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Abstract-- Non-intrusive load monitoring (NILM) enables to 

understand the appliance-level behavior of the consumers by 

using only smart meter data, and it mitigates the requirements 
such as high-cost sensors, maintenance/update and provides a 

cost-effective solution. This paper presents an efficient NILM-

based energy management system (EMS) for residential 
microgrids. Firstly, smart meter data are analyzed with a multi-

task deep neural network-based approach and the appliance-

level information of the consumers is extracted. Both 

consumption and operating status of the appliances are obtained. 
Afterward, the energy consumption behaviors of the end-users 

are analyzed using these data. Accordingly, average power 

consumption, operation cycles, preferred usage periods, and daily 

usage frequency of the appliances were obtained with an average 

accuracy of more than 90%. The obtained results were integrated 

into an EMS to create an efficient and user-centered microgrid 
operation. The developed model not only provided the optimum 

dispatch of distributed generation plants in the microgrid but 

also scheduled the controllable loads taking into account 

customers’ satisfaction. It was demonstrated with the help of 
simulation that the proposed NILM-based EMS model improves 

the operation cost/customer satisfaction ratio between 45% and 

65% compared to a traditional EMS. 

 
Index Terms—Non-intrusive load monitoring, microgrid, 

energy management, recurrent neural network, deep learning 

I.  INTRODUCTION 

n the energy sector, a transition from traditional fossil-based 

generation to clean and energy-efficient generation has 

already begun. Undoubtedly, the fundamental basis of this 

transition is the digitalization of the energy sector, which 

provides many benefits for both utility and consumers. As a 

result of digitalization, more active players will be 

participating in the electricity market and a large amount of 

data will soon be available in the energy sector [1]. One of the 
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data generators is smart meter, whose deployments represent 

the first step into digitalization solutions for many utilities. 

Smart meters may have meaningful information about the 

consumption behavior of end-users. These data could be a 

treasure for operation and management of the grid only if they 

are processed and evaluated carefully using robust techniques. 

Non-Intrusive Load Monitoring (NILM) is the process of 

disaggregating the electricity consumption data of end-users 

measured by a smart meter into its appliance-level 

components using various signal processing or pattern 

recognition methods. NILM makes it possible to monitor each 

individual load and extract their energy consumption without 

using any sensor or intervention in the home, only using smart 

meter data. It has been shown in [2] that providing appliance-

level energy consumption feedback to consumers can save up 

to 20% of energy per dwelling. NILM also contributes to 

energy suppliers have a deeper insight into their customers' 

consumption behavior and provides them the opportunity to 

improve customer satisfaction. As a result, both suppliers and 

end-users can benefit from the meaningful information 

provided by NILM. Load monitoring can be also realized 

using a different approach called Intrusive Load Monitoring 

(ILM), which monitors each individual load with the help of a 

separate sensor. This is a costly concept due to the necessity of 

using many sensors, collecting the data read from sensors in a 

data center, maintaining and updating all these components. 

Besides, users can be conservative in sharing their data. NILM 

is a cost-effective technique proposed as an alternative to ILM 

since it uses only one sensor, requires fewer updates, and is 

less intrusive in data privacy. 

Although the first study on NILM was conducted in 1992 

[3], research has progressed slowly as access to data is 

difficult. However, with the widespread use of smart meters, 

acceleration of smart home and energy efficiency studies, 

NILM is gaining more attention. Although the first study 

yielded successful results for two-state appliances, which have 

simple on/off states and are called Type-I (kettle, toaster, etc.), 

it was insufficient for multi-state appliances, which have 

multiple states and are called Type-II (dishwasher, washing 

machine, etc.). Hidden Markov Model (HMM) is a frequently 

preferred method to improve the results since it enables the 

modeling of appliance states individually. In [4], 4 different 

HMM models, which are Factorial HMM (FHMM), 

Conditional FHMM, Factorial Hidden semi-Markov Model, 
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and Conditional Factorial Hidden semi-Markov Model, are 

trained with unsupervised approach. In [5], changes between 

steady-states are used as the observed sequence, without using 

a priori knowledge of appliances. These models work well for 

simple devices but less well for complex appliances. A 

hierarchical HMM is proposed in [6] using a dynamic 

bayesian network to model the appliances and it outperforms 

conventional HMM. Although some robust HMM variants can 

yield successful results, their biggest disadvantage is their 

computational complexity, which increases exponentially with 

the number of appliances [7]. Also, each appliance needs to be 

modeled in detail for a typical HMM and this is a time-

consuming process, which limits its practical use.  

In order to overcome these bottlenecks, Deep Neural 

Network (DNN) has been started to be implemented in the 

NILM field due to its outstanding achievements in image 

classification [8]. Since DNN can automatically extract 

features, it can learn from raw data and minimize the 

complexity of the problem [9]. In [10], the authors present 3 

different DNN models for energy estimation. The study 

reports that all 3 models outperform HMM-based studies for 

each analyzed appliance. Afterward, studies focused on 

improving the results using different kinds of DNN. A 

sequence-to-point approach based on Convolutional Neural 

Network (CNN) is presented in [11]. While this model takes a 

sequence as the input, it estimates one sample at the output. 

