theoretically show the
convergence performance of the proposed method, we will at
first give some basic lemmas and theorems.

A. Basic Lemmas

At the beginning, several lemmas are proved for the later
convergence analysis.

Lemma 1: According to the requirements of weight matrix,
the augmented weight matrix T has the following properties:

(Positive — definiteness) TP =Tand T >0 45)
(Stochasticity) TB =B or BTT = BT (46)
. BBT
(Connectivity) n=p(T—-——] < 1. (¢
m

Proof: We consider that the characteristic polynomial of
the T is gr(£) and the characteristic polynomial of the W
is gw(&). The relationship between gt(£) and gw(£) can be
derived as

gr) = [E1-T|
(6 —a)Iz  Os3x3 0343 0353
O3x3 (¢ -3 033 — w3
033 03,3 - (E—alz Oszx3
03,3 —wm13 O3.3 E—wmm)I3
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After the row and column transformations, the above deter-
minant can be rewritten by

(& —a)I3
(E—a)lz
—a)I
er(6) = (b
E—o)lz  —opl; —oiml3
—o 3 -z - —wouls
—wiml3 —w2l3 c (o)
E—o)z —wpl; —o1ml3
—ol3 -z - —ouls
= (E—a)™" (43)
—wiml3 —oply - E—om)3
For convenience, we define
€ —w)lz  —owpl; — w1ml3
-l (§ —wn)3 — w3
K& =| . _ _
—w1ml3 —oply - (= ows
(49)

After the expansion and row-column transformation of

Moreover, according to (22), we have w;; = wj;, Vi,j € V.
Then, the structure of T is also symmetric, such that TT =1).
Thus, the condition (45) holds.

Furthermore, we divide B into blocks by the column as

B=1[0,0,0,8 8, 8] (53)
with
B, =10,0,0,1,0,0,...,0,0,0,1,0,017  (54)
B> =10,0,0,0,1,0,...,0,0,0,0,1,01"  (55)
B3 =10,0,0,0,0,1,...,0,0,0,0,0,11".  (56)

Thus, if we want to prove TB = B, it is equivalent to prove

T(B1. B2, B3] = [B1. B2 B3l
From (23), it is observed that W1 = 1, which can be
expanded into

w11 w12 PD1m
w321 w21 @Wom
W1 W2 Wmm

1 1

(57)

After adding some zero elements on the above 1 vector and
changing W, we have

o

K(&), we have (50), as shown at the bottom of the page. o
Furthermore, we have the relationship o
3m 3 w11 Wim
g1 (&) = (€ — )™ (gw(€))’. 51) - oL
From the above equation, we can know that the eigenvalues @il @lm
of T are determined by
(1) = (o, §(W)} (52) ‘.
It is known that W has a simple eigenvalue one with others o
belonging to (0, 1). Since « € (0, 1), we can know that T wm1 Omm
has 3m simple eigenvalue ones but others belong to (0, 1). Om1 Omm
Therefore, T is positive definite. L W1 Omm
E—wi1 —w1n o —O,
—w §—wyp - —wm
—Wim —w12 - E—OIm
§—wil —win o —Olm
—wy1 §—wn - —wp
K@) =
—wiy —o1 - E—0in
E—wil —w o —On
—wy) §—wy - —wm
@i —w12 c §—®In
El-W
= E1-W = (gw(®)’ (50)
- W
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SO = O OO
SO = OO O

(58)

0
0
0
1
0
0

where T, = B;.

Similarly, we have T[81, B>, B3] = [B1, B, B3], such that
TB = B is ensured. If we transpose both sides on TB = B
with T being symmetrical, it yields BTT = BT.

Let W = W — (117 /m), then p(W®) < 1 from (24).
Further

T
BBT: 03x6m
| O3x3 Inxs 03x3  Inixs
« O356m
O3x3 Izx3 0353 Izx3
[ 0343 0343 03,3 0343
0353 Izx3 I3xs  Osx3
= : : : ol B9
0353  Os3x3 O3x3  Os3x3
| 0353 I3 Isxz  Osx3
Then, it attains
BBT
T =
_m
al3 033 - O3x3 033
033 (wu—%>13 - 0343 (wlm—%>13
033 0343 o als Os3x3
0353 (6%1—,,%)13 - O3x3 (wmm_%)13

(60)

