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Abstract—Baffles loaded by split-ring resonator (SRR) are 

proposed to reduce the mutual coupling for ± 45° dual-polarized 

multiple-input-multiple-output (MIMO) antenna. Each baffle 

consists of two rectangular SRR printed on one side of a 1-mm 

FR4 substrate. The final decoupling structure contains four 

baffles forming a barrier wall that reduces the coupling over the 

5G band of 3.4-3.8 GHz. Dual-polarized cross-dipole array with 

SRR loading baffles is simulated and measured to demonstrate 

their effectiveness in the coupling reduction. The results show that 

the mutual coupling can be effectively reduced below -25 dB over 

the entire bandwidth while maintaining a compact array. 

 
Index Terms—Decoupling, dual-polarized, MIMO antenna. 

 

I. INTRODUCTION 

IMO technology continues to be one of the most critical 

technologies in 5G communications [1]. It was 

developed into massive MIMO technology employing dozens 

of antennas in a base station to enhance the data throughput. As 

the number of antenna units increases, the mutual coupling 

effect became more prominent. The strong mutual coupling can 

generate some severe issues, such as increased voltage standing 

wave ratio (VSWR) [2] and out of band (OOB) emission in the 

presence of power amplifiers [3]. Usually, the mutual coupling 

is required to be smaller than -25 dB in order to have negligible 

effects on the massive MIMO array performance [2], [4].  

Many efforts were made to reduce mutual coupling in the 

literature. The decoupling methods can be roughly classified 

into several types according to their working principles. The 

first type introduced another coupling path to counteract the 

original coupling path. For example, the decoupling ground 

(DG) method [4] was proposed to cancel the free-space 

coupling by introducing an out-of-phase surface coupling. 

Unfortunately, the method was mainly suitable for microstrip 

arrays instead of realistic base station (BS) arrays [5], [6], [7]. 
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The array decoupling surface (ADS) [2] was proposed for 

dual-polarized BS array. However, it inevitably increased the 

profile of the array. The second type changed the coupling 

mode to orthogonal polarization [8], [9] or transformed the 

propagation coupling waves into evanescent waves by using a 

single negative permeability metasurface [10], [11]. However, 

these methods were not suitable for dual-polarized BS arrays. 

Other decoupling techniques included defected ground plane 

structures [12], [13], electromagnetic band-gap (EBG) [14], 

[15], metasurface [16], topology optimization [17], and 

asymmetrical coplanar strip walls [18], which served as 

band-stop filters to block the coupling waves. These structures 

were mainly designed for two-element array and were not 

suitable for BS arrays. 

In this article, decoupling baffles loaded by split-ring 

resonators (SRR) are proposed to achieve high isolation for a 

dual-polarized BS array. It works as a bandstop filter that can 

efficiently suppress the free space coupling for both the 

co-polarizations and cross-polarization between the 

dual-polarized array elements. Here, a 1×4 dual-polarized 

cross-dipole array with SRR-loaded decoupling baffles is 

simulated and measured as an example to verify the concept. 

The measured results show that all the mutual coupling is 

reduced below -25 dB over the 5G band of 3.4-3.8 GHz while 

maintaining a compact array. Note that the decoupling baffles 

can also be applied to planar BS arrays. Nevertheless, due to 

page limitation, the corresponding results are omitted here. 

 
TABLE I PERFORMANCES COMPARISON 

Ref. array 

config 

center-to-

center 

distance 

mutual 

coup. 

(dB) 

Bandwidth 

(GHz) 

profile 

height 

[2] 2×2 0.53λ0 ≤-25 3.3-3.8 (-15dB) 0.3λ0 

[4] 2×2 0.62λ0 ≤-25 4.8-5.2 (-10dB) 0.22λ0 

 4×4 0.62λ0 ≤ -24.5 4.8-5.2 (-10dB) 0.25λ0 

[19] 2×2 0.5λ0 ≤-20 2.4-2.5 (-10dB) 0.045λ0 

Present 1×4 0.5λ0 ≤ -25 3.4-3.8 (-15dB) 0.18λ0 

 

A comparison between this work and recently reported 

decoupling works for dual-polarized MIMO antenna are 

summarized in Table I. Arrays in [2] and [4] achieve significant 

decoupling performance with the worst coupling below -25 dB. 

However, in [2], the antenna profile increased, and in [4], 

bandwidth was narrow. The transmission-line based technique 

[19] also has a very narrow bandwidth. Recently, the 
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decoupling metasurface superstrate [10], [11] has been 

successfully applied to large arrays [20]. However, it is 

confined to narrowband single-polarized arrays. Compared to 

the literature, the proposed decoupling structure has the 

following merits: 1) it can be applied to broadband 

dual-polarized arrays, as opposed to [10], [11], [20]; 2) it has 

nearly half of the profile as compared to [2] with similar 

decoupling performances; it achieves good matching (S11 < 

-15 dB) and decoupilng (measured mutual coupling below -25 

dB) performances in the 5G band of 3.4-3.8 GHz.    