Therefore, its computational burden is high. In [12], the 

authors proposed a sequence-to-sequence CNN model to 

reduce the computational burden. It has been reported that the 

proposed model yield more reliable results even for low power 

devices. In [13], the authors proposed a two-level neural 

network based on CNN in order to improve accuracy. The first 

network filters signatures of the target appliance. The output 

of the first network is augmented with synthetic data and 

tested with the second network. A CNN model inspired by 

Wavenet [14], which is developed for raw audio generation, is 

adopted for energy disaggregation in [15]. Since Wavenet is 

designed for long sequences, it can be a suitable model for 

devices with long operating times. In [16], a sub-network for 

load identification is combined with the energy estimation 

network. This sub-network improved NILM performance by 

reducing the estimation error. Apart from trying to improve 

disaggregation performance using only different methods, 

results can be further improved by post-processing, which tries 

to refine outputs of DNN. In [17] an optimization-based and in 

[18] CNN-based post-processing approaches are proposed. It 

has been reported that this process significantly increases 

NILM performance. When the aforementioned studies are 

examined, it is seen that they heavily focus on estimating only 

the energy consumption of appliances. Besides, there is not 

sufficient analysis on which area and for what purpose the 

obtained results can be used. 

In this paper, a NILM-based EMS integrated into a 

residential microgrid is proposed. Home EMS is a well-known 

topic and has already been implemented through smart home 

architecture, which is generally equipped with smart 

appliances, smart plugs, a home gateway, a communication 

infrastructure, sensors to follow temperature and weather 

information, and a control center. However, the cost of these 

types of equipment limits the applicability of this system. 

Besides, the use of many components increases system 

complexity and requires maintenance/update at certain 

intervals. In order to decrease complexity, maintenance, and 

update requirements, NILM can be integrated into EMS for 

residential consumers. The main advantage to combine NILM 

with EMS is to take action following DR signals, real-time 

electricity prices and take advantage of incentives. It is almost 

impossible for residential consumers to manually control their 

home appliances and respond to DR signals by monitoring 

variable electricity prices. Consumers who are willing to 

change their energy consumption behavior are either elderly or 

energy-efficient people [2]. Other consumers are either not 

available or do not know how to appropriately react to DR 

signals. Therefore, the success of DR can only be achieved 

with full automation. For the design and implementation of an 

automated DR strategy for different households, the lifestyles 

of each consumer should be taken into accounts since the 

lifestyles of an artist and a student are completely different. 

Besides, energy management should be provided either with 

minimum user intervention or without. Using NILM, the life 

habits and consumption behaviors of each customer can be 

monitored and learned precisely and cost-effectively. 

Therefore, by making "consumer-specific" optimization, the 

energy cost can be reduced more as well as consumer comfort 

can be maximized. The automated and consumer-specific 

EMS makes it easier for end-users to participate in DR and get 

more incentives based on their consumption behaviors with 

less user intervention. However, there are only a few studies in 

the literature addressing this issue. The software and hardware 

infrastructure required to integrate the NILM technique into 

the Demand Response (DR) is summarized in [19]. If NILM is 

desired to be used for the DR or EMS, the appliances must be 

controlled using remotely controllable switches, which can 

lead to thinking that these switches can also record the status 

and energy consumption of appliances. Advanced smart 

switches can achieve this, but their costs are relatively high. 

Instead, cost-effective simple switches that provide only 

control (on/off) can be used. In [20], the authors proposed a 

NILM-based home EMS using the k-nearest neighbor method 

and genetic algorithm. The proposed NILM requires hand-

engineering such as feature extraction and data reduction, 

which is a time-consuming process. However, it has been 

proven that DNN can achieve more successful results than 

machine learning approaches as it can automatically extract 

hierarchical features [8]. In this paper, a DNN-based approach 

is proposed to design an effective EMS. The main 

contributions of this paper are: 

• A multi-task DNN-based NILM model capable of 

analyzing both energy estimation and load status 

detection is proposed. 

• A detailed framework of how to use the NILM results 

within EMS for residential customers is proposed. 

• Developed NILM-based EMS is integrated into a 

residential microgrid and its effectiveness has been 
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tested. 

II.  DEEP NEURAL NETWORK-BASED NILM ANALYSIS 

NILM is the process of analyzing aggregated data, which is 

the energy consumed by the whole dwelling, by various 

optimization, signal processing or learning methods, and 

obtaining appliance-level information. A vector shown the 

aggregated power consumption read from the smart meter for 

T samples can be expressed { }(1) (2) ( ), ,...,agg agg agg agg TP p p p= . 