Let TV =T — (BBT/m) and consider the determinant of
T

grm (§)
- ‘SI - T(“)
¢ —ao)l3 Osx3 033 0343
0343 (E —oi1 + ﬁ)h 033 (1 — ®1m + %)13
Osx3 Osx3 -l Osx3
0353 (1 — om1 + %)13 <+ Osx3 (S — Wpm + %)IB

(61)
With respect to (48)—(51), the row—column transformation
to gt (&) gives

gr = (& — )" (gwar (©)). (62)
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Thus, we have

(1) = e (W))

Therefore, (24) and « € (0, 1), it is known that p(T") < 1,
that is, p(T — (BBT/m)) < 1. ]

Lemma 2 (Feasibility): Given the initialization value X,
B'x; = 0 Vk > 0 is guaranteed if B xo = 0 and assumptions
of Lemma 1 are satisfied.

Proof: Multiplying B to both sides of (42) offers

(63)

1
B x;y1 =B x; — ;BT(I — Dy

1
=B'xi — —(B" — B Dy, ;. (64)
T
From (46), it is known from Lemma 1 that BTT = BT
holds, which gives the following equation:

1
B'xi11 =B x — —B' B — B )y, ., =B'x;.  (65)
T

Thus, we will know that BTXk = 0 Vk > 0 is true by
mathematical induction if B xy = 0. [ |

Lemma 3 (Bijective Transformation): Let P = 1 — T such
that null(P) = span{B, B,, B3}, where T satisfies Lemma 1.
For each x € spant{B;, B,, B3} and ¥’ € span’{B, B,. B3}
is uniquely determined by x = Px’ and vice versa. This
means that there exists a bijective transformation P between
x € span'{By, B,. B3} and X' € span’{B, B, B3}.

Proof: Due to null(P) = span{B, B,, B3}, we have

P[B,, 8, B3] =0 (66)
r(P) + r([B1. B2, B3]) = 6m. 67)
From (54)—(56), we know r([B, B>, B3]) = 3, giving
r(P) = 6m — 3. (68)
Transposing both sides on (66) leads to
[81.82.85]'P" = 0. (69)
From (45), we know P = P’ such that
(81,82, B5]' P = 0. (70)
Note that x € span'{8,, B,, B3}, which results in
[B1. B2 B3] x =0. (71)
Based on (68) and (70), divide P into columns as
P=[p. P2 Pom)- (72)
This leads to null([By, B2, B3]) = span{p;, P2, -- - Pem}-
Thus, from (71), we know that
r(P,x) = 6m — 3. (73)

Considering both (68) and (73), there exists X' such that
x = Px'.

If X' € span®{B, B, B3} such that [8;, B,, 51X = O, it
gives

[P, By, B> B5]'x = [x",0,0,0]". (74)
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From (66) and (72), we know r([P, B, B,, B3]) = 6m, thus,
x' is unique and the reverse transformation is similar. |
Lemma 4: Q =1— (T — (BTB/m)) is positive definite.

According to (47) that ,o(T—(BBT /m)) < 1, we can directly
deduce that £(Q) > 0. Hence, Lemma 4 holds.

B. Linear Convergence Rate Analysis
From our previous work, we have the following theorem.
Theorem [39]: For given y <
[(EminW)/ 4Ly + DEmn(W) +50)] and 7 <
[Lele/(Lr + 1)1, the sequence {{Xx,y;}}k=0 generated by
the DD converges linearly to the optimum [x*, y*], such that

[Bocs . yice] = By Ul < @ = Ol [xe 3] = [y

(75)
where
ytI+ W (0] -7l
H = o ?(yrI+QY) O
—tI (0) %I
and & = min{lyt/(4yT+2) v/ +1p] — 1),

[(yz(1 —n))/(2 —n)]}. If the following conditions are sat-
isfied.
1) The given Q satisfies positive definiteness, stochasticity,
and connectivity.
2) The function ¢; is closed and convex. The function f;(x)
is Ir,—strongly convex and Ls—smooth, which gives

x; — x| < || VA(x;) — VA&

< Lg | X — x; ” VX;, X € H.

Iy

(76)

3) The bijective transformation is satisfied in the disagree-
ment space and the primary feasibility always holds for
the decomposition method.

According to Lemmas 1 and 4, we can know that T satisfies
positive definiteness, stochasticity, and connectivity. Therefore,
the condition 1) holds for the proposed DD method with the
weight matrix T.