II. DECOUPLING BAFFLE LOADED BY SRR 

The configuration of the proposed decoupling baffle is 

shown in Fig. 1. Two rectangular (metal) SRRs are etched on a 

1-mm thick FR4 substrate (with a relative permittivity of 4.4 

and a loss tangent of 0.02). A single SRR has a band-gap whose 

center frequency can be determined from the equivalent 

inductance L and capacitance C of the structure as [21] 

    1/ 2cf LCπ=                                  (1) 

The inductance L is related to the width and height of the SRR, 

and the capacitance C is strictly relevant to the value of t and d2. 

A ±45° dual-polarized dipole antenna with compact dimensions 

is selected as an array element. Details of the unit element 

design (cf. Fig. 2 (a)) can be found in [22]. Fig. 2 (c) shows the 

configuration of the antenna unit with the proposed 

SRR-loaded baffles. 

 
Fig. 1. Geometry of the proposed decoupling baffle. 

    
              (a)                                     (b)                                     (c)    

Fig. 2. Configurations of (a) original antenna unit, (b) modified antenna unit 

and (c) antenna with four SRR-loaded baffles. 
 

Fig. 3 illustrates the transverse magnetic field between the 

baffle and the dielectric block. The dielectric block beneath the 

dipole arms can be approximately regarded as a perfect 

magnetic conductor (PMC) at the boundary of its four sidewalls, 

thus magnetic fields at the boundary are orthogonal to the 

sidewalls (and the SRR baffles) and, therefore, can effectively 

excite the SRR [21].  Fig. 4 shows the transmission coefficients 

of the single SRR-loaded baffle at different polarization angles 

from 0° to 60°. It can be clearly seen that, except at the 0° 

polarization angle, the transmission coefficients are below -15 

dB in the 5G band of 3.4-3.8 GHz. This explains why 

SRR-loaded baffle can significantly suppress the coupling 

wave. As the decoupling baffles also form an open cavity, it 

tends to increase the operating frequency of the antenna unit. 

To enhance the bandwidth and the impedance matching, eight 

vertical metal cylinders are added (cf. Fig. 2 (b)), which act as 

inductive loading to counteract the capacitive reactance of the 

antenna unit. The dimensions of the proposed decoupling baffle 

are tuned by considering both mutual coupling reduction and 

impedance matching.   

 

 
Fig. 3. Magnetic field between the baffle and the dielectric block at 3.6 GHz. 

    
Fig. 4. Transmission coefficients of the proposed SRR-loaded baffle. 

   
Fig. 5. (a) Configuration of a typical BS array; (b) port numbers of a 1×4 array. 
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(a)                                                            (b) 

Fig. 6. Simulated results of (a) S36 and (b) S33 when wr varies. 

 

In a typical BS array, the vertical element spacing is usually 

more significant than the horizontal element spacing because 

the elevation scanning range is much smaller than the 

horizontal scanning range [23], [24]. Hence, the worst mutual 

coupling is mainly attributed to the coupling between 

neighboring horizontal elements. Fig. 5 (a) shows a typical 

configuration of the BS array. Since the vertical spacing is 

sometimes even larger than 0.7λ0 (where λ0 is the free-space 

wavelength at the center frequency), the coupling between 

elements in different rows is much weaker than that between 

elements in the same row. Therefore, a horizontal 1×4 array 

with 0.5λ0 inter-element spacing is a good example to 

demonstrate the proposed decoupling technique for BS arrays. 
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The port numbering of the 1×4 array is given in Fig. 5 (b).  

    Fig. 6 shows the simulated S-parameters as the outer ring 

width, wr, varies. For brevity, only S36 and S33 are shown. 

From the parameter study, the center of the stopband should be 

out of the operating band, and the -15dB matching level should 

not be degraded. Considering the decoupling performance and 

the bandwidth, the optimized dimensions of the baffle are given 

as ws = 35 mm, hs = 10 mm, wr = 30 mm, hr = 8 mm, d2 = 4 

mm, d1 = 1 mm, t = 1 mm (cf. Fig. 1). Note that the baffle height 

is less than the antenna height. Thus, the baffles do not affect 

the antenna profile, which is highly desirable for BS arrays. 

III. MIMO ARRAY WITH LOADED BAFFLES 

A. Array Configuration  

The configuration of a 1×4 array with 0.5 λ0 inter-element 

spacing is shown in Fig. 7. It is noted that the ground plane is 

upturned at its edges, which helps slightly in improving the 

mutual coupling of the outer antenna elements (i.e., the first and 

last array elements). Also, note that the upturned ground edges 

can be made for each row in a sizeable planar BS array. The 

1×4 array with loaded baffles is fabricated. A photo of the 

prototype is shown in Fig. 7 (c).  
 

 
(a) 

 
(b)                                                        (c) 

Fig. 7. Geometry of the 1× 4 array. (a) Top view, (b) perspective view, and (c) 

photo of the prototype. 

 

 
(a) 

 
(b) 

Fig. 8. Surface current distributions of (a) original array and (b) decoupling 

array when port 3 is excited. 