The instantaneous power consumption vector of appliance n 

can be expressed { }(1) (2) ( ), ,...,n n n n TP p p p= . For each 

sample, aggregated power consumption is assumed to be equal 

to the sum of the power consumed by all active devices and 

measurement error as follows: 

 

( ) ( ) ( ) ( )
agg n n

n N

t t t tp s p e
∈

= ⋅ +       (1) 

where N is the number of appliances and e is the measurement 

error. ns  is the status (on-off) of appliance n and it is 

determined according to a threshold. If the energy 

consumption is bigger than the threshold, it’s assumed that the 

appliance is on. Following a successful NILM analysis, 

actively operating appliances can be identified, their status 

changes (on-off), and energy consumption values can be 

estimated. Using these data, many different benefits such as 

DR, short-term load forecasting, safety, and Home EMS can 

be achieved. An illustration of NILM is shown in Fig. 1.  

DNN has begun to gain great interest in the academic 

community following outstanding achievements in areas such 

as image classification and speech recognition [8, 21]. Due to 

its robust learning capacity, it can provide great convenience 

in the field of NILM. Because it allows computers to 

automatically learn from smart meter data and understand 

appliance-specific energy consumption in terms of a hierarchy 

of features. Considering that the number and variety of 

appliances used in dwellings are very high, automatic feature 

extraction can both eliminate the time-consuming hand-

designed feature extraction process and obtain high-level 

features that will increase NILM performance. 

There are different types of neural network models 

designed for different purposes. Since NILM is basically 

based on a time series analysis, the most suitable model is the 

Recurrent Neural Network (RNN) model, which has the 

ability to analyze time-series thanks to its memory-based 

architecture. Considering time-series, current and future data 

are directly linked to past data. The reason why RNN 

architecture is called recurrent is that it analyzes each item 

based on previous outputs. This feature of RNN is very 

important for NILM because the energy consumption of the 

appliances is dynamic and can change constantly. These 

changes are the signature of the appliance. By following these 

changes, RNN layers can understand which signal belongs to 

which appliance. The biggest problem of RNN is that as the 

sequence data gets longer, the learning capacity is weakened 

[22]. More robust RNN methods such as Long-Short Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) have been 

proposed to mitigate this problem. 

 
Fig. 1. An illustration of NILM 

Comparing LSTM, the input and forget gates are combined 

to form a single gate called “update gate” in GRU. In addition 

to that, instead of a cell state, only the hidden state is used. As 

a result of reducing gates and states, the number of system 

parameters decreases and the model can give faster results 

[23]. The calculation of gate outputs and parameters is shown 

below: 

1( [ , ])t z ttz W h xσ −= ⋅         (2) 

1( [ , ])t r ttr W h xσ −= ⋅         (3) 

1tanh( [ , ])t t tth W r h x−= ⋅ ⋅ɶ        (4) 

 1(1 )t t t tth z h z h−−= ⋅ + ⋅ ɶ         (5) 

where tx  is the input, tz  is the update gate determining how 

much of the past data will be remembered, tr  is the reset gate 

determining the data to be forgotten, thɶ  is the candidate 

memory cell storing the candidate past data and th  is the main 

memory cell storing the past data to be passed along to the 

future. W  and σ  are weights and sigmoid activation 

function, respectively. In order to improve GRU performance, 

it can be used with bidirectional layers, which make it possible 

to analyze the time-series forwards and backward. Before the 

GRU layer, a 1D convolutional layer can be used to extract the 

temporal information from raw data, which can increase the 

model performance. 

In this paper, a multi-task GRU (M-GRU) model is 

proposed. Unlike the studies in the literature which are 

generally focused on only energy disaggregation or load status 

detection, this network performs both tasks at the same time. 

The general architecture of the proposed model is shown in 

Fig. 2. 

Machine learning algorithms are generally optimized for 

one task by evaluating a single loss function. However, if 

there are multiple tasks related to each other, we can train the 

model by optimizing multiple loss functions, which is called 
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Multi-task learning (MTL) [24]. These tasks can be different 

tasks such as regression, classification, or reinforcement 

learning tasks. When there are multiple related tasks, learning 

together these tasks can lead to performance improvement 

compared to single-task learning [25]. MTL aims to learn 

common features between different tasks by sharing 

knowledge. Energy disaggregation and load status detection 

are two strongly related tasks. Therefore, sharing the training 

parameters between them can help increase the NILM 

performance.  

 

 

Fig. 2. The multi-task GRU model 

Both network architectures are trained with the same inputs 

using supervised learning. Since we have long-term (over the 

months) data for training, the inputs should be split using the 

sliding windows. The splitting process is made as non-

overlapping windows since using overlapping windows does 

not affect the results much [10]. Assuming that the selected 

window size is w, input data is split as ( : 1)aggP t t w+ − . After 

the input layer, the network is trained using the shared layers 

until the output layers, which technique is called hard 

parameter sharing. It’s the most commonly used technique for 

multi-task learning to reduce overfitting risk with fewer 

parameters [24]. Hyperparameters used in shared layers are 

taken from [10] due to the promising results obtained. After 

shared layers, there are two outputs for two different tasks. 