For the model (1)—(8), the objective function is the sum-
mation of several separable convex quadratic functions and,
moreover, for each i € V), the function #; = 0. As a result,
f(x) is written as f(x) = Y1, fi(x) = Y (aix? +bix; +¢5),
where a; > 0. This gives the following equations

|fi(x;) — Vi) | = 2a;]x; — x;

Hence, it is easy to find that the I;—strongly convex, dif-
ferentiable and Ly — smoothare satisfied. Moreover, we have
Il = L = 2a;. Furthermore, f(x) has L; — smooth gra-
dient with Ly = max{2a;} and is [;—strongly convex with
lr = max{2a;}. This shows that the condition 1) holds for the
proposed DD method.

Finally, Lemma 2 shows that the bijective transformation
of the weight matrix T is satisfied in the disagreement space;
Lemma 3 gives the fact that the primary feasibility always
holds for the decomposition method. Therefore, the condi-
tion 3) holds for the proposed DD method with the weight
matrix T.

VX x e Hoo (TT)

Resorting to theorem in [39], the proposed DD method
with the weight matrix T has a linear convergence rate to
the optimal solution. In particular, we can derive from the
aforementioned analysis that

Emin(T) = min{e, Emin (W)} (78)
Furthermore, we have
y min{a, &min (W)} , T < max{a;}. (79)

= 16 max{a;} min{c, Enin (W)} + 51

V. SIMULATION RESULTS
A. Data Collections

In this section, an m-IES with four EHs is designed for the
proposed DD (and the energy output limits) method and each
EH will purchase the energy from the external system to serve
the total load demands. It should be noted that the topology
of the communication networks and the energy transformation
matrix of EHs may affect the convergence of the distributed
algorithm. However, the energy transformation matrices are
the prior parameters that are determined by the physical
devices (e.g., energy conversion efficiency) and cannot be arbi-
trarily changed. In this article, according to [7], [41], and [42],
we consider that 1 km>natural gas burns to produce 32 GJ of
energy and 1 MWh equals 3.6 GJ. Taking into account the loss
(Moss & 0.9) in the energy conversion process and 20% elec-
tricity or thermal energy is used for heating, the coefficient of
electricity to heat is ngyg = 20% X 110ss X 32 GJ = 5.76, and the
coefficient of natural gas to heat is npy = 20% X ogs X 3.6 =
0.65. Therefore, the prior matrices A; of the four EHs are
08 0 O
0.65 1 5.76

0 0 038
corresponding energy output limits of each EH are shown

in Table II. In contrast, the communication topology can be
designed according to the practical engineering requirements.
In order to analyze the impact of different communication
topologies on the convergence performance, three different
topologies are depicted in Fig. 2, where the node is the EH
and the line denotes the communication link. Here, it should
be noted that the total energy load demand (including elec-
tricity, heat, and gas) can be given as P; = 100.00 MW,
Hj, = 153.25 Gl/h, and G, = 10.00 km?/h. The cost func-
tion can be expressed as a quadratic function by (9). Herein,
(ai, b, ci, dj, e;, f;) are coefficients of the ith EH. In the practi-
cal engineering, the heat energy cannot be transferred in a long
distance which instead should be self-sufficient in a local area.
Therefore, we consider that the EHs do not purchase the heat
energy from the external area. That means, ¢; = d; = 0
and Hli»rl = 0. The other cost coefficients can be available in
Table II. Besides, ADMM in [32] is employed to compare the
proposed DD-based distributed algorithm. Meanwhile, the cen-
tralized optimal solution of the optimization model is directly
solved by use of the GUROBI commercial optimization solver
as the benchmark.

considered the same as and the and the
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(@) (b) (c

Fig. 2. Topology of the communication network. (a) Topology 1.
(b) Topology 2. (c) Topology 3.

)

TABLE I
CoST COEFFICIENTS OF THE EHS

EHs @ &MWh)?) b MWh) e (k/(km)?)  fi (¥/km?)
1 1 500 2 1500
2 1 450 2 1400
3 1 400 2 1500
4 0.8 350 1 1200
TABLE 11
ENERGY OUTPUT LIMITS OF EHS
Cas Electricity Output Heat Ouput Gas Ouput Lim-
Limits (MW) Limits (GJ/h) its (km3/h)
A [0, 2.00] [0, 12.00] [0, 1.50]
B [0, 19.00] [0, 50.00] [0, 5.00]
C [0, 40.00] [0, 43.00] [0, 1.50]
D [0, 40.00] [0, 50.00] [0, 2.50]