B. Simulated and Experimental Results 

To illustrate the decoupling principle, the surface current 

distributions of the radiating patches of the original array and 

the decoupling array when Port 3 is excited are shown in Fig. 8 

(a) and (b), respectively.  It can be clearly seen that the induced 

surface currents of the decoupling array are effectively 

suppressed thanks to the SRR-loaded baffles. For better 

illustration and due to the symmetry of the array, only parts of 

the S-parameters are presented. Also, S-parameters less than 

-30 dB are omitted. Fig. 9 (a) shows that the reflection 

coefficient maintains -15 dB from 3.4 GHz to 3.8 GHz. The 

polarization isolation of the antenna unit is over 25 dB, as 

shown in Fig. 9 (b).  
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(a)                                                  (b) 

Fig. 9. Simulated and measured S-parameters of the first and second elements 

of the proposed array. (a) reflection coefficients of first and second elements 

and (b) isolation between the ports of each element. 
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Fig. 10. Simulated and measured S-parameters between the co-polarized ports 

of the array. (a) S13, and (b) S35. 
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Fig. 11. Simulated and measured S-parameters of the cross-polarization 

between the array elements. (a) ports of first and second elements, S14, (b) 

second and third elements S36, (c) ports of first and third elements, and (d) 

ports of second and third elements S38. 

 

The coupling between co-polarized elements is depicted in 

Fig. 10 (a) and (b). As can be seen, S13 and S35 gradually 

decrease as the frequency increases. Thus, reducing the 
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low-frequency coupling is the main task. Measured results 

show that all the co-polarization coupling is below -25 dB in the 

operating band. Compared with co-polarization coupling, the 

coupling between cross-polarized elements (i.e., cross- 

polarization coupling) in the proposed array is somewhat 

stronger. These kinds of couplings (e.g., S14 and S36) are more 

difficult to reduce [2] in that they are strongly determined by 

the capacitive couplings between the ends of cross-polarized 

dipole arms (see Fig. 6 (b)). Nevertheless, it is shown that the 

proposed loaded baffles can effectively reduce such kind of 

coupling. Fig. 11 (a) and (b) demonstrate the cross-polarization 

decoupling performance between the adjacent elements of the 

first and second element given by S14 and S36 are reduced by 5 

dB and the cross-polarization coupling between first and third 

elements indicated by S16 and S38 are reduced below -27 dB, 

as shown in Fig. 11 (c) and (d). 

Following the assumptions in [2], active VSWR is used to 

demonstrate the decoupling effect. Assuming the 1×4 array 

(with and without the decoupling baffles) is used to serve two 

users simultaneously in a Rayleigh fading environment using 

zero-forcing (ZF) precoder, Fig. 12 depicts the worst active 

VSWRs of the eight antenna ports for 50 random snapshots. As 

can be seen, the active VSWR is significantly suppressed using 

the decoupling baffles. 

 

 
Fig. 12. Comparison of the active VSWR of the 1 × 4 array with (wi) and 

without (w/o) decoupling baffles. 

 

The influence of the loaded baffles on the radiation 

performance of the antenna is also investigated. Due to the page 

limit, only the 3.6-GHz simulated and measured radiation 

patterns in the horizontal (H) and vertical (V) planes for 

elements 1, 2, 3, and 4 are plotted in Fig. 13. As mentioned in 

the introduction, the horizontal array is for MIMO application. 

Thus, only the radiation patterns of individual elements are 

presented here. The simulated gains of the antenna with and 

without decoupling structures are almost the same. The 

measured gains of elements 1, 2, 3 and 4 are 5.5 ± 0.5 dBi, 6.1 ± 

0.5 dBi, 5.6 ± 0.6 dBi and 5.6 ± 0.6 dBi, respectively, in the 

whole band. The measured HPBWs of elements 1, 2, 3, and 4 in 

the H-plane are 75 ± 5°, 77 ± 5°, 91 ± 10°, and 85 ± 10°, 

respectively, in the operating band, while the measured 

HPBWs of all the elements in the V-plane are 75± 5°. Thus, the 

gain and HPBW do not have large fluctuation as the frequency 

varies. The small discrepancies between the simulated and 

measured results are mainly due to manufacturing tolerance, 

imperfect soldering, and measurement errors. 
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Fig. 13. Simulated and measured radiation patterns at 3.6 GHz: (a) V-plane of 

Port 1, (b) H-plane of Port 1, (c) V-plane of Port 2, (d) H-plane of Port 2, (e) 

V-plane of Port 3, (f) H-plane of Port 3, (g) V-plane of Port 4, and (h) H-plane 

of Port 4. 

IV. CONCLUSIONS 

In this letter, decoupling baffles loaded by SRR have been 

designed and used with a dually-polarized array of 1×4 

cross-dipoles. Simulated and measured results have been used 

to verify the proposed decoupling method. Simulation results 

have an excellent agreement with the measurement results. The 

mutual coupling of the array has been reduced to be below -25 

dB in the 5G band of 3.4-3.8 GHz while maintaining proper 

impedance matching and radiation performance. Compared 

with previous work, the proposed decoupling baffle is a simple 

structure which can effectively reduce both co- and 

cross-polarization coupling in 5G massive MIMO array 

without increasing the antenna profile. 
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