The output windows corresponding to the input window 

should be ( : 1)nP t t w+ −  for energy disaggregation, and 

( : 1)ns t t w+ −  for status detection output, which are obtained 

with sub-metering of target appliances. The purpose of the 

first output is to estimate the energy consumption of the 

appliances. In this way, it is possible to determine the load 

patterns and average energy consumption of them. However, 

in order to design an effective EMS, only energy consumption 

profile is not enough. Operational information of appliances 

such as operation time interval during the day, operation 

duration, and frequency of use should also be known. 

Although energy disaggregation may give information about 

them, it might be insufficient due to the highly noisy 

estimation results, which leads to an incorrect analysis of 

consumers' behavior. To achieve more accurate results, a 

second output is used for load status detection. Its main 

purpose is to detect periods when the target appliance is on. 

As status detection is an easier task than energy 

disaggregation, this network tends to yield more successful 

results, which helps to obtain average operational information 

of the appliances. Besides, this network has another 

noteworthy benefit. The energy disaggregation output tends to 

make noisy estimations for the periods during which the 

appliance is not active. However, the status detection output 

gives "0" when the device is off. Therefore, as a result of the 

product of these two outputs, noisy predictions can be 

eliminated. In this way, energy disaggregation results can be 

improved. The linear and sigmoid activation functions are 

used at the output of energy disaggregation and status 

detection networks, respectively. The mean squared error loss 

is selected for energy disaggregation, while binary cross-

entropy loss is selected at the output of status detection. The 

loss values are calculated as follows: 

 

( )21
( ) ( )ˆn nED

t T

t t
T

L p p
∈

= −        (6) 

( ) log ( ) (1 ( )log(1 ( )))ˆ ˆ[ ]n n n nSD
t T

t t t tL s s s s
∈

− −= − ⋅ +    (7)  

where ˆnp  and ˆns  are outputs of the energy disaggregation, 

which is estimated power in watts, and the output of status 

detection, which is a probability that the appliance is “on”, 

respectively. In the proposed network, we assume that the 

appliance is on for probabilities above 0.5. 

For the MTL approach, task-specific loss functions are 

summed by multiplying them with a weighting factor, and 

models were trained with a single total loss function [26,27]. 

In our study, the M-GRU model was trained using a total loss 

as formulated below: 

 

(1 )ED SDtotal
L L Lα α= + −         (8) 

 

where α  is the weighting factor using for regularizing the 

scale of the losses. 

III.  ENERGY MANAGEMENT IN RESIDENTIAL MICROGRIDS 

A residential microgrid is a small scale grid including some 

distributed generation units, energy storage system (ESS) 

systems, and one or more dwellings. Thanks to its flexible 

structure, it can be operated both in grid-connected or 

islanding mode to provide reliable energy to homeowners. A 

block diagram of the proposed residential microgrid is shown 

in Fig. 3. On the generation side, the energy sources include 

the utility grid, a small Photovoltaic (PV) power plant, a Wind 

Turbine (WT), and an ESS unit, while schedulable and 

controllable appliances serve as active participants on the 

demand side. 

In order to operate the proposed microgrid optimally, an 

efficient EMS is required. It manages the operation of 

domestic appliances in coordination with the renewables, 

batteries, operational constraints, and microgrid central 
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controller. Besides, EMS must be capable of transmitting the 

necessary reference signals to distributed power plants and 

dwellings to achieve optimal operation. In the proposed 

microgrid, the utility grid is modeled as an infinite power 

source that supports the voltage regulation and system 

frequency of the ac bus, PV/WT are exploited as non-

dispatchable renewable energy sources operating with 

maximum power point tracking, while the ESS unit is 

modeled as a dispatchable source, which adjusts its output 

according to reference signals received from EMS. 

 

 
Fig. 3. Residential microgrid structure 

Optimum energy management and power control problem 

in residential microgrid systems can be formulated as mixed-

integer programming, taking into account the various 

objectives and technical constraints described below.  

A.  Mathematical Model of the Proposed System 

Two different objective functions are taken into account for 

the comfort level of the customers and minimum operation 

cost. The first objective function, Operation Cost (OC) is 

minimized in order to reduce the operating cost of the 

microgrid, and the second one, Comfort Level (CL) deals with 

the user’s comfort level maximization, which are expressed as 

follows: 

( ) ( )grid
h H

h hMin OC RTP P
∈

 = ⋅ 
 

      (9) 

( )n
h H n N

hMax CL SDξ
∈ ∈

 = ⋅ 
 

       (10) 

where RTP is the real-time pricing for electricity consumption, 

grid
P  is the power exchanged with the utility grid at a given 

time h, ξ  is a penalty factor to adjust consumers’ satisfaction 

degree and SD is the satisfaction degree of the consumers, 

which are determined according to Fig. 4. 