B. Solution Property

The results on the energy transformation by EHs are shown
in Table III, where the input electricity and natural gas energy
resources are complementarily transformed into electricity,
natural gas, and heat energy resources. Take the EH 1 for illus-
tration. Since the heat energy could only be transformed from
other kinds of energy resources (i.e., electricity and natural
gas), the optimal transformation is based on the cost func-
tions of the energy resources. It can be found that a part of
the input electricity (2.3189 MW) is used for direct electric-
ity supply (1.8552 MW) and the rest is used to transform
into heat energy. Similarly, a part of the input natural gas
(1.6704 km3/h) is used for direct gas supply (1.3363 km?3/h)
and the rest is used to transform into heat energy. Hence, the
heat energy of the EH 1 is transformed from 0.4637 MW
electricity and 0.3341 km3/h natural gas simultaneously.

C. Convergence Performance

For the two distributed algorithms, we will at first define the
mismatch energy for different types of energy resources. The
mismatched energy values IT = {P, H, G} for ADMM and the
proposed DD methods at the kth iteration are written as

m
A
enpyy = [Tz — Y [IpeeAnyi (80a)
i=1
m
eppy = (ML — Y TEPP). (80b)
i=1
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TABLE III
ENERGY TRANSFORMATION BY EHS

EHs Input Energy Output Energy
P" (MW) 2.3189 P (MW) 1.8552
1 H"(GIh) 00000  H™(GI/h) 1112887
G" (km’h) 16704 G (km’/h) 1.3363
P"(MW) 226811 P (MW) 18.1449
2 H." (Gl/h) 0.0000 H*™ (GI/h) 50.0000
GI.in (km3/h) 6.1211 G (km¥/h) 4.8969
P" (MW)  50.0000 P (MW) 40.0000
3 H" (GJ/h) 0.0000 H™ (GI/h) 42,1213
G" (km’h) 16704 G (km’h) 1.3363
P"(MW)  50.0000 P (MW) 40.0000
4 H."™ (GJ/h) 0.0000 H " (GI/h) 50.0000
G (km¥h) 30382  G°(km¥h)  2.4306
10 10°
1 107!
5 5107
10! E
=] K03
10° 107
10 107
0 20 40 60 80 0 10 20 30 4050 60 70 80 90
Iterations Iterations
(a) (b)
10° 10°
107! 107!
§10'2 §102
S
& 3 Hlo.z
10 104
107 10
0 25 50 75 100 125 0 20 40 60 80 100 120 140
Iterations Iterations
©) (d)

Fig. 3. Iteration process of the two algorithms. (a) ADMM algorithm. (b) DD
algorithm by topology 1. (c) DD algorithm by topology 2. (d) DD algorithm
by topology 3.

The convergence performance under the three topologies
of the communication network is compared in Fig. 3, where
the maximum mismatched value [eEI’)kMM in (80a)] is chosen
as the error of ADMM while the relative deviation to the
global optimal value is chosen as the error of DD method
with a feasible initial solution because egbkshould always
be zero. It can be observed that topology 1 needs 81 itera-
tions, topology 2 needs 121 iterations, and topology 3 needs
135 iterations. This suggests that less number of commu-
nication links will lead to more iterations for convergence.
The reason is straightforward that more information can be
exchanged at each iteration if there are more communication
links and thus the convergence is performed better. Meanwhile,
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Fig. 4. Tteration process of the proposed DD method. (a) Electricity of EH outputs. (b) Heat of EH outputs. (c) Natural gas of EH outputs.
457 55 5.5¢
40 — ZO 7 B—8—8—8—8—F—H8 50 —e—e—-e—e—0 o .
35 —- EDI1 5 ,)/ 4.5} Q EDI
ED2 40 4.0 l ED2
230 - B 3 || ~- EDI 3.5»; + ED3
S25 -= ED4 =40 ED2  =3.0} - ED4
5;20 PE— 025 *ED3  =2.5 a5 =5 = £
. NN — e ED4 =
5H %20 = 520
‘:‘ 15 1.5 F———o—
10 ( 10— s |
571 5 0.5
| o s < ¥ 0 . 0
0 20 0 60 80 0 20 40 60 80 0 20 40 60 80
Iterations Iterations Iterations
(a) (b) (c)
Fig. 5. TIteration process of the ADMM. (a) Electricity of EH outputs. (b) Heat of EH outputs. (c) Natural gas of EH outputs.
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Fig. 6. Mismatch energy for different types of energy resource. Mismatch energy of (a) electricity, (b) heat, and (c) natural gas.

the ADMM algorithm needs 80 iterations, indicating that the
proposed method needs more iterations for convergence than
the ADMM algorithm. Note that, in the ADMM algorithm,
any update of a variable requires the information of all other
variables, so the topology of communication network must be
the strongly connected graph (shaped like Topology 1).