 
Fig. 4. Satisfaction degree of consumers 

SD is directly dependent on the operation time of 

appliances. If it operates within the preferred period, 1 is 

assigned as the maximum level, otherwise, SD will decrease as 

it moves away from the preferred period. The distribution 

pattern of SD can be adjusted by the penalty factor . 

Depending on the design purpose, one of the penalty factors 

seen in Fig. 4 can be selected. In our study, the linear curve (

3ξ ) is used for the optimization process. Following the 

aforementioned descriptions, a hybrid objective function 

(HOF) similar to the price-performance ratio can be 

formulated as follows: 

{ }OCMin HOF
CL

=         (11) 

which is optimized subjected to some constraints. First of all, 

the energy balance inside microgrid must be fulfilled: 

,( ) ( ) ( )G igrid load
i NG

h h hP P P
∈

+ =       (12) 

where, loadP  and NG are the power demand and the number of 

generators, respectively. ,G iP  is the output power of generator 

i and should be arranged between upper and lower limits as 

follows: 
min max
, , ,G i G i G iP P P≤ ≤         (13) 

In a competitive energy market, power outages and 

uncertain generation of renewable energy sources are two 

major disadvantages. For residential applications, ESS can 

provide reliable energy during a blackout or store excessive 

energy generated by renewables. An ESS is operated 

according to certain constraints, and the first one is the State-

of-Charge (SoC), which is formulated as (14). ESS should be 

operated within certain upper and lower SoC limits in order to 

have a longer lifetime as shown in (15). Similarly, there are 

certain limits for charging and discharging power for each 

ESS unit, which are shown in (16-17). 

{ }( 1) ( ) ( ) ( )(( ) ) /ch dch
stepbat bat bath h h hSoC SoC P P h E+ = + − ⋅∆ (14) 

maxmin ( )hSoC SoC SoC≤ ≤        (15) 

,max( ) ( )
ch

bat ch ch bath hP P uη≤ ⋅ ⋅        (16) 

,max( ) 1 ( )( )
dch

bat dch dch bath hP P uη −⋅ ≤ ⋅      (17) 

where, batE , 
( )ch dch

bat
P , 

( ),maxch dch
P  and 

( )ch dch
η  are energy 

capacity, charging (discharging) power, maximum charging 

(discharging) power and efficiency of the ESS unit, 

respectively. bat
u  is a binary variable determining that the 

ESS is charging or discharging. steph∆  is the examined time 

step.  

B.  Scheduling of Domestic Appliances 

Usually, residential appliances are classified as non-

schedulable and schedulable. Non-schedulable appliances 

1

SD

Time

ξ
1

>ξ
2

>
ξ

3

Preferred
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ξ
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must operate immediately at the request of the user, while the 

operation time of the schedulable appliances can be shifted. 

Temperature-dependent appliances such as air conditioners 

and refrigerators can be controlled within certain temperature 

limits [28]. The operation of appliances such as washing 

machines and dishwashers can be shifted according to RTP 

and user preferences. Schedulable tasks can be planned 

according to several operating parameters such as power 

consumption (PC), operation time (OT), mostly preferred 

operation interval (POI), and the number of uses (NoU) of the 

appliances. The required constraints can be defined as follows 

[29]: 

( )n n
h H

hs OT
∈

=          (18) 

( ) ( 1) 2n n
h H

h hs s
∈

−− ≤       (19) 

( ) (( ))m n n m
h H h H

h hs OT s OTθ λ
∈ ∈

⋅ − + =     (20) 

max
, ,( ) ( ) ( ) ( )load nsc k sc l l load

k NN l NS

h h h hP P P s P
∈ ∈

= + ⋅ ≤   (21)  

Equation (18) ensures that appliance n will complete its 

task within the given OT, while (19) enables some appliances 

such as dishwashers to operate once and without interruption. 

The operation of some appliances, such as a tumble dryer, 

depends on the operation of the washing machine. Such 

consecutive tasks are guaranteed by (20), in which θ  is unit 

step function and λ is a positive value smaller than 1. Due to 

protection requirements, the instant energy consumption is 

limited using (21), in which nscP , scP  and max
load

P  are power 

consumption of non-schedulable, schedulable appliances and 

instant consumption limit of dwelling, respectively. NN and 

NS are the number of non-schedulable and schedulable 

appliances, respectively. 

The parameters required for the scheduling of domestic 

appliances are obtained with the help of the proposed M-GRU 

model. There are 4 important operating parameters, which are 

NoU, OT, POI, and PC, that provide distinctive information 

about appliances. These parameters are extracted using the 

output of status detection and energy disaggregation networks 

as follows: 

,min_( )n n onNoU f t= ∆         (22) 

[ , ]

( )ˆ

n

n n
h H

hOT s

α β∈
=          (23) 

[ , ]

[ , ]

( )ˆ

n

n

n
h H

n

hp

PC
H

α β

α β

∈
=


        (24) 

where 
,min_n on

t∆  denotes the minimum operation time of 

appliance n. By using (22), the periods longer than the 

minimum operation time are detected and NoU is calculated. 

This parameter can vary according to the seasons, days 

(weekday, weekend), and environmental conditions and it is 

directly related to the number of occupants living at the 

household. For example, the NoU of dishwashers for a 

household with 4 occupants cannot be the same as a house 

with a single-occupant. Therefore, analyzing the NoU can be 

useful for designing a more precise EMS. The OT is extracted 

using (23), in which [ , ]nH α β  denotes a period [ , ]α β  during 

which appliance n is active. The average PC is calculated 

using the ratio of total energy consumption to operation time. 

The last parameter, POI is a probabilistic value since 

appliances are used in different periods. To understand the 

behavior of consumers, a probability density function (PDF) is 

defined for each appliance.  

IV.  SIMULATION RESULTS AND DISCUSSIONS 

The performance of the designed NILM-based EMS 

strategy is evaluated using the microgrid architecture shown in 

Fig. 3. Simulation results will be shown in two stages. First, 

the performance of DNN-based NILM analysis will be 

evaluated, and then its integration into the EMS for residential 

microgrid will be analyzed. 

The developed NILM method has been trained and tested 

using the REFIT dataset [30], which contains electrical 

consumption data for 20 dwellings at appliance-level and 

aggregate, sampled at 8-second intervals. House 2 is chosen, 

taking into account the appliances, numbers of occupancy, and 

quality of the recorded data. One model is trained for each 

target appliance. 5 different appliances, which are washing 

machine (WM), dishwasher (DW), microwave (MW), kettle 

(KT), and toaster (TO) are selected as targets since they are 

only controllable appliances recorded. For appliances with 

long operating times such as WM and DW, the window size 

w  is selected as 512, and for appliances with short operating 

time such as MW, KT, and TO, it's 128 samples. The 

networks are trained with 6 months of data and tested with 3 

months of data by using Adam optimizer. Training data is 

augmented by randomly and systematically adding load 

patterns of target appliances to aggregated data in parallel with 

[18]. Before training, data is standardized by subtracting the 

mean and dividing it by the standard deviation. The results are 

evaluated using the following two metrics commonly using in 

the literature, which are mean absolute error (MAE) for 

energy disaggregation, and F1-score for status detection: 

1
( ) ( )ˆ

t

n n n
T

t t
T

MAE p p
∈

= −       (25) 

1 2
precision recall

F
precision recall

⋅= ⋅
+

       (26) 

True positives
precision

True positives False positives
=

+
     (27) 

True positives
recall

True positives Falsenegatives
=

+
    (28)  

First of all, tuning of the weighting factor α  in (8) will be 

evaluated. As we discussed in Section II,  α   is used to adjust 

the scale of the losses. Since the input data is standardized, the 

scale of the loss functions is close to each other. In this paper, 

weights were obtained empirically with a naive approach. The 

model is tested by using different α  values (between 0 and 1) 
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for each appliance. The average results for 5 appliances are 

shown in Fig.5. When the weight balance between tasks was 

adjusted, we observed improved performance, especially for 

the energy disaggregation. The individual performance of each  
 

TABLE I. PERFORMANCE COMPARISON OF THE PROPOSED METHOD 

 F-1 score  

(status detection) 

MAE 

(energy disaggregation) 

House-2 Seq2Seq dAE Seq2Point AlexNet-1D M-GRU Seq2Seq dAE Seq2Point AlexNet-1D M-GRU 

WM 0.880 0.401 0.920 0.939 0.939 19.92 36.56 12.33 9.40 8.70 

DW 0.809 0.663 0.792 0.787 0.782 39.03 39.95 21.05 14.94 13.35 

MW 0.606 0.311 0.580 0.590 0.685 7.81 7.85 4.12 3.61 2.16 

KT 0.865 0.801 0.881 0.869 0.876 21.32 21.57 11.31 10.09 8.36 

TO 0.801 0.290 0.805 0.608 0.818 2.19 5.57 1.20 0.86 0.35 

 

task can be seen at both edges of the figure, where α =0 and 

α =1. The model achieves better results between the points 

where the weights are between 0.4 and 0.6. For this reason, the 

weighting factor was chosen 0.4. 

 

 
Fig. 5. Comparing the loss weighting factor 

The obtained results were compared with sequence-to-

sequence (Seq2Seq), sequence-to-point (Seq2Point) [11], 

denoising auto-encoder (dAE) [10], and AlexNet-1D [13] 

models. The input window size was selected the same for all 

models. For M-GRU, Seq2Seq, and dAE models, the size of 

the output window is the same as the input to make a fair 

comparison. The output window size of Seq2Point and 

AlexNet-1D models is equal to one due to their architecture. 

The results are shown in Table I. 