Furthermore, the second communication topology is cho-
sen to show the results of the proposed DD method and
the ADMM, which are depicted in Figs. 4 and 5. It can be
observed that the proposed method may have a larger oscilla-
tion during the iteration process than the ADMM algorithm.
Again, from the comparison between Figs. 4 and 5, it observes
that the proposed DD distributed algorithm actually needs
more iterations than the traditional ADMM algorithm.

The formulation of the ADMM algorithm can be found
in the Appendix. It generally cannot guarantee the feasi-
bility at each iteration while the proposed DD method can
strictly guarantee the feasibility during the iteration process.
Fig. 6 depicts that before the convergence, the intermediate
iteration of the ADMM is always infeasible. Accordingly, the
algorithm converges once the feasibility is achieved. In con-
trast, the intermediate iteration of the proposed DD method is
always feasible if and only if the initial solution is feasible.
Moreover, the objective costs of the ADMM algorithm and
the proposed DD method are 70890.61 ¥ and 70900.07 ¥,
respectively. The optimal cost of the benchmark method (i.e.,
the centralized model) is 70893.76 ¥. Since the DD method
is feasible at each step, it searches the optimal solution from
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the inner part of the feasible region (also known as, inner
approximation), the final cost is slightly larger than that of the
benchmark model. In contrast, the ADMM method is infeasi-
ble at each step, and it searches the optimal solution from the
outer part of the feasible region (also known as, outer approx-
imation), so the final cost is slightly smaller than that of the
benchmark model. In general, the absolute errors of the two
methods are both relatively small, i.e., smaller than 0.01%. It
suggests that both the two methods can achieve the optimal
value once the algorithms converge.

Finally, it was pointed out in [32] that the ADMM method
cannot necessarily guarantee the convergence for the multi-
block convex optimization. Fortunately, the proposed model
in fact satisfies the sufficient condition in [32], so that the
ADMM algorithm can converge. But there is still a ques-
tion whether the ADMM algorithm can converge with addi-
tional local constraints while violating the sufficient condition
in [32]. In contrast, the proposed DD is rigorously proven to be
linearly convergent and strictly guarantee the feasibility at each
step. This is the good convergence property of the proposed
DD algorithm, but the oscillation is the price.

VI. CONCLUSION

This article proposed a DD-based distributed algorithm for
the optimal control of m-IES. Some theorems and lemmas are
given to prove that the proposed method can linearly converge
to the optimal solution. The numerical results suggest that
the proposed model can achieve the energy complementary
by optimally dispatching multiple energy resources. For the
proposed algorithm, less number of communication links will
lead to more iterations for convergence. In addition, the com-
parison of the proposed method with the traditional ADMM,
it shows that although the proposed method requires more
iterations for convergence and has oscillation, it can strictly
guarantee the feasibility at each iteration while the ADMM
cannot guarantee the feasibility unless the optimal solution is
achieved. Most importantly, there is still a question whether
the ADMM algorithm can still converge with additional local
constraints. In contrast, the proposed DD is rigorously proven
to be linearly convergent for under mild conditions.

APPENDIX

The ADMM algorithm for the proposed optimization
model (14), (15) can be formulated as

m
LIOADMM (Xl , X2, ...y Xy, y) = Zf;o(xl) + yTBTX
i=1
PADMM
_l’_
2

m m
=Y RE)+y" Y Blx;
i=1 i=1

m
PADMM T
+ LA S gy,
i=1 2

|B7x[,

k+1 _ :
x| =argmin Ly,
X]GHl
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X (xl, X2, ..., x',,%, yk)
k+1 .
X, = argmin Ly, vy
XzEH]

k+1 _k k  k
X (xl ,xz,...,xm,y>

k+1 _ -
X, = argmin Ly, v
Xm€Hm

k+1 Jk+1 k
><(1i(1 ) Xy ,...,xm,y)

m
1 T k+1
Y =y + papmm ) B/ X (81)
i=1
where variables are updated to minimize the Lagrangian func-
tions Ly, pyv (X1, X2, ..., Xy, y) and the algorithm is stopped
when the relaxed constraints B”x = 0 are satisfied.
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