As can be seen from Table I, the M-GRU model achieves 

better results than the other models. The reason why dAE's 

accuracy is lower compared to other models is that it has a 

shallower architecture. Seq2Point and AlexNet-1D models 

have higher success rates because they have a deeper 

architecture and they predict only a single point for each input 

window. For energy disaggregation, the M-GRU model gives 

better results for each appliance. For status detection, the 

results are either better or very close to the best. The secret 

behind the model's success is its ability to analyze the time 

series. Fig. 6 shows an example of disaggregated data for the 

washing machine and dishwasher. In Fig. 6, aggregated data 

shows the energy consumption value of the whole household, 

while ground truth shows the actual energy consumption value 

of the target appliance. 

NILM studies in the literature are concerned only with the 

results mentioned above. However, there is limited work on 

where and how the results will be used. In this paper, it is 

aimed to contribute to energy management in microgrids with 

the results obtained above. 

 
Fig. 6. An output example of energy disaggregation network 

To design an efficient EMS, the operating parameters of 

appliances mentioned in Section III must be obtained. One of 

the parameters is POI, which shows the time of use of the 

devices during the day and makes it possible to analyze the 

consumers’ usage habits. To visualize the POI, a PDF is 

defined for each appliance. The PDFs of the washing machine 

and dishwasher are shown in Fig. 7. 

 
Fig. 7. Probability distributions of washing machine and dishwasher 

It can be seen that NILM results perfectly follow the 

original PDF. The blue line in Fig. 7 was obtained using real 

sub-metered data, while the orange line was obtained using 

NILM results. The most preferred time of the appliances 

obtained from these PDFs is shown in the POI column of 
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Table III. According to Fig. 7, it is easy to observe the periods 

during which the consumer prefers to use the appliances. The 

maximum peak point indicates the period in which the device 

is frequently used. However, many different peak points can 

be found in the PDF curve. In this paper, peak points that are 

smaller than half of the maximum peak point are not taken 

into account to focus on the frequent use period. The red 

dashed lines indicate the most frequent usage periods of the 

appliance according to the area under the curve. Besides, an 

extra term, Extended POI, is introduced in order to design a 

more flexible EMS. It defines a wider window than POI. The 

reason for the extension of the window is the possibility of 

having more optimal operating points outside the POI. In this 

way, appliances can be scheduled in periods where RTP is 

lower. However, if the appliance is scheduled outside the POI, 

customer satisfaction may reduce due to Fig. 4. For the sake of 

simplicity, Extended POI limits are set 2 hours before and 

after the POI limits. Other parameters, PC, OT, and NoU are 

shown in Fig. 8. It can be easily observed that the NILM 

results are very close to the original data. The average analysis 

accuracies for PC, OT, and NoU are 91%, 97%, and 93%, 

respectively. All these aforementioned results are proof that 

designing a reliable EMS can benefit from a successful NILM 

analysis. 

 
Fig. 8. Comparison of the required operational parameters  

TABLE II. OPERATING PARAMETERS FOR MICROGRID 

Parameters Values Unit Parameters Values Unit 

WTP  1.3 kWp PVP  1.4 kWp 

batE  24 kWh ( ),maxch dch
P  3.3 (3.3) kW 

max(min)SoC  80 (20) % ( )ch dch
η  87 (90) % 

 

TABLE III. PARAMETERS OF SCHEDULABLE TASKS 

Appliance POI 
Extended 

POI 

OT 

(min) 

PC 

(kW) 
NoU 

WM 
27-53 

81-89 

19-61 

73-96 
108 0.26 0.5 

DW 29-56 21-64 114 0.68 0.7 

KT 

22-33 

51-67 

73-83 

14-41 

43-75 

65-91 

2.5 2.65 3.85 

TO 42-51 34-59 4.5 0.90 0.64 

MW 
25-36 

61-83 

17-44 

53-91 
3 0.67 2.26 

After obtaining the NILM results, their availability for 

EMS needs to be addressed. In this regard, the performance of 

the proposed NILM-based EMS model has been tested on the 

residential microgrid shown in Fig. 3. The parameters of the 

generation units and ESS are shown in Table II. Besides, the 

schedulable tasks for the analyzed home using NILM are 

shown in Table III. 

If the parameters in Table III are examined, it is seen that 

OT is very short for KT, MW, and TO. Therefore, the time 

interval for optimization should be small in order not to miss 

the peak consumption of appliances. In this paper, the time 

interval is determined as 15 minutes, so the total time interval 

for day ahead optimization is 96. The POI numbers in Table 

III indicate these intervals. The NoU values are rounded to the 

nearest integer value if it’s higher than 0.5. RTP and 

meteorological information to estimate PV and WT output 

power are collected from [31, 32]. The daily estimated power 

generation profiles of PV and WT are shown in Fig. 9. It is 

worthy of note that the General Algebraic Modelling System 

(GAMS) with Cplex/Dicopt solvers is used for the 

optimization task. 

 

 
Fig. 9. PV and WT generation profile  

Fig. 10 shows the performance comparison of the proposed 

NILM-based EMS with a traditional EMS. Although both 

EMS architectures receive RTP signals, traditional one 

operates only cost-oriented, regardless of customer 

satisfaction. However, the proposed method takes into 

consideration not only operation cost but also customer 

satisfaction thanks to NILM. 

 
Fig. 10. Comparison of the proposed method with the traditional EMS 

The analyzed residential microgrid has the capacity to 

generate more than consumption because it is supplied by PV, 
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WT, and ESS. OC indicates the profit since the excess energy 

is sold back to the grid. Traditional EMS makes the most 

profit due to cost-oriented scheduling. But it ignores user 

satisfaction. On the other hand, the proposed method has been 

evaluated in two different ways. In the first one, scheduling 

was done only considering the customers' POI. Therefore, the 

CL value is at the maximum value since the appliances are 

scheduled within the preferred periods. As expected, the OC 

value has decreased compared to traditional EMS. In the 

second, a more flexible EMS structure was desired by 

expanding the customers' POI values. The CL value has been 

partially reduced as the appliances can also be scheduled 

outside the POI. However, an increase is observed in the 

profit. Considering the HOF value, the proposed method 

improved it by about 65% with POI and 45% with extended 

POI compared to traditional EMS. It can also be observed that 

all three EMSs are quite close to each other in terms of OC. 

Given the different periods of the year, PV and WT 

generation can drastically vary depending on the weather. For 

this reason, another simulation was carried out by considering 

that renewable energy production may be low. The low-level 

generation curves were obtained by reducing the previous 

renewable energy generation values, which are shown in Fig. 

9, by 10 times. The obtained simulation results are shown in 

Fig. 11. 

 
 

Fig. 11. Comparison of the proposed method with the traditional EMS for the 

case of low-level renewable generation 

It is observed that OC values significantly reduce as 

renewable energy generation decreases. However, CL values 

for all EMS are the same as in the previous simulation. 

Because the operation intervals of the appliances are the same 

since they are determined by NILM using historical data, and 

EMS assigns appliances to periods where RTP is cheaper. 

Since appliances are scheduled considering the customer 

preferences, the best HOF value was obtained with NILM-

EMS within POI. Besides, OC values of NILM-based EMSs 

are very close to the traditional EMS. 

It is also worthy of note that the ESS is charged in periods 

such as the early hours of the day when the RTP is relatively 

low. In this period, all the demand is supplied by the utility 

grid and renewable energy. However, during the periods of 

high consumption or high electricity price, such as noon and 

evening hours, the distributed generation units both supply the 

demand and sell excessive power to the utility. Therefore, OC 

values for both simulations were obtained as profit. These 

profits may vary depending on the initial SoC of ESS unit and 

the price of electricity sold to grid. Considering the demand 

side, the operations of the controllable appliances are 

optimally scheduled according to the price signals, the user's 

preferences, and related constraints as shown in Fig. 12. In 

terms of visuality, scheduling periods are shown hourly. 

 
Fig. 12. Optimum scheduling periods of controllable appliances and RTP 

In this study, we designed a modest EMS as our main focus 

is NILM and its EMS integration. However, it is also possible 

to design an advanced EMS using NILM for different 

purposes. For example, for some appliances that are not used 

every day, such as washing machines, the energy management 

system should know if its operation condition has been 

satisfied before scheduling. By using NILM, it can be possible 

to understand whether the operation conditions of appliances 

have been satisfied before scheduling, by analyzing the last 24 

hours of consumption data. If these appliances have been used 

in the last 24 hours, EMS can update its scheduling and these 

appliances are not included in the next day's schedule. 

V.  CONCLUSION 

In this paper, an efficient NILM-based EMS for residential 

users is defined, mathematically modeled, and verified on a 

residential microgrid. The proposed study consists of two 

parts.  

In the first part, smart meter data of end-users are analyzed 

with the DNN-based NILM technique, and the appliance-level 

information of the consumers is tried to be extracted. Since 

this technique enables us to analyze the behavior of the 

consumers with only smart meter data, it mitigates the 

requirements such as high-cost sensors, maintenance/update 

and provides a cost-effective solution. Both the consumption 

and operating status of the appliances were obtained with high 

accuracy with the proposed DNN-based approach, which is 

designed as a multi-task network combined with GRU. 

In the second part, using the appliance-level data obtained 

above, the energy consumption behaviors of the end-users are 

analyzed. Accordingly, the data such as average power 

consumption, operation cycles, preferred usage periods, and 

daily usage frequency of the appliances were obtained with an 

average accuracy of more than 90%. These data were 

integrated into the microgrid operation to create an efficient 

and user-centered EMS. The developed model not only 
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provided the optimum dispatch of distributed generation plants 

in the microgrid but also scheduled the controllable loads 

taking into account customers’ satisfaction. It was 

demonstrated with the help of simulation that the proposed 

NILM-based EMS model both reduces operation cost and 

increases customer satisfaction. Compared to a traditional 

EMS, the proposed approach improves the operation 

cost/satisfaction ratio between 45% and 65%. 
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